1
|
Škrlec I, Biloglav Z, Lešić D, Talapko J, Žabić I, Katalinić D. Association of MTNR1B Gene Polymorphisms with Body Mass Index in Hashimoto's Thyroiditis. Int J Mol Sci 2025; 26:3667. [PMID: 40332199 PMCID: PMC12027080 DOI: 10.3390/ijms26083667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Hashimoto's thyroiditis (HT) is an autoimmune disorder of the thyroid gland characterized by chronic inflammation, which in most cases results in hypothyroidism. The melatonin receptor MTNR1B is sporadically expressed in the thyroid gland. It modulates immune responses, and alterations in the melatonin-MTNR1B receptor signaling pathway may play a role in developing autoimmune diseases. Obesity worsens the severity and progression of some autoimmune diseases and reduces treatment efficacy. This study aimed to investigate the association of MTNR1B gene polymorphisms (rs10830963, rs1387153, and rs4753426) with HT with regards to the body mass index (BMI). Patients with HT were categorized into normal weight BMI ≤ 25 kg/m2 and overweight/obese BMI > 25 kg/m2 groups. This study included 115 patients with a clinical-, ultrasound-, and laboratory-confirmed diagnosis of HT (64 normal-weight patients and 51 overweight/obese patients) with a mean age of 43 ± 12 years. The results showed that specific MTNR1B polymorphisms are associated with obesity in HT patients. BMI was found to be associated with the rs10830963 polymorphism, and the G allele and GG genotype of the rs10830963 polymorphism were more common in overweight/obese HT patients. Furthermore, the results suggest that genetic factors associated with BMI play a role in developing HT and open new possibilities for personalized treatment approaches.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, University J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Zrinka Biloglav
- Department of Medical Statistics, Epidemiology and Medical Informatics, School of Public Health Andrija Štampar, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Jasminka Talapko
- Faculty of Dental Medicine and Health, University J. J. Strossmayer Osijek, 31000 Osijek, Croatia
| | - Igor Žabić
- County Hospital Koprivnica, 48000 Koprivnica, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, University J. J. Strossmayer Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
2
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
3
|
Amin M, Rafla B, Wu R, Postolache TT, Gragnoli C. The role of melatonin receptor 1B gene ( MTNR1B) in the susceptibility to depression and type 2 diabetes comorbidity. Genes Dis 2024; 11:101067. [PMID: 38292205 PMCID: PMC10825273 DOI: 10.1016/j.gendis.2023.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Mutaz Amin
- INSERM, US14-Orphanet, Paris 75014, France
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Al-Neelain University, Khartoum 11121, Sudan
| | - Benjamin Rafla
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE 68124, USA
| | - Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Statistics, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Teodor T. Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, CO 80246, USA
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD 21090, USA
| | - Claudia Gragnoli
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE 68124, USA
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome 00197, Italy
| |
Collapse
|
4
|
Heianza Y, Zhou T, Wang X, Furtado JD, Appel LJ, Sacks FM, Qi L. MTNR1B genotype and effects of carbohydrate quantity and dietary glycaemic index on glycaemic response to an oral glucose load: the OmniCarb trial. Diabetologia 2024; 67:506-515. [PMID: 38052941 DOI: 10.1007/s00125-023-06056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
AIMS/HYPOTHESIS A type 2 diabetes-risk-increasing variant, MTNR1B (melatonin receptor 1B) rs10830963, regulates the circadian function and may influence the variability in metabolic responses to dietary carbohydrates. We investigated whether the effects of carbohydrate quantity and dietary glycaemic index (GI) on glycaemic response during OGTTs varied by the risk G allele of MTNR1B-rs10830963. METHODS This study included participants (n=150) of a randomised crossover-controlled feeding trial of four diets with high/low GI levels and high/low carbohydrate content for 5 weeks. The MTNR1B-rs10830963 (C/G) variant was genotyped. Glucose response during 2 h OGTT was measured at baseline and the end of each diet intervention. RESULTS Among the four study diets, carrying the risk G allele (CG/GG vs CC genotype) of MTNR1B-rs10830963 was associated with the largest AUC of glucose during 2 h OGTT after consuming a high-carbohydrate/high-GI diet (β 134.32 [SE 45.69] mmol/l × min; p=0.004). The risk G-allele carriers showed greater increment of glucose during 0-60 min (β 1.26 [0.47] mmol/l; p=0.008) or 0-90 min (β 1.10 [0.50] mmol/l; p=0.028) after the high-carbohydrate/high-GI diet intervention, but not after consuming the other three diets. At high carbohydrate content, reducing GI levels decreased 60 min post-OGTT glucose (mean -0.67 [95% CI: -1.18, -0.17] mmol/l) and the increment of glucose during 0-60 min (mean -1.00 [95% CI: -1.67, -0.33] mmol/l) and 0-90 min, particularly in the risk G-allele carriers (pinteraction <0.05 for all). CONCLUSIONS/INTERPRETATION Our study shows that carrying the risk G allele of MTNR1B-rs10830963 is associated with greater glycaemic responses after consuming a diet with high carbohydrates and high GI levels. Reducing GI in a high-carbohydrate diet may decrease post-OGTT glucose concentrations among the risk G-allele carriers.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Epidemiology, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Biogen Epidemiology, Cambridge, MA, USA
| | - Lawrence J Appel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
5
|
Thornton JM, Shah NM, Lillycrop KA, Cui W, Johnson MR, Singh N. Multigenerational diabetes mellitus. Front Endocrinol (Lausanne) 2024; 14:1245899. [PMID: 38288471 PMCID: PMC10822950 DOI: 10.3389/fendo.2023.1245899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Gestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth. Multiple factors, including genetic, epigenetic and metabolic, which interact with lifestyle factors and the environment, are likely to contribute to the development of GDM. Genetic factors are particularly important, with 30% of women with GDM having at least one parent with T2D. Fetal epigenetic modifications occur in response to maternal GDM, and may mediate both multi- and transgenerational risk. Changes to the maternal metabolome in GDM are primarily related to fatty acid oxidation, inflammation and insulin resistance. These might be effective early biomarkers allowing the identification of women at risk of GDM prior to the development of hyperglycaemia. The impact of the intra-uterine environment on the developing fetus, "developmental programming", has a multisystem effect, but its influence on adipogenesis is particularly important as it will determine baseline insulin sensitivity, and the response to future metabolic challenges. Identifying the critical window of metabolic development and developing effective interventions are key to our ability to improve population metabolic health.
Collapse
Affiliation(s)
- Jennifer M. Thornton
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nishel M. Shah
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Karen A. Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Wei Cui
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Natasha Singh
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Gubin D, Danilenko K, Stefani O, Kolomeichuk S, Markov A, Petrov I, Voronin K, Mezhakova M, Borisenkov M, Shigabaeva A, Yuzhakova N, Lobkina S, Weinert D, Cornelissen G. Blue Light and Temperature Actigraphy Measures Predicting Metabolic Health Are Linked to Melatonin Receptor Polymorphism. BIOLOGY 2023; 13:22. [PMID: 38248453 PMCID: PMC10813279 DOI: 10.3390/biology13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
This study explores the relationship between the light features of the Arctic spring equinox and circadian rhythms, sleep and metabolic health. Residents (N = 62) provided week-long actigraphy measures, including light exposure, which were related to body mass index (BMI), leptin and cortisol. Lower wrist temperature (wT) and higher evening blue light exposure (BLE), expressed as a novel index, the nocturnal excess index (NEIbl), were the most sensitive actigraphy measures associated with BMI. A higher BMI was linked to nocturnal BLE within distinct time windows. These associations were present specifically in carriers of the MTNR1B rs10830963 G-allele. A larger wake-after-sleep onset (WASO), smaller 24 h amplitude and earlier phase of the activity rhythm were associated with higher leptin. Higher cortisol was associated with an earlier M10 onset of BLE and with our other novel index, the Daylight Deficit Index of blue light, DDIbl. We also found sex-, age- and population-dependent differences in the parametric and non-parametric indices of BLE, wT and physical activity, while there were no differences in any sleep characteristics. Overall, this study determined sensitive actigraphy markers of light exposure and wT predictive of metabolic health and showed that these markers are linked to melatonin receptor polymorphism.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Konstantin Danilenko
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Oliver Stefani
- Department Engineering and Architecture, Institute of Building Technology and Energy, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland;
| | - Sergey Kolomeichuk
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
- Laboratory of Genetics, Institute of Biology of the Karelian Science Center, Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Alexander Markov
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Ivan Petrov
- Department of Biological & Medical Physics UNESCO, Medical University, 625023 Tyumen, Russia
| | - Kirill Voronin
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Marina Mezhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Mikhail Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of the Federal Research Centre Komi Science Centre, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Aislu Shigabaeva
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
| | - Natalya Yuzhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Svetlana Lobkina
- Healthcare Institution of Yamalo-Nenets Autonomous Okrug “Tarko-Sale Central District Hospital”, 629850 Urengoy, Russia;
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany;
| | - Germaine Cornelissen
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
7
|
Vejrazkova D, Vankova M, Lukasova P, Hill M, Vcelak J, Tura A, Chocholova D, Bendlova B. The Glycemic Curve during the Oral Glucose Tolerance Test: Is It Only Indicative of Glycoregulation? Biomedicines 2023; 11:biomedicines11051278. [PMID: 37238949 DOI: 10.3390/biomedicines11051278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The shape of the glycemic curve during the oral glucose tolerance test (OGTT), interpreted in the correct context, can predict impaired glucose homeostasis. Our aim was to reveal information inherent in the 3 h glycemic trajectory that is of physiological relevance concerning the disruption of glycoregulation and complications beyond, such as components of metabolic syndrome (MS). METHODS In 1262 subjects (1035 women, 227 men) with a wide range of glucose tolerance, glycemic curves were categorized into four groups: monophasic, biphasic, triphasic, and multiphasic. The groups were then monitored in terms of anthropometry, biochemistry, and timing of the glycemic peak. RESULTS Most curves were monophasic (50%), then triphasic (28%), biphasic (17.5%), and multiphasic (4.5%). Men had more biphasic curves than women (33 vs. 14%, respectively), while women had more triphasic curves than men (30 vs. 19%, respectively) (p < 0.01). Monophasic curves were more frequent in people with impaired glucose regulation and MS compared to bi-, tri-, and multiphasic ones. Peak delay was the most common in monophasic curves, in which it was also most strongly associated with the deterioration of glucose tolerance and other components of MS. CONCLUSION The shape of the glycemic curve is gender dependent. A monophasic curve is associated with an unfavorable metabolic profile, especially when combined with a delayed peak.
Collapse
Affiliation(s)
| | | | - Petra Lukasova
- Institute of Endocrinology, 110 00 Prague, Czech Republic
| | - Martin Hill
- Institute of Endocrinology, 110 00 Prague, Czech Republic
| | - Josef Vcelak
- Institute of Endocrinology, 110 00 Prague, Czech Republic
| | - Andrea Tura
- Institute of Neuroscience, National Research Council (CNR), 351 22 Padova, Italy
| | - Denisa Chocholova
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Bela Bendlova
- Institute of Endocrinology, 110 00 Prague, Czech Republic
| |
Collapse
|
8
|
Hohor S, Mandanach C, Maftei A, Zugravu CA, Oțelea MR. Impaired Melatonin Secretion, Oxidative Stress and Metabolic Syndrome in Night Shift Work. Antioxidants (Basel) 2023; 12:antiox12040959. [PMID: 37107334 PMCID: PMC10135726 DOI: 10.3390/antiox12040959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic syndrome has been associated in many studies with working in shifts. Even if the mechanistic details are not fully understood, forced sleep deprivation and exposure to light, as happens during night shifts, or irregular schedules with late or very early onset of the working program, lead to a sleep-wake rhythm misalignment, metabolic dysregulation and oxidative stress. The cyclic melatonin secretion is regulated by the hypothalamic suprachiasmatic nuclei and light exposure. At a central level, melatonin promotes sleep and inhibits wake-signals. Beside this role, melatonin acts as an antioxidant and influences the functionality of the cardiovascular system and of different metabolic processes. This review presents data about the influence of night shifts on melatonin secretion and oxidative stress. Assembling data from epidemiological, experimental and clinical studies contributes to a better understanding of the pathological links between chronodisruption and the metabolic syndrome related to working in shifts.
Collapse
Affiliation(s)
- Sorina Hohor
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Cristina Mandanach
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Andreea Maftei
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
- "Dr. Carol Davila" Central Military Emergency University Hospital, 134 Calea Plevnei, Sector 1, 010242 Bucharest, Romania
| | - Corina Aurelia Zugravu
- Department of Hygiene and Ecology, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| | - Marina Ruxandra Oțelea
- Clinical Department 5, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 2, 020021 Bucharest, Romania
| |
Collapse
|