1
|
Matias G, Cagnacci F, Rosalino LM. FSC forest certification effects on biodiversity: A global review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168296. [PMID: 37926251 DOI: 10.1016/j.scitotenv.2023.168296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
FSC is a worldwide recognized forest certification scheme, that aims to promote the environmentally responsible management and conservation of the world's forests. Despite its broad application, there is little evidence of its effect on biodiversity. To address this important knowledge gap, here we conducted a systematic review and a hierarchical meta-analysis of the effects of FSC on biodiversity worldwide. Our review yielded 57 studies spanning 2004-2022. Most studies were in the Americas and Europe (31 % and 28 %, respectively), and largely focused on vascular plants (41 %). Half (51 %) of the studies aimed to determine the effect of FSC certification on biodiversity. There were 15 studies with sufficient information for meta-analysis, resulting in 231 effect sizes for mammal, bird, and vascular plant abundance and 10 for vascular plant richness. Overall, there is a neutral effect of certification on taxa abundance, with only a positive effect on mammal assemblages. Responses varied considerably between mammals' traits. Threatened species, individuals with reduced body weight, and omnivorous species benefit from management under the FSC scheme. Vascular plant richness exhibited significantly higher values in FSC-certified areas. Moreover, the abundance of vascular plants also differs among traits, with shrubs and adult trees benefiting from FSC certification. Our systematic review and meta-analysis revealed strong variation in biodiversity responses to FSC, and major geographic and taxonomic knowledge gaps. The overall neutral effect and the divergent responses of taxa and species traits suggest that taxa/species-specific management and improvement of FSC criteria are required.
Collapse
Affiliation(s)
- Gonçalo Matias
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy; National Biodiversity Future Centre, Palermo, Italy.
| | - Luís Miguel Rosalino
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Campo Grande, 1749-016 Lisbon, Portugal.
| |
Collapse
|
2
|
von Takach B, Sargent H, Penton CE, Rick K, Murphy BP, Neave G, Davies HF, Hill BM, Banks SC. Population genomics and conservation management of the threatened black-footed tree-rat (Mesembriomys gouldii) in northern Australia. Heredity (Edinb) 2023; 130:278-288. [PMID: 36899176 PMCID: PMC10162988 DOI: 10.1038/s41437-023-00601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Genomic diversity is a fundamental component of Earth's total biodiversity, and requires explicit consideration in efforts to conserve biodiversity. To conserve genomic diversity, it is necessary to measure its spatial distribution, and quantify the contribution that any intraspecific evolutionary lineages make to overall genomic diversity. Here, we describe the range-wide population genomic structure of a threatened Australian rodent, the black-footed tree-rat (Mesembriomys gouldii), aiming to provide insight into the timing and extent of population declines across a large region with a dearth of long-term monitoring data. By estimating recent trajectories in effective population sizes at four localities, we confirm widespread population decline across the species' range, but find that the population in the peri-urban area of the Darwin region has been more stable. Based on current sampling, the Melville Island population made the greatest contribution to overall allelic richness of the species, and the prioritisation analysis suggested that conservation of the Darwin and Cobourg Peninsula populations would be the most cost-effective scenario to retain more than 90% of all alleles. Our results broadly confirm current sub-specific taxonomy, and provide crucial data on the spatial distribution of genomic diversity to help prioritise limited conservation resources. Along with additional sampling and genomic analysis from the far eastern and western edges of the black-footed tree-rat distribution, we suggest a range of conservation and research priorities that could help improve black-footed tree-rat population trajectories at large and fine spatial scales, including the retention and expansion of structurally complex habitat patches.
Collapse
Affiliation(s)
- Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Holly Sargent
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Cara E Penton
- Warddeken Land Management Ltd, Darwin, NT, Australia
| | - Kate Rick
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Brett P Murphy
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Georgina Neave
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Hugh F Davies
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Brydie M Hill
- Flora and Fauna Division, Department of Environment, Parks and Water Security, Northern Territory Government, Berrimah, NT, 0831, Australia
| | - Sam C Banks
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia.
| |
Collapse
|
3
|
Bergstrom BJ, Scruggs SB, Vieira EM. Tropical savanna small mammals respond to loss of cover following disturbance: A global review of field studies. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1017361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small-mammal faunas of tropical savannas consist of endemic assemblages of murid rodents, small marsupials, and insectivores on four continents. Small mammals in tropical savannas are understudied compared to other tropical habitats and other taxonomic groups (e.g., Afrotropical megafauna or Neotropical rainforest mammals). Their importance as prey, ecosystem engineers, disease reservoirs, and declining members of endemic biodiversity in tropical savannas compels us to understand the factors that regulate their abundance and diversity. We reviewed field studies published in the last 35 years that examined, mostly experimentally, the effects of varying three primary endogenous disturbances in tropical savanna ecosystems—fire, large mammalian herbivory (LMH), and drought—on abundance and diversity of non-volant small mammals. These disturbances are most likely to affect habitat structure (cover or concealment), food availability, or both, for ground-dwelling small mammalian herbivores, omnivores, and insectivores. Of 63 studies (included in 55 published papers) meeting these criteria from the Afrotropics, Neotropics, and northern Australia (none was found from southern Asia), 29 studies concluded that small mammals responded (mostly negatively) to a loss of cover (mostly from LMH and fire); four found evidence of increased predation on small mammals in lower-cover treatments (e.g., grazed or burned). Eighteen studies concluded a combination of food- and cover-limitation explained small-mammal responses to endogenous disturbances. Only two studies concluded small-mammal declines in response to habitat-altering disturbance were caused by food limitation and not related to cover reduction. Evidence to date indicates that abundance and richness of small savanna mammals, in general (with important exceptions), is enhanced by vegetative cover (especially tall grass, but sometimes shrub cover) as refugia for these prey species amid a “landscape of fear,” particularly for diurnal, non-cursorial, and non-fossorial species. These species have been called “decreasers” in response to cover reduction, whereas a minority of small-mammal species have been shown to be “increasers” or disturbance-tolerant. Complex relationships between endogenous disturbances and small-mammal food resources are important secondary factors, but only six studies manipulated or measured food resources simultaneous to habitat manipulations. While more such studies are needed, designing effective ones for cryptic consumer communities of omnivorous dietary opportunists is a significant challenge.
Collapse
|
4
|
Radford IJ, Corey B, Carnes K, Shedley E, McCaw L, Woolley LA. Landscape-Scale Effects of Fire, Cats, and Feral Livestock on Threatened Savanna Mammals: Unburnt Habitat Matters More Than Pyrodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Northern Australia has undergone significant declines among threatened small and medium-sized mammals in recent decades. Conceptual models postulate that predation by feral cats is the primary driver, with changed disturbance regimes from fire and feral livestock in recent decades reducing habitat cover and exacerbating declines. However, there is little guidance on what scale habitat and disturbance attributes are most important for threatened mammals, and what elements and scale of fire mosaics actually support mammals. In this study, we test a series of hypotheses regarding the influence of site-scale (50 × 50 m) habitat and disturbance attributes, as well as local-scale (1 km radius), meta-local scale (3 km), landscape-scale (5 km) and meta-landscape scale (10 km) fire mosaic attributes on mammal abundance and richness. We found that habitat cover (rock, perennial grass, and shrub cover) at the site-scale had a positive effect, and disturbance factors (feral cats, fire, feral livestock) had a negative influence on mammal abundance and richness. Models supported site-scale habitat and disturbance factors as more important for mammals than broader-scale (local up to meta-landscape scale) fire mosaic attributes. Finally, we found that increasing the extent of ≥ 4 year unburnt habitat, and having an intermediate percentage (ca. 25%) of recently burnt (1-year burnt) habitat within the mosaic, were the most important functional elements of the fire mosaic at broad scales for mammals. Contrary to expectations, diversity of post-fire ages (‘pyrodiversity’) was negatively associated with mammal abundance and richness. These results highlight the need for management to promote retention of longer unburnt vegetation in sufficient patches across savanna landscapes (particularly of shrub and fruiting trees), maintain low-intensity patchy fire regimes, reduce the extent of intense late dry season wildfires, and to reduce the impact of feral livestock. This study provides further evidence for the role of feral cats in northern Australian mammal declines, and highlights the need for increased research into the efficacy of cat control methodologies in reducing biodiversity impacts in these extensive landscapes.
Collapse
|