1
|
Zhang W, Zhang L, Jiang W, Yang H, Yang T, Zhao Y, Zhang Z, Ma Y. DNA methylation regulates somatic stress memory and mediates plasticity during acclimation to repeated sulfide stress in Urechis unicinctus. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137264. [PMID: 39842111 DOI: 10.1016/j.jhazmat.2025.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Stress memory is an adaptive mechanism that enables organisms to develop resilience in response to environmental changes. Among them, somatic stress memory is an important means for organisms to cope with contemporary repeated stress, and is accompanied by transcription memory. Sulfide is a common environmental pollutant; however, some organisms have adapted to survive in sulfur-rich environments. Urechis unicinctus is a sulfur-tolerant organism that enhances sulfide stress tolerance by establishing a somatic sulfide stress memory mechanism. However, the molecular mechanisms that regulate sulfide stress memory remain unclear. To explore whether epigenetics, which plays a role in the response of organisms to environmental stress, is involved in regulating somatic sulfide stress memory, we performed a combined analysis of DNA methylation and transcriptome data. We found that elevated levels of DNA methylation under repetitive sulfide stress regulated gene expression and resulted in enhanced sulfide stress tolerance in U. unicinctus, a phenomenon verified using DNA methylase inhibitors. Transcriptional memory can be induced in genes related to oxidative stress, regulation of autophagy, and maintenance of protein homeostasis by altering the level of DNA methylation to facilitate sulfide stress acclimation. Our results provide new insights into adaptive mechanisms to cope with environmental fluctuations.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Heran Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Tianya Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongzheng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Li YS, Liao PC, Chang CT, Hwang SY. The Contribution of Epigenetics to Evolutionary Adaptation in Zingiber kawagoii Hayata (Zingiberaceae) Endemic to Taiwan. PLANTS (BASEL, SWITZERLAND) 2023; 12:1558. [PMID: 37050184 PMCID: PMC10096833 DOI: 10.3390/plants12071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
We epigenotyped 211 individuals from 17 Zingiber kawagoii populations using methylation-sensitive amplification polymorphism (MSAP) and investigated the associations of methylated (mMSAP) and unmethylated (uMSAP) loci with 16 environmental variables. Data regarding genetic variation based on amplified fragment length polymorphism (AFLP) were obtained from an earlier study. We found a significant positive correlation between genetic and epigenetic variation. Significantly higher mean mMSAP and uMSAP uHE (unbiased expected heterozygosity: 0.223 and 0.131, respectively, p < 0.001) per locus than that estimated based on AFLP (uHE = 0.104) were found. Genome scans detected 10 mMSAP and 9 uMSAP FST outliers associated with various environmental variables. A significant linear fit for 11 and 12 environmental variables with outlier mMSAP and uMSAP ordination, respectively, generated using full model redundancy analysis (RDA) was found. When conditioned on geography, partial RDA revealed that five and six environmental variables, respectively, were the most important variables influencing outlier mMSAP and uMSAP variation. We found higher genetic (average FST = 0.298) than epigenetic (mMSAP and uMSAP average FST = 0.044 and 0.106, respectively) differentiation and higher genetic isolation-by-distance (IBD) than epigenetic IBD. Strong epigenetic isolation-by-environment (IBE) was found, particularly based on the outlier data, controlling either for geography (mMSAP and uMSAP βE = 0.128 and 0.132, respectively, p = 0.001) or for genetic structure (mMSAP and uMSAP βE = 0.105 and 0.136, respectively, p = 0.001). Our results suggest that epigenetic variants can be substrates for natural selection linked to environmental variables and complement genetic changes in the adaptive evolution of Z. kawagoii populations.
Collapse
Affiliation(s)
- Yi-Shao Li
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| | - Chung-Te Chang
- Department of Life Science, Tunghai University, 1727 Taiwan Boulevard, Section 4, Taichung 40704, Taiwan;
| | - Shih-Ying Hwang
- School of Life Science, National Taiwan Normal University, 88 Tingchow Road, Section 4, Taipei 11677, Taiwan
| |
Collapse
|
3
|
Göpel T, Burggren WW. Insufficient reporting of experimental variables as a cause for nonreproducibility in animal physiology? A case study. Am J Physiol Regul Integr Comp Physiol 2022; 323:R363-R374. [PMID: 35816721 PMCID: PMC9467468 DOI: 10.1152/ajpregu.00026.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Nonreproducibility in scientific investigations has been explained by inadequately reporting methodology, honest error, and even misconduct. We hypothesized that, within the field of animal physiology, the most parsimonious explanation for nonreproducibility is inadequate reporting of key methodological details. We further hypothesized that implementation of relatively recently released reporting guidelines has positively impacted journal article quality, as measured by completeness of the methodology descriptions. We analyzed 84 research articles published in five primarily organismal animal physiology journals in 2008-2010 (generally before current guidelines) and 2018-2020. Compliance for reporting 34 variables referring to biology, experiments, and data collection was assessed. Reporting compliance was just ∼61% in 2008-2010, rising only slightly to 67.5% for 2018-2020. Only 21% of the reported variables showed significant differences across the period from 2008-2020. We conclude that, despite attempts by societies and journals to promote greater reporting compliance, such efforts have so far been relatively unsuccessful in the field of animal physiology.
Collapse
Affiliation(s)
- Torben Göpel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
4
|
Genome-Wide Variation in DNA Methylation Predicts Variation in Leaf Traits in an Ecosystem-Foundational Oak Species. FORESTS 2021. [DOI: 10.3390/f12050569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic modifications such as DNA methylation are a potential mechanism for trees to respond to changing environments. However, it remains controversial the extent to which DNA methylation impacts ecologically important traits that influence fitness. In this study, we used reduced-representation bisulfite sequencing to associate genomic and epigenomic variation with seven phenotypic traits related to growth, leaf function, and disease susceptibility in 160 valley oak (Quercus lobata) saplings planted across two common gardens in California. We found that DNA methylation was associated with a significant fraction of phenotypic variance in plant height, leaf lobedness, powdery mildew infection, and trichome density. Two of the seven traits were significantly associated with DNA methylation in the CG context, three traits were significantly associated with CHG methylation, and two traits were significantly associated with CHH methylation. Notably, controlling for genomic variation in SNPs generally reduced the amount of trait variation explained by DNA methylation. Our results suggest that DNA methylation may serve as a useful biomarker to predict phenotypic variation in trees, though it remains unclear the degree to which DNA methylation is a causal mechanism driving phenotypic variation in forest tree species.
Collapse
|
5
|
De Kort H, Panis B, Deforce D, Van Nieuwerburgh F, Honnay O. Ecological divergence of wild strawberry DNA methylation patterns at distinct spatial scales. Mol Ecol 2020; 29:4871-4881. [DOI: 10.1111/mec.15689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Hanne De Kort
- Plant Conservation and Population Biology University of Leuven Leuven Belgium
| | - Bart Panis
- Bioversity InternationalK.U. Leuven Leuven Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology Ghent University Ghent Belgium
| | | | - Ollivier Honnay
- Plant Conservation and Population Biology University of Leuven Leuven Belgium
| |
Collapse
|
6
|
Pagliarani C, Gambino G, Ferrandino A, Chitarra W, Vrhovsek U, Cantu D, Palmano S, Marzachì C, Schubert A. Molecular memory of Flavescence dorée phytoplasma in recovering grapevines. HORTICULTURE RESEARCH 2020; 7:126. [PMID: 32821409 PMCID: PMC7395728 DOI: 10.1038/s41438-020-00348-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 05/04/2023]
Abstract
Flavescence dorée (FD) is a destructive phytoplasma disease of European grapevines. Spontaneous and cultivar-dependent recovery (REC) may occur in the field in FD-infected vines starting the year following the first symptoms. However, the biological underpinnings of this process are still largely unexplored. In this study, transcriptome sequencing (RNAseq), whole-genome bisulphite sequencing (WGBS) and metabolite analysis were combined to dissect molecular and metabolic changes associated to FD and REC in leaf veins collected in the field from healthy (H), FD and REC plants of the highly susceptible Vitis vinifera 'Barbera'. Genes involved in flavonoid biosynthesis, carbohydrate metabolism and stress responses were overexpressed in FD conditions, whereas transcripts linked to hormone and stilbene metabolisms were upregulated in REC vines. Accumulation patterns of abscisic acid and stilbenoid compounds analysed in the same samples confirmed the RNAseq data. In recovery conditions, we also observed the persistence of some FD-induced expression changes concerning inhibition of photosynthetic processes and stress responses. Several differentially expressed genes tied to those pathways also underwent post-transcriptional regulation by microRNAs, as outlined by merging our transcriptomic data set with a previously conducted smallRNAseq analysis. Investigations by WGBS analysis also revealed different DNA methylation marks between REC and H leaves, occurring within the promoters of genes tied to photosynthesis and secondary metabolism. The results allowed us to advance the existence of a "molecular memory" of FDp infection, involving alterations in the DNA methylation status of REC plants potentially related to transcriptional reprogramming events, in turn triggering changes in hormonal and secondary metabolite profiles.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
- PlantStressLab, Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Alessandra Ferrandino
- PlantStressLab, Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, TV Italy
| | - Urska Vrhovsek
- Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all’Adige, TN Italy
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Andrea Schubert
- PlantStressLab, Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| |
Collapse
|
7
|
Walker C, Burggren W. Remodeling the epigenome and (epi)cytoskeleton: a new paradigm for co-regulation by methylation. ACTA ACUST UNITED AC 2020; 223:223/13/jeb220632. [PMID: 32620673 DOI: 10.1242/jeb.220632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The epigenome determines heritable patterns of gene expression in the absence of changes in DNA sequence. The result is programming of different cellular-, tissue- and organ-specific phenotypes from a single organismic genome. Epigenetic marks that comprise the epigenome (e.g. methylation) are placed upon or removed from chromatin (histones and DNA) to direct the activity of effectors that regulate gene expression and chromatin structure. Recently, the cytoskeleton has been identified as a second target for the cell's epigenetic machinery. Several epigenetic 'readers, writers and erasers' that remodel chromatin have been discovered to also remodel the cytoskeleton, regulating structure and function of microtubules and actin filaments. This points to an emerging paradigm for dual-function remodelers with 'chromatocytoskeletal' activity that can integrate cytoplasmic and nuclear functions. For example, the SET domain-containing 2 methyltransferase (SETD2) has chromatocytoskeletal activity, methylating both histones and microtubules. The SETD2 methyl mark on chromatin is required for efficient DNA repair, and its microtubule methyl mark is required for proper chromosome segregation during mitosis. This unexpected convergence of SETD2 activity on histones and microtubules to maintain genomic stability suggests the intriguing possibility of an expanded role in the cell for chromatocytoskeletal proteins that read, write and erase methyl marks on the cytoskeleton as well as chromatin. Coordinated use of methyl marks to remodel both the epigenome and the (epi)cytoskeleton opens the possibility for integrated regulation (which we refer to as 'epiregulation') of other higher-level functions, such as muscle contraction or learning and memory, and could even have evolutionary implications.
Collapse
Affiliation(s)
- Cheryl Walker
- Center for Precision Environmental Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
8
|
Johnson JS, Cantrell RS, Cosner C, Hartig F, Hastings A, Rogers HS, Schupp EW, Shea K, Teller BJ, Yu X, Zurell D, Pufal G. Rapid changes in seed dispersal traits may modify plant responses to global change. AOB PLANTS 2019; 11:plz020. [PMID: 31198528 PMCID: PMC6548345 DOI: 10.1093/aobpla/plz020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/26/2019] [Indexed: 05/22/2023]
Abstract
When climatic or environmental conditions change, plant populations must either adapt to these new conditions, or track their niche via seed dispersal. Adaptation of plants to different abiotic environments has mostly been discussed with respect to physiological and demographic parameters that allow local persistence. However, rapid modifications in response to changing environmental conditions can also affect seed dispersal, both via plant traits and via their dispersal agents. Studying such changes empirically is challenging, due to the high variability in dispersal success, resulting from environmental heterogeneity, and substantial phenotypic variability of dispersal-related traits of seeds and their dispersers. The exact mechanisms that drive rapid changes are often not well understood, but the ecological implications of these processes are essential determinants of dispersal success, and deserve more attention from ecologists, especially in the context of adaptation to global change. We outline the evidence for rapid changes in seed dispersal traits by discussing variability due to plasticity or genetics broadly, and describe the specific traits and biological systems in which variability in dispersal is being studied, before discussing some of the potential underlying mechanisms. We then address future research needs and propose a simulation model that incorporates phenotypic plasticity in seed dispersal. We close with a call to action and encourage ecologists and biologist to embrace the challenge of better understanding rapid changes in seed dispersal and their consequences for the reaction of plant populations to global change.
Collapse
Affiliation(s)
- Jeremy S Johnson
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
- Dorena Genetic Resource Center, USDA Forest Service, Cottage Grove, OR, USA
| | | | - Chris Cosner
- Department of Mathematics, The University of Miami, Coral Gables, FL, USA
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Behavior, Iowa State University, Ames, IA, USA
| | - Eugene W Schupp
- Department of Wildland Resources & Ecology Center, Utah State University, Logan, UT, USA
| | - Katriona Shea
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Brittany J Teller
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Xiao Yu
- Department of Mathematics, The University of Miami, Coral Gables, FL, USA
| | - Damaris Zurell
- Department of Geography, Humboldt-University Berlin, Berlin, Germany
- Department of Land Change and Science, Swiss Federal Institute WSL, Birmensdorf, Switzerland
| | - Gesine Pufal
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Patterson A, Flores-Rentería L, Whipple A, Whitham T, Gehring C. Common garden experiments disentangle plant genetic and environmental contributions to ectomycorrhizal fungal community structure. THE NEW PHYTOLOGIST 2019; 221:493-502. [PMID: 30009496 DOI: 10.1111/nph.15352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/16/2018] [Indexed: 05/16/2023]
Abstract
The interactions among climate change, plant genetic variation and fungal mutualists are poorly understood, but probably important to plant survival under drought. We examined these interactions by studying the ectomycorrhizal fungal (EMF) communities of pinyon pine seedlings (Pinus edulis) planted in a wildland ecosystem experiencing two decades of climate change-related drought. We established a common garden containing P. edulis seedlings of known maternal lineages (drought tolerant, DT; drought intolerant, DI), manipulated soil moisture and measured EMF community structure and seedling growth. Three findings emerged: EMF community composition differed at the phylum level between DT and DI seedlings, and diversity was two-fold greater in DT than in DI seedlings. EMF communities of DT seedlings did not shift with water treatment and were dominated by an ascomycete, Geopora sp. By contrast, DI seedlings shifted to basidiomycete dominance with increased moisture, demonstrating a lineage by environment interaction. DT seedlings grew larger than DI seedlings in high (28%) and low (50%) watering treatments. These results show that inherited plant traits strongly influence microbial communities, interacting with drought to affect seedling performance. These interactions and their potential feedback effects may influence the success of trees, such as P. edulis, in future climates.
Collapse
Affiliation(s)
- Adair Patterson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - Lluvia Flores-Rentería
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Amy Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - Thomas Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| | - Catherine Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
- Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA
| |
Collapse
|
10
|
Li YS, Chang CT, Wang CN, Thomas P, Chung JD, Hwang SY. The Contribution of Neutral and Environmentally Dependent Processes in Driving Population and Lineage Divergence in Taiwania ( Taiwania cryptomerioides). FRONTIERS IN PLANT SCIENCE 2018; 9:1148. [PMID: 30135693 PMCID: PMC6092574 DOI: 10.3389/fpls.2018.01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The question of what determines divergence both between and within species has been the central topic in evolutionary biology. Neutral drift and environmentally dependent divergence are predicted to play roles in driving population and lineage divergence. However, neutral drift may preclude adaptation if the rate of gene flow between populations is high. Here, we sampled populations of three Taiwania (Taiwania cryptomerioides) lineages occurring in Taiwan, the mainland of China (Yunnan-Myanmar border), and northern Vietnam, and tested the relative strength of neutral drift and divergent selection in shaping divergence of those populations and lineages. We quantified genetic and epigenetic variation, respectively, using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP). Analysis of 1413 AFLP and 462 MSAP loci using frequency-based genome scan methods and generalized linear models (GLMs) found no potential selective outliers when only Taiwanese populations were examined, suggesting that neutral drift was the predominant evolutionary process driving differentiation between those populations. However, environmentally associated divergence was found when lineages were compared. Thirty-two potential selective outliers were identified based on genome scans and their associations with environmental variables were tested with GLMs, generalized linear mixed effect models (GLMMs), and model selection with a model averaging approach. Ten loci (six AFLP and four MSAP) were found to be strongly associated with environmental variables, particularly monthly temperature variation and normalized difference vegetation index (NDVI) using model selection and a model averaging approach. Because only a small portion of genetic and epigenetic loci were found to be potential selective outliers, neutral evolutionary process might also have played crucial roles in driving lineage divergence, particularly between geographically and genetically isolated island and mainland Asia lineages. Nevertheless, the vast amount of neutral drift causing genetic and epigenetic variations might have the potential for adaptation to future climate changes. These could be important for the survival of Taiwania in different geographic areas.
Collapse
Affiliation(s)
- Yi-Shao Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Te Chang
- Department of Geography, National Taiwan University, Taipei, Taiwan
| | - Chun-Neng Wang
- Institute of Ecology and Evolution, National Taiwan University, Taipei, Taiwan
| | - Philip Thomas
- International Conifer Conservation Programme of the Royal Botanic Garden, Edinburgh, United Kingdom
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shih-Ying Hwang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
11
|
Dutta B, Park JE, Qing ITY, Kon OL, Sze SK. Soy-Derived Phytochemical Genistein Modifies Chromatome Topology to Restrict Cancer Cell Proliferation. Proteomics 2018; 18:e1700474. [PMID: 29963755 DOI: 10.1002/pmic.201700474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Epidemiological data indicate that human cancer risk is significantly reduced by the consumption of soy-based foods containing the "phytoestrogen" genistein, which can signal via host cell estrogen receptors. While additional chemoprotective effects of genistein induced by epigenetic factors have also been reported, the key molecules and mechanisms involved are poorly defined. We therefore investigated genistein effects on chromatin-bound proteins in the estrogen receptor-deficient cell line MDA-MB-231 which is insensitive to phytoestrogen signaling. After exposure to low-dose genistein for >1 month, MDA-MB-231 cells exhibited stable epigenetic alterations that are analyzed via partial MNase digestion and TMT-based quantitative proteomics. 3177 chromatin-bound proteins are identified with high confidence, including 882 molecules that displayed altered binding topology after cell conditioning with genistein. Prolonged phytochemical exposure conferred heritable changes in the binding topology of key epigenetic regulators including ATRX, SUV39H1/H2, and HP1BP3 that are preserved in untreated progeny, resulting in sustained downregulation of proliferation genes and reduced cell growth. These data indicate that soy derivative genistein exerts complex estrogen receptor-independent effects on the epigenome likely to influence tumorigenesis by restricting cell growth.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ivan Toh Yi Qing
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Oi Lian Kon
- Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
12
|
Hao DC, Xiao PG. Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
13
|
Shi W, Chen X, Gao L, Xu CY, Ou X, Bossdorf O, Yang J, Geng Y. Transient Stability of Epigenetic Population Differentiation in a Clonal Invader. FRONTIERS IN PLANT SCIENCE 2018; 9:1851. [PMID: 30881370 PMCID: PMC6405520 DOI: 10.3389/fpls.2018.01851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/29/2018] [Indexed: 05/02/2023]
Abstract
Epigenetic variation may play an important role in how plants cope with novel environments. While significant epigenetic differences among plants from contrasting habitats have often been observed in the field, the stability of these differences remains little understood. Here, we combined field monitoring with a multi-generation common garden approach to study the dynamics of DNA methylation variation in invasive Chinese populations of the clonal alligator weed (Alternanthera philoxeroides). Using AFLP and MSAP markers, we found little variation in DNA sequence but substantial epigenetic population differentiation. In the field, these differences remained stable across multiple years, whereas in a common environment they were maintained at first but then progressively eroded. However, some epigenetic differentiation remained even after 10 asexual generations. Our data indicate that epigenetic variation in alligator weed most likely results from a combination of environmental induction and spontaneous epimutation, and that much of it is neither rapidly reversible (phenotypic plasticity) nor long-term stable, but instead displays an intermediate level of stability. Such transient epigenetic stability could be a beneficial mechanism in novel and heterogeneous environments, particularly in a genetically impoverished invader.
Collapse
Affiliation(s)
- Wen Shi
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Institute of Ecology and Geobotany, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Sciences, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease & Pest, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaojie Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Institute of Ecology and Geobotany, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Lexuan Gao
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Cheng-Yuan Xu
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Xiaokun Ou
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Institute of Ecology and Geobotany, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Ji Yang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- *Correspondence: Ji Yang, Yupeng Geng, ;
| | - Yupeng Geng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Institute of Ecology and Geobotany, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- *Correspondence: Ji Yang, Yupeng Geng, ;
| |
Collapse
|
14
|
Vanden Broeck A, Cox K, Brys R, Castiglione S, Cicatelli A, Guarino F, Heinze B, Steenackers M, Vander Mijnsbrugge K. Variability in DNA Methylation and Generational Plasticity in the Lombardy Poplar, a Single Genotype Worldwide Distributed Since the Eighteenth Century. FRONTIERS IN PLANT SCIENCE 2018; 9:1635. [PMID: 30483290 PMCID: PMC6242946 DOI: 10.3389/fpls.2018.01635] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/22/2018] [Indexed: 05/21/2023]
Abstract
In the absence of genetic diversity, plants rely on the capacity of phenotypic plasticity to cope with shifts in environmental conditions. Understanding the mechanisms behind phenotypic plasticity and how local phenotypic adjustments are transferred to clonal offspring, will provide insight into its ecological and evolutionary significance. Epigenetic changes have recently been proposed to play a crucial role in rapid environmental adaptation. While the contribution of epigenetic changes to phenotypic plasticity has been extensively studied in sexual reproducing model organisms, little work has been done on vegetative generations of asexual reproducing plant species. We studied the variability of DNA methylation and bud set phenology of the Lombardy poplar (Populus nigra cv. Italica Duroi), a cultivated tree representing a single genotype worldwide distributed since the eighteenth century. Bud set observations and CpG methyl polymorphisms were studied on vegetative offspring resulting from cuttings grown for one season in a common glasshouse environment. The cuttings were collected from 60 adult Lombardy poplars growing in different environments. The physiological condition of the cuttings was determined by measuring weight and nutrient condition. Methylation sensitive amplified polymorphisms were used to obtain global patterns of DNA methylation. Using logistic regression models, we investigated correlations among epigenotype, bud phenology, and the climate at the home site of the donor trees, while accounting for physiological effects. We found significant epigenetic variation as well as significant variation in bud phenology, in the absence of genetic variation. Remarkably, phenology of bud set observed at the end of the growing season in the common environment was significantly correlated with climate variables at the home site of the mother trees, specifically the average temperature of January and monthly potential evapotranspiration. Although we could not directly detect significant effects of epigenetic variation on phenology, our results suggest that, in the Lombardy poplar, epigenetic marks contribute to the variation of phenotypic response that can be transferred onto asexually reproduced offspring resulting in locally adapted ecotypes. This contributes to the growing evidence that epigenetic-based transgenerational inheritance might be relevant for adaptation and evolution in contrasting or rapidly changing environments.
Collapse
Affiliation(s)
- An Vanden Broeck
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
- *Correspondence: An Vanden Broeck
| | - Karen Cox
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Rein Brys
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Stefano Castiglione
- Department of Chemistry and Biology A. Zambelli, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology A. Zambelli, University of Salerno, Fisciano, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology A. Zambelli, University of Salerno, Fisciano, Italy
| | - Berthold Heinze
- Department of Forest Genetics, Austrian Federal Research Centre for Forests (BFW), Vienna, Austria
| | | | | |
Collapse
|
15
|
Herrera CM, Medrano M, Bazaga P. Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence. AMERICAN JOURNAL OF BOTANY 2017; 104:1195-1204. [PMID: 28814406 DOI: 10.3732/ajb.1700162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY Epigenetic variation can play a role in local adaptation; thus, there should be associations among epigenetic variation, environmental variation, and functional trait variation across populations. This study examines these relationships in the perennial herb Helleborus foetidus (Ranunculaceae). METHODS Plants from 10 subpopulations were characterized genetically (AFLP, SSR markers), epigenetically (MSAP markers), and phenotypically (20 functional traits). Habitats were characterized using six environmental variables. Isolation-by-distance (IBD) and isolation-by-environment (IBE) patterns of genetic and epigenetic divergence were assessed, as was the comparative explanatory value of geographical and environmental distance as predictors of epigenetic, genetic, and functional differentiation. KEY RESULTS Subpopulations were differentiated genetically, epigenetically, and phenotypically. Genetic differentiation was best explained by geographical distance, while epigenetic differentiation was best explained by environmental distance. Divergence in functional traits was correlated with environmental and epigenetic distances, but not with geographical and genetic distances. CONCLUSIONS Results are compatible with the hypothesis that epigenetic IBE and functional divergence reflected responses to environmental variation. Spatial analyses simultaneously considering epigenetic, genetic, phenotypic and environmental information provide a useful tool to evaluate the role of environmental features as drivers of natural epigenetic variation between populations.
Collapse
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Americo Vespucio 26, 41092 Sevilla, Spain
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Americo Vespucio 26, 41092 Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Americo Vespucio 26, 41092 Sevilla, Spain
| |
Collapse
|
16
|
Al Jishi T, Sergi C. Current perspective of diethylstilbestrol (DES) exposure in mothers and offspring. Reprod Toxicol 2017; 71:71-77. [PMID: 28461243 DOI: 10.1016/j.reprotox.2017.04.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023]
Abstract
Diethylstilbestrol (DES) was an orally active estrogen prescribed to the pregnant women to prevent miscarriages. DES is known as a 'biological time bomb' and long-term effects of DES have been recorded in the mothers exposed to DES and their offspring (DES-daughters and DES-sons). Adverse pregnancy outcomes, infertility, cancer, and early menopause have been discovered in women exposed to DES, and some events occur in their offspring and subsequent generations. An increased risk of breast cancer is not limited to the DES-exposed daughters. There is an urgent need to find ways to stop the inheritance cycle of DES and prevent adverse effects of DES in the future generations. The present article reviews the health implications of DES exposure and screening exams currently recommended to DES daughters and their offspring.
Collapse
Affiliation(s)
- Taher Al Jishi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada; OMNI Research Group, Department of Obstetrics and Gynecology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada; Ottawa Hospital Research Institute, Box 241, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada; Stollery Children's Hospital, 8440 112 St, Edmonton, AB, T6G2B7, Canada; Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|