1
|
Li J, Zhao X, Wang Y, Wang J. Non-Coding RNAs in Regulating Fat Deposition in Farm Animals. Animals (Basel) 2025; 15:797. [PMID: 40150326 PMCID: PMC11939817 DOI: 10.3390/ani15060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Fat deposition represents a crucial feature in the expenditure of physical energy and affects the meat quality of farm animals. It is regulated by multiple genes and regulators. Of them, non-coding RNAs (ncRNAs) play a critical role in modulating the fat deposition process. As well as being an important protein source, farm animals can be used as medical models, so many researchers worldwide have explored their mechanism of fat deposition. This article summarizes the transcription factors, regulatory genes, and signaling pathways involved in the molecular regulation process of fat deposition; outlines the progress of researching the roles of microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) in fat deposition in common farm animals including pigs, cattle, sheep, ducks, and chickens; and identifies scientific problems in the field that must be further investigated. It has been demonstrated that ncRNAs play a critical role in regulating the fat deposition process and have great potential in improving meat quality traits.
Collapse
Affiliation(s)
- Jingxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xueyan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
2
|
Liu W, Chen M, Liu Y, Li X, Li H, Wang J. Understanding lncRNAs: key regulators of myogenesis and lipogenesis in farm animals. Front Vet Sci 2025; 12:1540613. [PMID: 40027357 PMCID: PMC11868070 DOI: 10.3389/fvets.2025.1540613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules exceeding 200 nucleotides in length. Recent studies have demonstrated their involvement in regulating gene expression and various biological processes. Among these, myogenesis and lipogenesis are particularly important because of their direct effects on muscle development and fat deposition in farm animals. These processes are crucial for determining meat quality, growth rates, and overall economic value in animal husbandry. Although the specific mechanisms through which lncRNAs influence these pathways are still under investigation, further research into their roles in muscle and fat development is crucial for optimizing farm animal breeding strategies. Here, we review the characteristics of lncRNAs, including their biogenesis, localization, and structures, with a particular focus on their association with myogenesis and adipogenesis. This review seeks to establish a theoretical foundation for enhancing farm animal production. In particular, focusing on lncRNAs may reveal how these molecules can enhance the economic traits of farm animals, thereby contributing to the optimization of farm animal breeding processes.
Collapse
Affiliation(s)
- Wenjing Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengjie Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yining Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinxin Li
- Institute of Scientific Research, Guangxi University, Nanning, China
| | - Hui Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Xu H, Luo Y, Zhang M, Pan C, Lan X, Zheng J. Ovine LncRSFD1 Mined from RNA-Seq: Identification, Expression Profile, Promotion of Preadipocyte Differentiation, Promoter Activity, and Its Polymorphisms Related to Phenotypic Traits. Animals (Basel) 2024; 14:3631. [PMID: 39765535 PMCID: PMC11672851 DOI: 10.3390/ani14243631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Tail fat is essential for sheep survival in extreme environments, yet its significance is often overlooked, leading to the decline of fat-tailed breeds. This study identified a novel lncRNA, lncRSFD1 (TCONS_00054953), through transcriptome sequencing, showing differential expression in the tail adipose tissues of Lanzhou Fat-Tailed (LFT) sheep and Tibetan (TS) sheep. Highly expressed in adipose tissues, lncRSFD1 inhibits preadipocyte proliferation and promotes 3T3-L1 differentiation, suggesting its role in regulating fat deposition. Located in both the cytoplasm and nucleus, lncRSFD1 targets the neighboring gene PDE4DIP and may function as a molecular sponge for conserved miRNAs, including oar-miR-30a-3p, oar-miR-329b-5p, and oar-miR-431, which are known to influence fat and muscle-related physiological processes. Moreover, the core promoter of lncRSFD1 (-2607 bp to -1776 bp) harbors four SNPs (g.-2429G>A, g.-2030T>C, g.-2016C>T, g.-2015G>A) significantly associated with growth traits such as body height in Guiqian Semi-Fine Wool (GSFW) sheep. These findings suggest lncRSFD1 plays a key role in fat deposition and growth regulation, offering new insights into the molecular mechanisms of lncRNAs in sheep. It provides a potential target for genetic improvement and molecular breeding to enhance fat deposition and adaptability in sheep breeds.
Collapse
Affiliation(s)
- Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Yunyun Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (M.Z.); (C.P.)
| | - Mengyang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (M.Z.); (C.P.)
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (M.Z.); (C.P.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.L.); (M.Z.); (C.P.)
| | - Juanshan Zheng
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| |
Collapse
|
4
|
Chen L, He X, Han Y, Huang Y, Li J, Li J, Yu X, Yun X, Wu J, Sha R, Dong T, Borjigin G. Lipidomics analysis of adipose depots at differently aged Sunit sheep. Food Chem 2024; 467:142243. [PMID: 39632170 DOI: 10.1016/j.foodchem.2024.142243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/07/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
The objective of this study was to optimize the utilization of deposited fat in Sunit sheep, with a focus on dietary nutrition. This study also elucidated variations in lipid metabolism among subcutaneous fat (SF), perirenal fat (PF), and tail fat (TF) in sheep of different ages using non-targeted lipidomic techniques. In total, 173 different lipids were identified, of which triacylglycerol (TG) and phosphatidylcholine (PC) were prominent. The relative intensity of TG was highest at 6 months of age in three adipose depots. Glycerophospholipids (PLs) were expressed at peak levels in TF and SF at 18 months of age. Pathway analysis revealed that biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycerophospholipid metabolism, and fatty acid biosynthesis were the main pathways involved in the metabolism of adipose depots. These findings provide a comprehensive reference for the metabolic characteristics and pathways of adipose tissue in sheep and the utilization of its by-products.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yajuan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueting Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
5
|
Alonso-García M, Gutiérrez-Gil B, Pelayo R, Fonseca PAS, Marina H, Arranz JJ, Suárez-Vega A. A meta-analysis approach for annotation and identification of lncRNAs controlling perirenal fat deposition in suckling lambs. Anim Biotechnol 2024; 35:2374328. [PMID: 39003576 DOI: 10.1080/10495398.2024.2374328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Long non-coding RNAs (lncRNAs) are being studied in farm animals due to their association with traits of economic interest, such as fat deposition. Based on the analysis of perirenal fat transcriptomes, this research explored the relevance of these regulatory elements to fat deposition in suckling lambs. To that end, meta-analysis techniques have been implemented to efficiently characterize and detect differentially expressed transcripts from two different RNA-seq datasets, one including samples of two sheep breeds that differ in fat deposition features, Churra and Assaf (n = 14), and one generated from Assaf suckling lambs with different fat deposition levels (n = 8). The joint analysis of the 22 perirenal fat RNA-seq samples with the FEELnc software allowed the detection of 3953 novel lncRNAs. After the meta-analysis, 251 differentially expressed genes were identified, 21 of which were novel lncRNAs. Additionally, a co-expression analysis revealed that, in suckling lambs, lncRNAs may play a role in controlling angiogenesis and thermogenesis, processes highlighted in relation to high and low fat deposition levels, respectively. Overall, while providing information that could be applied for the improvement of suckling lamb carcass traits, this study offers insights into the biology of perirenal fat deposition regulation in mammals.
Collapse
Affiliation(s)
- María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocío Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Héctor Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
6
|
Yang J, Wang DF, Huang JH, Zhu QH, Luo LY, Lu R, Xie XL, Salehian-Dehkordi H, Esmailizadeh A, Liu GE, Li MH. Structural variant landscapes reveal convergent signatures of evolution in sheep and goats. Genome Biol 2024; 25:148. [PMID: 38845023 PMCID: PMC11155191 DOI: 10.1186/s13059-024-03288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.
Collapse
Affiliation(s)
- Ji Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jia-Hui Huang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiang-Hui Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ling-Yun Luo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ran Lu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Meng-Hua Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Bakhtiarizadeh MR. Deciphering the role of alternative splicing as a potential regulator in fat-tail development of sheep: a comprehensive RNA-seq based study. Sci Rep 2024; 14:2361. [PMID: 38287039 PMCID: PMC10825154 DOI: 10.1038/s41598-024-52855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Although research on alternative splicing (AS) has been widely conducted in mammals, no study has investigated the splicing profiles of genes involved in fat-tail formation in sheep. Here, for the first time, a comprehensive study was designed to investigate the profile of AS events and their involvement in fat-tail development of sheep. In total, 45 RNA-Seq samples related to seven different studies, which have compared the fat-tailed vs thin-tailed sheep breeds, were analyzed. Two independent tools, rMATS and Whippet, along with a set of stringent filters were applied to identify differential AS (DAS) events between the breeds per each study. Only DAS events that were detected by both tools as well as in at least three datasets with the same ΔPSI trend (percent spliced in), were considered as the final high-confidence set of DAS genes. Final results revealed 130 DAS skipped exon events (69 negative and 61 positive ΔPSI) belonged to 124 genes. Functional enrichment analysis highlighted the importance of the genes in the underlying molecular mechanisms of fat metabolism. Moreover, protein-protein interaction network analysis revealed that DAS genes are significantly connected. Of DAS genes, five transcription factors were found that were enriched in the biological process associated with lipid metabolism like "Fat Cell Differentiation". Further investigations of the findings along with a comprehensive literature review provided a reliable list of candidate genes that may potentially contribute to fat-tail formation including HSD11B1, SIRT2, STRN3 and TCF7L2. Based on the results, it can be stated that the AS patterns may have evolved, during the evolution of sheep breeds, as another layer of regulation to contribute to biological complexity by reprogramming the gene regulatory networks. This study provided the theoretical basis of the molecular mechanisms behind the sheep fat-tail development in terms of AS.
Collapse
|
8
|
He T, Guo W, Yang G, Su H, Dou A, Chen L, Ma T, Su J, Liu M, Su B, Qi W, Li H, Mao W, Wang X, Li X, Yang Y, Song Y, Cao G. A Single-Cell Atlas of an Early Mongolian Sheep Embryo. Vet Sci 2023; 10:543. [PMID: 37756065 PMCID: PMC10536297 DOI: 10.3390/vetsci10090543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cell types have been established during organogenesis based on early mouse embryos. However, our understanding of cell types and molecular mechanisms in the early embryo development of Mongolian sheep has been hampered. This study presents the first comprehensive single-cell transcriptomic characterization at E16 in Ujumqin sheep and Hulunbuir short-tailed sheep. Thirteen major cell types were identified at E16 in Ujumqin sheep, and eight major cell types were identified at E16 in Hulunbuir short-tailed sheep. Function enrichment analysis showed that several pathways were significantly enriched in the TGF-beta signaling pathway, the Hippo signaling pathway, the platelet activation pathway, the riboflavin metabolism pathway, the Wnt signaling pathway, regulation of the actin cytoskeleton, and the insulin signaling pathway in the notochord cluster. Glutathione metabolism, glyoxylate, and dicarboxylate metabolism, the citrate cycle, thyroid hormone synthesis, pyruvate metabolism, cysteine and methionine metabolism, thermogenesis, and the VEGF signaling pathway were significantly enriched in the spinal cord cluster. Steroid biosynthesis, riboflavin metabolism, the cell cycle, the Hippo signaling pathway, the Hedgehog signaling pathway, the FoxO signaling pathway, the JAK-STAT signaling pathway, and the Wnt signaling pathway were significantly enriched in the paraxial mesoderm cluster. The notochord cluster, spinal cord cluster, and paraxial mesoderm cluster were found to be highly associated with tail development. Pseudo-time analysis demonstrated that the mesenchyme can translate to the notochord in Ujumqin sheep. Molecular assays revealed that the Hippo signaling pathway was enriched in Ujumqin sheep. This comprehensive single-cell map revealed previously unrecognized signaling pathways that will further our understanding of the mechanism of short-tailed sheep formation.
Collapse
Affiliation(s)
- Tingyi He
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010031, China
| | - Wenrui Guo
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Guang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (G.Y.); (X.L.)
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Hong Su
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Aolei Dou
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Lu Chen
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Teng Ma
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Jie Su
- Department of Medical Neurobiology, Inner Mongolia Medical University, Huhhot 010030, China;
| | - Moning Liu
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Budeng Su
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Wangmei Qi
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Haijun Li
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Wei Mao
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Xiumei Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (G.Y.); (X.L.)
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Yanyan Yang
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010031, China
| | - Yongli Song
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (G.Y.); (X.L.)
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Key Laboratory of Animal Embryo, and Development Engineering Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010018, China; (T.H.); (W.G.); (H.S.); (A.D.); (L.C.); (T.M.); (M.L.); (B.S.); (W.Q.); (H.L.); (W.M.); (X.W.)
| |
Collapse
|
9
|
Hosseini SF, Bakhtiarizadeh MR, Salehi A. Meta-analysis of RNA-Seq datasets highlights novel genes/pathways involved in fat deposition in fat-tail of sheep. Front Vet Sci 2023; 10:1159921. [PMID: 37252399 PMCID: PMC10213422 DOI: 10.3389/fvets.2023.1159921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Fat-tail in sheep is considered as an important energy reservoir to provide energy as a survival buffer during harsh challenges. However, fat-tail is losing its importance in modern sheep industry systems and thin-tailed breeds are more desirable. Using comparative transcriptome analysis to compare fat-tail tissue between fat- and thin-tailed sheep breeds provides a valuable approach to study the complex genetic factors associated with fat-tail development. However, transcriptomic studies often suffer from issues with reproducibility, which can be improved by integrating multiple studies based on a meta-analysis. Methods Hence, for the first time, an RNA-Seq meta-analysis on sheep fat-tail transcriptomes was performed using six publicly available datasets. Results and discussion A total of 500 genes (221 up-regulated, 279 down-regulated) were identified as differentially expressed genes (DEGs). A jackknife sensitivity analysis confirmed the robustness of the DEGs. Moreover, QTL and functional enrichment analysis reinforced the importance of the DEGs in the underlying molecular mechanisms of fat deposition. Protein-protein interactions (PPIs) network analysis revealed the functional interactions among the DEGs and the subsequent sub-network analysis led to identify six functional sub-networks. According to the results of the network analysis, down-regulated DEGs in green and pink sub-networks (like collagen subunits IV, V, and VI, integrins 1 and 2, SCD, SCD5, ELOVL6, ACLY, SLC27A2, and LPIN1) may impair lipolysis or fatty acid oxidation and cause fat accumulation in tail. On the other hand, up-regulated DEGs, especially those are presented in green and pink sub-networks (like IL6, RBP4, LEPR, PAI-1, EPHX1, HSD11B1, and FMO2), might contribute to a network controlling fat accumulation in the tail of sheep breed through mediating adipogenesis and fatty acid biosynthesis. Our results highlighted a set of known and novel genes/pathways associated with fat-tail development, which could improve the understanding of molecular mechanisms behind fat deposition in sheep fat-tail.
Collapse
|
10
|
Fei X, Jin M, Yuan Z, Li T, Lu Z, Wang H, Lu J, Quan K, Yang J, He M, Wang T, Wang Y, Wei C. MiRNA-Seq reveals key MicroRNAs involved in fat metabolism of sheep liver. Front Genet 2023; 14:985764. [PMID: 36968587 PMCID: PMC10035661 DOI: 10.3389/fgene.2023.985764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
There is a genetic difference between Hu sheep (short/fat-tailed sheep) and Tibetan sheep (short/thin-tailed sheep) in tail type, because of fat metabolism. Previous studies have mainly focused directly on sheep tail fat, which is not the main organ of fat metabolism. The function of miRNAs in sheep liver fat metabolism has not been thoroughly elucidated. In this study, miRNA-Seq was used to identify miRNAs in the liver tissue of three Hu sheep (short/fat-tailed sheep) and three Tibetan sheep (short/thin-tailed sheep) to characterize the differences in fat metabolism of sheep. In our study, Hu sheep was in a control group, we identified 11 differentially expressed miRNAs (DE miRNAs), including six up-regulated miRNAs and five down-regulated miRNAs. Miranda and RNAhybrid were used to predict the target genes of DE miRNAs, obtaining 3,404 target genes. A total of 115 and 67 GO terms as well as 54 and 5 KEGG pathways were significantly (padj < 0.05) enriched for predicted 3,109 target genes of up-regulated and 295 target genes of down-regulated miRNAs, respectively. oar-miR-432 was one of the most up-regulated miRNAs between Hu sheep and Tibetan sheep. And SIRT1 is one of the potential target genes of oar-miR-432. Furthermore, functional validation using the dual-luciferase reporter assay indicated that the up-regulated miRNA; oar-miR-432 potentially targeted sirtuin 1 (SIRT1) expression. Then, the oar-miR-432 mimic transfected into preadipocytes resulted in inhibited expression of SIRT1. This is the first time reported that the expression of SIRT1 gene was regulated by oar-miR-432 in fat metabolism of sheep liver. These results could provide a meaningful theoretical basis for studying the fat metabolism of sheep.
Collapse
Affiliation(s)
- Xiaojuan Fei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meilin Jin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Taotao Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huihua Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Lu
- National Animal Husbandry Service, Beijing, China
| | - Kai Quan
- College of Animals Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Junxiang Yang
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang, China
| | - Maochang He
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang, China
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, TianShui Normal University, Tianshui, China
| | - Yuqin Wang
- College of Animals Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Caihong Wei, ; Yuqin Wang,
| | - Caihong Wei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Caihong Wei, ; Yuqin Wang,
| |
Collapse
|
11
|
Xu YX, Wang B, Jing JN, Ma R, Luo YH, Li X, Yan Z, Liu YJ, Gao L, Ren YL, Li MH, Lv FH. Whole-body adipose tissue multi-omic analyses in sheep reveal molecular mechanisms underlying local adaptation to extreme environments. Commun Biol 2023; 6:159. [PMID: 36755107 PMCID: PMC9908986 DOI: 10.1038/s42003-023-04523-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The fat tail of sheep is an important organ that has evolved to adapt to extreme environments. However, the genetic mechanisms underlying the fat tail phenotype remain poorly understood. Here, we characterize transcriptome and lipidome profiles and morphological changes in 250 adipose tissues from two thin-tailed and three fat-tailed sheep populations in summer and winter. We implement whole-genome selective sweep tests to identify genetic variants related to fat-tails. We identify a set of functional genes that show differential expression in the tail fat of fat-tailed and thin-tailed sheep in summer and winter. These genes are significantly enriched in pathways, such as lipid metabolism, extracellular matrix (ECM) remodeling, molecular transport, and inflammatory response. In contrast to thin-tailed sheep, tail fat from fat-tailed sheep show slighter changes in adipocyte size, ECM remodeling, and lipid metabolism, and had less inflammation in response to seasonal changes, indicating improved homeostasis. Whole-genome selective sweep tests identify genes involved in preadipocyte commitment (e.g., BMP2, PDGFD) and terminal adipogenic differentiation (e.g., VEGFA), which could contribute to enhanced adipocyte hyperplasia. Altogether, we establish a model of regulatory networks regulating adipose homeostasis in sheep tails. These findings improve our understanding of how adipose homeostasis is maintained, in response to extreme environments in animals.
Collapse
Affiliation(s)
- Ya-Xi Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bo Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia-Nan Jing
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rui Ma
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yan-Hui Luo
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ze Yan
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ya-Jing Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lei Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Sciences and Veterinary Medicine, Binzhou, China
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Wang A, Wang J, Mao M, Zhao X, Li Q, Xuan R, Li F, Chao T. Analyses of lncRNAs, circRNAs, and the Interactions between ncRNAs and mRNAs in Goat Submandibular Glands Reveal Their Potential Function in Immune Regulation. Genes (Basel) 2023; 14:187. [PMID: 36672927 PMCID: PMC9859278 DOI: 10.3390/genes14010187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
As part of one of the main ruminants, goat salivary glands hardly secrete digestive enzymes, but play an important role in immunity. The immune function of goat salivary glands significantly changes with age, while the expression profile and specific function of non-coding RNA during this process are unknown. In this study, transcriptome sequencing was performed on submandibular gland (SMG) tissues of 1-month-old, 12-month-old, and 24-month-old goats, revealing the expression patterns of lncRNA and circRNA at different ages. A total of 369 lncRNAs and 1699 circRNAs were found to be differentially expressed. Functional enrichment analyses showed that the lncRNA regulated target mRNAs and circRNA host genes were significantly enriched in immune-related GO terms and pathways. CeRNA network analysis showed that the key differentially expressed circRNAs and lncRNAs mainly regulate the key immune-related genes ITGB2, LCP2, PTPRC, SYK, and ZAP70 through competitive binding with miR-141-x, miR-29-y, and chi-miR-29b-3p, thereby affecting the natural killer cell-mediated cytotoxicity pathway, the T cell receptor signaling pathway, and other immune-related pathways. It should be noted that the expression of key circRNAs, lncRNAs, and key immune-related genes in goat SMGs decreased significantly with the growth of the goat. This is the first reporting of lncRNAs, circRNAs, and ceRNA network regulation in goat SMGs. Our study contributes to the knowledge of changes in the expression of non-coding RNAs during SMG development in goats and provides new insights into the relationship between non-coding RNAs and salivary gland immune function in goats.
Collapse
Affiliation(s)
- Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271000, China
| | - Meina Mao
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
- Shandong Vocational Animal Science and Veterinary College, Weifang 261000, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271000, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271000, China
| | - Fajun Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian 271000, China
| |
Collapse
|
13
|
Jing Y, Cheng B, Wang H, Bai X, Zhang Q, Wang N, Li H, Wang S. The landscape of the long non-coding RNAs and circular RNAs of the abdominal fat tissues in the chicken lines divergently selected for fatness. BMC Genomics 2022; 23:790. [PMID: 36456907 PMCID: PMC9714206 DOI: 10.1186/s12864-022-09045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Excessive deposition of abdominal fat poses serious problems in broilers owing to rapid growth. Recently, the evolution of the existing knowledge on long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have established their indispensable roles in multiple physiological metabolic processes, including adipogenesis and fat deposition. However, not much has been explored on their profiles in the abdominal fat tissues of broilers to date. In the study, we aimed to characterize the vital candidates of lncRNAs and circRNAs and their underlying regulations for abdominal fat deposition in broilers. RESULTS The present study sequenced the lncRNAs and circRNAs expression profiles in the abdominal fat tissues isolated from 7-week-old broilers, who were divergently selected for their fatness. It identified a total of 3359 lncRNAs and 176 circRNAs, demonstrating differential expressed (DE) 30 lncRNAs and 17 circRNAs between the fat- and lean-line broilers (|log2FC| ≥ 1, P < 0.05). Subsequently, the 20 cis-targets and 48 trans-targets of the candidate DE lncRNAs were identified for depositing abdominal fat by adjacent gene analysis and co-expression analysis, respectively. In addition, the functional enrichment analysis showed the DE lncRNAs targets and DE circRNAs host genes to be mainly involved in the cellular processes, amino/fatty acid metabolism, and immune inflammation-related pathways and GO terms. Finally, the vital 16 DE lncRNAs located in cytoplasm and specifically expressed in fat/lean line and their targets were used to construct the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory network, comprising 7 DE lncRNAs, 28 miRNAs, 11 DE mRNAs. Notably, three lncRNAs including XR_001468036.2, XR_003077610.1 and XR_001466431.2 with the most connected degrees might play hub regulatory roles in abdominal fat deposition of broilers. CONCLUSIONS This study characterized the whole expression difference of lncRNAs and circRNAs between the two lines broilers with divergently ability of abdominal fat. The vital candidate DE lncRNAs/circRNAs and ceRNA regulations were identified related to the deposition of abdominal fat in chicken. These results might further improve our understanding of regulating the non-coding RNAs in obesity.
Collapse
Affiliation(s)
- Yang Jing
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bohan Cheng
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Haoyu Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Xue Bai
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Qi Zhang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Ning Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Hui Li
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Shouzhi Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
14
|
Kang Y, Bi Y, Tang Q, Xu H, Lan X, Zhang Q, Pan C. A 7-nt nucleotide sequence variant within the sheep KDM3B gene affects female reproduction traits. Anim Biotechnol 2022; 33:1661-1667. [PMID: 34081570 DOI: 10.1080/10495398.2021.1929270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lysine demethylase 3B (KDM3B) gene is a histone demethylase, demonstrating specific demethylation of the histone H3 lysine 9. It was detected as a sheep reproductive candidate gene by genome-wide scans, and related studies also showed its significance in female reproductive process. However, rare study researched its polymorphism. Herein, we hypothesized that the polymorphisms of KDM3B gene were associated with sheep reproduction traits. A 7-nt nucleotide sequence variant (rs1088697156) within KDM3B gene was identified in a total of 888 individuals, including the Australian White (AUW) sheep and Lanzhou Fat-tailed (LFT) sheep. II (insertion/insertion) and ID (insertion/deletion) genotypes of 7-nt variant were detected, which were at Hardy-Weinberg equilibrium (HWE) in detected breeds. Association analysis illustrated the 7-nt variant was significantly associated with the litter size, duration of pregnancy, live lamb number, live lamb rate, stillbirth number, stillbirth rate of average and different parity (P < 0.05) in AUW sheep. Moreover, 'ID' was the dominant genotype with excellent consistency in reproductive traits. It is instrumental to select individuals with ID genotype for improving the sheep reproduction traits. These findings suggest that the 7-nt variant within KDM3B gene can be used as a candidate marker of reproduction traits for sheep breeding improvement by marker-assisted selection.
Collapse
Affiliation(s)
- Yuxin Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.,Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin, China.,Tianjin Aoqun Animal Husbandry Co., Ltd, Tianjin, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
He X, Wu R, Yun Y, Qin X, Huang Y, Chen L, Han Y, Wu J, Sha L, Borjigin G. MicroRNA and circular RNA profiling in the deposited fat tissue of Sunite sheep. Front Vet Sci 2022; 9:954882. [PMID: 36406061 PMCID: PMC9672515 DOI: 10.3389/fvets.2022.954882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/20/2022] [Indexed: 09/12/2024] Open
Abstract
As the most typical deposited fat, tail fat is an important energy reservoir for sheep adapted to harsh environments and plays an important role as a raw material in daily life. However, the regulatory mechanisms of microRNA (miRNA) and circular RNA (circRNA) in tail fat development remain unclear. In this study, we characterized the miRNA and circRNA expression profiles in the tail fat of sheep at the ages of 6, 18, and 30 months. We identified 219 differentially expressed (DE) miRNAs (including 12 novel miRNAs), which exhibited a major tendency to be downregulated, and 198 DE circRNAs, which exhibited a tendency to be upregulated. Target gene prediction analysis was performed for the DE miRNAs. Functional analysis revealed that their target genes were mainly involved in cellular interactions, while the host genes of DE circRNAs were implicated in lipid and fatty acid metabolism. Subsequently, we established a competing endogenous RNA (ceRNA) network based on the negative regulatory relationship between miRNAs and target genes. The network revealed that upregulated miRNAs play a leading role in the development of tail fat. Finally, the ceRNA relationship network with oar-miR-27a_R-1 and oar-miR-29a as the core was validated, suggesting possible involvement of these interactions in tail fat development. In summary, DE miRNAs were negatively correlated with DE circRNAs during sheep tail fat development. The multiple ceRNA regulatory network dominated by upregulated DE miRNAs may play a key role in this developmental process.
Collapse
Affiliation(s)
- Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Rihan Wu
- College of Biochemistry and Engineering, Hohhot Vocational College, Hohhot, China
| | - Yueying Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xia Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yajuan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
16
|
Kalds P, Zhou S, Gao Y, Cai B, Huang S, Chen Y, Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet Sel Evol 2022; 54:61. [PMID: 36085023 PMCID: PMC9463822 DOI: 10.1186/s12711-022-00753-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After domestication, the evolution of phenotypically-varied sheep breeds has generated rich biodiversity. This wide phenotypic variation arises as a result of hidden genomic changes that range from a single nucleotide to several thousands of nucleotides. Thus, it is of interest and significance to reveal and understand the genomic changes underlying the phenotypic variation of sheep breeds in order to drive selection towards economically important traits. REVIEW Various traits contribute to the emergence of variation in sheep phenotypic characteristics, including coat color, horns, tail, wool, ears, udder, vertebrae, among others. The genes that determine most of these phenotypic traits have been investigated, which has generated knowledge regarding the genetic determinism of several agriculturally-relevant traits in sheep. In this review, we discuss the genomic knowledge that has emerged in the past few decades regarding the phenotypic traits in sheep, and our ultimate aim is to encourage its practical application in sheep breeding. In addition, in order to expand the current understanding of the sheep genome, we shed light on research gaps that require further investigation. CONCLUSIONS Although significant research efforts have been conducted in the past few decades, several aspects of the sheep genome remain unexplored. For the full utilization of the current knowledge of the sheep genome, a wide practical application is still required in order to boost sheep productive performance and contribute to the generation of improved sheep breeds. The accumulated knowledge on the sheep genome will help advance and strengthen sheep breeding programs to face future challenges in the sector, such as climate change, global human population growth, and the increasing demand for products of animal origin.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511 Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| |
Collapse
|
17
|
Differential regulation of mRNAs and lncRNAs related to lipid metabolism in Duolang and Small Tail Han sheep. Sci Rep 2022; 12:11157. [PMID: 35778462 PMCID: PMC9249921 DOI: 10.1038/s41598-022-15318-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The function of long non-coding RNA (lncRNA) can be achieved through the regulation of target genes, and the deposition of fat is regulated by lncRNA. Fat has an important effect on meat quality. However, there are relatively few studies on lncRNAs in the subcutaneous adipose tissue of Duolang sheep and Small Tail Han sheep. In this study, RNA-Seq technology and bioinformatics methods were used to identify and analyze the lncRNA and mRNA in the subcutaneous adipose tissue of the two breeds of sheep. The results showed that 107 lnRNAs and 1329 mRNAs were differentially expressed. The differentially expressed genes and lncRNA target genes were significantly enriched in the biosynthesis of unsaturated fatty acids signaling pathway, fatty acid metabolism, adipocyte differentiation and other processes related to fat deposition. Among them, LOC105616076, LOC114118103, LOC105607837, LOC101116622, and LOC105603235 target FADS1, SCD, ELOVL6, HSD17B12 and HACD2, respectively. They play a key regulatory role in the biosynthesis of unsaturated fatty acids. This study lays a foundation for the study of the molecular mechanism of lncRNA on fat development, and has reference value for studying the differences in fat deposition between Duolang sheep and Small Tail Han sheep.
Collapse
|
18
|
Han J, Ma S, Liang B, Bai T, Zhao Y, Ma Y, MacHugh DE, Ma L, Jiang L. Transcriptome Profiling of Developing Ovine Fat Tail Tissue Reveals an Important Role for MTFP1 in Regulation of Adipogenesis. Front Cell Dev Biol 2022; 10:839731. [PMID: 35350385 PMCID: PMC8957931 DOI: 10.3389/fcell.2022.839731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Fat-tail sheep exhibit a unique trait whereby substantial adipose tissue accumulates in the tail, a phenotype that is advantageous in many agroecological environments. In this study, we conducted histological assays, transcriptome analysis and functional assays to examine morphogenesis, characterize gene expression, and elucidate mechanisms that regulate fat tail development. We obtained the microstructure of tail before and after fat deposition, and demonstrated that measurable fat deposition occurred by the 80-day embryo (E80) stage, earlier than other tissues. Transcriptome profiling revealed 1,058 differentially expressed genes (DEGs) with six markedly different expression trends. GSEA enrichment and other downstream analyses showed important roles for genes and pathways involving in metabolism and that mitochondrial components were specifically overexpressed in the fat tail tissue of the 70-day embryo (E70). One hundred and eighty-three genes were further identified by leading edge gene analysis, among which, 17 genes have been reported in previous studies, including EEF1D, MTFP1, PPP1CA, PDGFD. Notably, the MTFP1 gene was highly correlated with the expression of other genes and with the highest enrichment score and gene expression change. Knockdown of MTFP1 in isolated adipose derived stem cells (ADSCs) inhibited cell proliferation and migration ability, besides, promoted the process of adipogenesis in vitro.
Collapse
Affiliation(s)
- Jiangang Han
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Sijia Ma
- Agricultural College, Ningxia University, Yinchuan, China
| | - Benmeng Liang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tianyou Bai
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuhetian Zhao
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lina Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Lin Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
19
|
Zhao L, Li F, Liu T, Yuan L, Zhang X, Zhang D, Li X, Zhang Y, Zhao Y, Song Q, Wang J, Zhou B, Cheng J, Xu D, Li W, Lin C, Wang W. Ovine ELOVL5 and FASN genes polymorphisms and their correlations with sheep tail fat deposition. Gene 2022; 807:145954. [PMID: 34500050 DOI: 10.1016/j.gene.2021.145954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
Reducing tail fat deposition can increase the economic value of a carcass and improve feed efficiency. This study aimed to explore ELOVL5 and FASN polymorphisms associated with tail fat deposition and their expression levels of sheep. Association analysis showed that ELOVL5 synonymous mutation g.62534 C > T was associated with tail width, tail fat weight, and relative tail fat weight (P < 0.05). FASN synonymous mutation g.12694 A > G was associated with tail length and width (P < 0.05). Combined effect analyses indicated significant differences between the combined genotypes and tail fat deposition. Quantitative real-time reverse transcription PCR indicated that the ELOVL5 and FASN expression levels were significantly higher in tail fat than in other tissues (P < 0.05). ELOVL5 expression levels in tail-fat tissue of big-tail sheep was significantly higher than that in small-tail sheep (P < 0.01). FASN expression levels were significantly higher in tail-fat tissue of small-tail sheep than in that of big-tail sheep (P < 0.05). During development, ELOVL5 tail fat expression increased significantly from 0 to 6 months old (P < 0.05), and FASN expression at 3 months old was significantly higher than that at 0 (minimum) and 6 months old (P < 0.05). Therefore, ELOVL5 and FASN polymorphisms could represent new candidate molecular markers and targets to reduce tail fat deposition in sheep.
Collapse
Affiliation(s)
- Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Fadi Li
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Teng Liu
- Suzhou Zelgen Biopharmaceuticals Co., Ltd., Kunshan, Jiangsu 215300, China
| | - Lvfeng Yuan
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qizhi Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
20
|
Bai Y, Li X, Chen Z, Li J, Tian H, Ma Y, Raza SHA, Shi B, Han X, Luo Y, Hu J, Wang J, Liu X, Li S, Zhao Z. Interference With ACSL1 Gene in Bovine Adipocytes: Transcriptome Profiling of mRNA and lncRNA Related to Unsaturated Fatty Acid Synthesis. Front Vet Sci 2022; 8:788316. [PMID: 34977220 PMCID: PMC8716587 DOI: 10.3389/fvets.2021.788316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
The enzyme long-chain acyl-CoA synthetase 1 (ACSL1) is essential for lipid metabolism. The ACSL1 gene controls unsaturated fatty acid (UFA) synthesis as well as the formation of lipid droplets in bovine adipocytes. Here, we used RNA-Seq to determine lncRNA and mRNA that regulate UFA synthesis in bovine adipocytes using RNA interference and non-interference with ACSL1. The corresponding target genes of differentially expressed (DE) lncRNAs and the DE mRNAs were found to be enriched in lipid and FA metabolism-related pathways, according to GO and KEGG analyses. The differentially expressed lncRNA- differentially expressed mRNA (DEL-DEM) interaction network indicated that some DELs, such as TCONS_00069661, TCONS_00040771, TCONS_ 00035606, TCONS_00048301, TCONS_001309018, and TCONS_00122946, were critical for UFA synthesis. These findings assist our understanding of the regulation of UFA synthesis by lncRNAs and mRNAs in bovine adipocytes.
Collapse
Affiliation(s)
- Yanbin Bai
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xupeng Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zongchang Chen
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jingsheng Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Hongshan Tian
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yong Ma
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | | | - Bingang Shi
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiangmin Han
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
21
|
Su XH, He HY, Fang C, Liu LL, Liu WJ. Transcriptome profiling of LncRNAs in sheep tail fat deposition. Anim Biotechnol 2021:1-11. [PMID: 34865605 DOI: 10.1080/10495398.2021.2002882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
LncRNAs have recently received special attention due to their critical role in many important biological processes. There are few reports on its regulatory function in sheep fat deposition. In this study, two sheep populations with different tail types in Xinjiang, Bashibai sheep (fat-tailed) and the hybrid population of Bashibai sheep and wild argali (small-tailed) were selected for whole transcriptome sequencing from their tail tissues. First, 728 differentially expressed LncRNAs of tail fat between Bashibai and F2 sheep were identified by RNA-seq. Second, the tissue expression profile and relative expression difference between Bashibai and F2 sheep of 2 of 728 DE LncRNAs were analyzed by RT-PCR. LncRNA-MSTRG.24995 was highly expressed in tail fat, while lncRNA-MSTRG.36913 was highly expressed in subcutaneous fat. In addition, the expressions of LncRNA-MSTRG.24995 and LncRNA-MSTRG.36913 in tail fat of F2 sheep were significantly lower than that of Bashibai sheep, while those patterns in longissimus dorsi, quadriceps femoris and rumen were reversed. Third, the expression pattern of target genes FASN and THRSP in each tissue was similar with that of corresponding LncRNAs. The LncRNA-MSTRG.24995 directly affects tail fat deposition by FASN gene, while the LncRNA-MSTRG.36913 indirectly affects that by THRSP gene. This will help us to understand molecular mechanism of fat tail deposition from transcriptomic perspectives.
Collapse
Affiliation(s)
- Xiao-Hui Su
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hai-Ying He
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Chao Fang
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Ling-Ling Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wu-Jun Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
22
|
Yuan Z, Ge L, Sun J, Zhang W, Wang S, Cao X, Sun W. Integrative analysis of Iso-Seq and RNA-seq data reveals transcriptome complexity and differentially expressed transcripts in sheep tail fat. PeerJ 2021; 9:e12454. [PMID: 34760406 PMCID: PMC8571958 DOI: 10.7717/peerj.12454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Background Nowadays, both customers and producers prefer thin-tailed fat sheep. To effectively breed for this phenotype, it is important to identify candidate genes and uncover the genetic mechanism related to tail fat deposition in sheep. Accumulating evidence suggesting that post-transcriptional modification events of precursor-messenger RNA (pre-mRNA), including alternative splicing (AS) and alternative polyadenylation (APA), may regulate tail fat deposition in sheep. Differentially expressed transcripts (DETs) analysis is a way to identify candidate genes related to tail fat deposition. However, due to the technological limitation, post-transcriptional modification events in the tail fat of sheep and DETs between thin-tailed and fat-tailed sheep remains unclear. Methods In the present study, we applied pooled PacBio isoform sequencing (Iso-Seq) to generate transcriptomic data of tail fat tissue from six sheep (three thin-tailed sheep and three fat-tailed sheep). By comparing with reference genome, potential gene loci and novel transcripts were identified. Post-transcriptional modification events, including AS and APA, and lncRNA in sheep tail fat were uncovered using pooled Iso-Seq data. Combining Iso-Seq data with six RNA-sequencing (RNA-Seq) data, DETs between thin- and fat-tailed sheep were identified. Protein protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were implemented to investigate the potential functions of DETs. Results In the present study, we revealed the transcriptomic complexity of the tail fat of sheep, result in 9,001 potential novel gene loci, 17,834 AS events, 5,791 APA events, and 3,764 lncRNAs. Combining Iso-Seq data with RNA-Seq data, we identified hundreds of DETs between thin- and fat-tailed sheep. Among them, 21 differentially expressed lncRNAs, such as ENSOART00020036299, ENSOART00020033641, ENSOART00020024562, ENSOART00020003848 and 9.53.1 may regulate tail fat deposition. Many novel transcripts were identified as DETs, including 15.527.13 (DGAT2), 13.624.23 (ACSS2), 11.689.28 (ACLY), 11.689.18 (ACLY), 11.689.14 (ACLY), 11.660.12 (ACLY), 22.289.6 (SCD), 22.289.3 (SCD) and 22.289.14 (SCD). Most of the identified DETs have been enriched in GO and KEGG pathways related to extracellular matrix (ECM). Our result revealed the transcriptome complexity and identified many candidate transcripts in tail fat, which could enhance the understanding of molecular mechanisms behind tail fat deposition.
Collapse
Affiliation(s)
- Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyi Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Weldenegodguad M, Pokharel K, Niiranen L, Soppela P, Ammosov I, Honkatukia M, Lindeberg H, Peippo J, Reilas T, Mazzullo N, Mäkelä KA, Nyman T, Tervahauta A, Herzig KH, Stammler F, Kantanen J. Adipose gene expression profiles reveal insights into the adaptation of northern Eurasian semi-domestic reindeer (Rangifer tarandus). Commun Biol 2021; 4:1170. [PMID: 34620965 PMCID: PMC8497613 DOI: 10.1038/s42003-021-02703-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Reindeer (Rangifer tarandus) are semi-domesticated animals adapted to the challenging conditions of northern Eurasia. Adipose tissues play a crucial role in northern animals by altering gene expression in their tissues to regulate energy homoeostasis and thermogenic activity. Here, we perform transcriptome profiling by RNA sequencing of adipose tissues from three different anatomical depots: metacarpal (bone marrow), perirenal, and prescapular fat in Finnish and Even reindeer (in Sakha) during spring and winter. A total of 16,212 genes are expressed in our data. Gene expression profiles in metacarpal tissue are distinct from perirenal and prescapular adipose tissues. Notably, metacarpal adipose tissue appears to have a significant role in the regulation of the energy metabolism of reindeer in spring when their nutritional condition is poor after winter. During spring, genes associated with the immune system are upregulated in the perirenal and prescapular adipose tissue. Blood and tissue parameters reflecting general physiological and metabolic status show less seasonal variation in Even reindeer than in Finnish reindeer. This study identifies candidate genes potentially involved in immune response, fat deposition, and energy metabolism and provides new information on the mechanisms by which reindeer adapt to harsh arctic conditions.
Collapse
Affiliation(s)
- Melak Weldenegodguad
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland ,grid.9668.10000 0001 0726 2490Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kisun Pokharel
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Laura Niiranen
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Päivi Soppela
- grid.37430.330000 0001 0744 995XArctic Centre, University of Lapland, Rovaniemi, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, Yakutsk, The Sakha Republic (Yakutia) Russia
| | | | - Heli Lindeberg
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Maaninka, Finland
| | - Jaana Peippo
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland ,NordGen—Nordic Genetic Resource Center, Ås, Norway
| | - Tiina Reilas
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Nuccio Mazzullo
- grid.37430.330000 0001 0744 995XArctic Centre, University of Lapland, Rovaniemi, Finland
| | - Kari A. Mäkelä
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tommi Nyman
- grid.454322.60000 0004 4910 9859Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | - Arja Tervahauta
- grid.9668.10000 0001 0726 2490Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Karl-Heinz Herzig
- grid.10858.340000 0001 0941 4873Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland ,grid.10858.340000 0001 0941 4873Medical Research Center, Faculty of Medicine, University of Oulu, Oulu, Finland ,grid.412326.00000 0004 4685 4917Oulu University Hospital, Oulu, Finland ,grid.22254.330000 0001 2205 0971Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Florian Stammler
- grid.37430.330000 0001 0744 995XArctic Centre, University of Lapland, Rovaniemi, Finland
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
24
|
He X, Wu R, Yun Y, Qin X, Chen L, Han Y, Wu J, Sha L, Borjigin G. Transcriptome analysis of messenger RNA and long noncoding RNA related to different developmental stages of tail adipose tissues of sunite sheep. Food Sci Nutr 2021; 9:5722-5734. [PMID: 34646540 PMCID: PMC8498062 DOI: 10.1002/fsn3.2537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The tail fat of sheep is the most typical deposited fat, and it can be widely used in human daily life, such as diet, cosmetics, and industrial raw materials. To understand the potential regulatory mechanism of different growth stages of tail fat in Sunite sheep, we performed high-throughput RNA sequencing to characterize the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles of the sheep tail fat at the age of 6, 18, and 30 months. A total of 223 differentially expressed genes (DEGs) and 148 differentially expressed lncRNAs were found in the tail fat of 6-, 18-, and 30-month-old sheep. Based on functional analysis, we found that fat-related DEGs were mainly expressed at 6 months of age and gradually decreased at 18 and 30 months of age. The target gene prediction analysis shows that most of the lncRNAs target more than 20 mRNAs as their transregulators. Further, we obtained several fat-related differentially expressed target genes; these target genes interact with different differentially expressed lncRNAs at various ages and play an important role in the development of tail fat. Based on the DEGs and differentially expressed lncRNAs, we established three co-expression networks for each comparison group. Finally, we concluded that the development of the sheep tail fat is more active during the early stage of growth and gradually decreases with the increase in age. The mutual regulation of lncRNAs and mRNAs may play a key role in this complex biological process.
Collapse
Affiliation(s)
- Xige He
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Rihan Wu
- College of Biochemistry and EngineeringHohhot Vocational CollegeHohhotChina
| | - Yueying Yun
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
- School of Life Science and TechnologyInner Mongolia University of Science and TechnologyBaotouChina
| | - Xia Qin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lu Chen
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Yunfei Han
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Jindi Wu
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lina Sha
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Gerelt Borjigin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
25
|
Chen S, Guo X, He X, Di R, Zhang X, Zhang J, Wang X, Chu M. Transcriptome Analysis Reveals Differentially Expressed Genes and Long Non-coding RNAs Associated With Fecundity in Sheep Hypothalamus With Different FecB Genotypes. Front Cell Dev Biol 2021; 9:633747. [PMID: 34095109 PMCID: PMC8172604 DOI: 10.3389/fcell.2021.633747] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/25/2021] [Indexed: 12/30/2022] Open
Abstract
Small-tailed Han sheep, with different FecB genotypes, manifest distinct ovulation rates and fecundities, which are due to differences in reproductive hormones secreted by the hypothalamic-pituitary-ovarian axis. Nevertheless, the function of the hypothalamus against a FecB mutant background on increasing ovulation rate is rarely reported. Therefore, we determined the expression profiles of hypothalamus tissue collected from six wild-type (WW) and six FecB mutant homozygous (BB) ewes at the follicular and luteal phases by whole-transcriptome sequencing. We identified 53 differentially expressed mRNAs (DEGs) and 40 differentially expressed long non-coding RNAs (DELs) between the two estrus states. Functional annotation analysis revealed that one of the DEGs, PRL, was particularly enriched in the hypothalamic function, hormone-related, and reproductive pathways. The lncRNA-target gene interaction networks and KEGG analysis in combination suggest that the lncRNAs LINC-676 and WNT3-AS cis-acting on DRD2 and WNT9B in different phases may induce gonadotropin-releasing hormone (GnRH) secretion. Furthermore, there were differences of regulatory elements and WNT gene family members involved in the follicular-luteal transition in the reproductive process between wild-type (WNT7A) and FecB mutant sheep (WNT9B). We combined the DEG and DEL data sets screened from different estrus states and genotypes. The overlap of these two sets was identified to select the mRNAs and lncRNAs that have major effects on ovulation. Among the overlapping molecules, seven DEGs and four DELs were involved in the follicular-luteal transition regulated by FecB mutation. Functional annotation analysis showed that two DEGs (FKBP5 and KITLG) were enriched in melanogenesis, oxytocin, and GnRH secretion. LINC-219386 and IGF2-AS were highly expressed in the BB ewes compared with WW ewes, modulating their target genes (DMXL2 and IGF2) to produce more GnRH during follicular development, which explains why mutated ewes produced more mature follicles. These results from expression profiling of the hypothalamus with the FecB mutation at different estrus states provide new insights into how the hypothalamus regulates ovulation under the effect of the FecB mutation.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Tianjin Institute of Animal Sciences, Tianjin, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. The role of long noncoding RNAs in livestock adipose tissue deposition - A review. Anim Biosci 2021; 34:1089-1099. [PMID: 33902176 PMCID: PMC8255878 DOI: 10.5713/ab.21.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
With the development of sequencing technology, numerous, long noncoding RNAs (lncRNAs) have been discovered and annotated. Increasing evidence has shown that lncRNAs play an essential role in regulating many biological and pathological processes, especially in cancer. However, there have been few studies on the roles of lncRNAs in livestock production. In animal products, meat quality and lean percentage are vital economic traits closely related to adipose tissue deposition. However, adipose tissue accumulation is also a pivotal contributor to obesity, diabetes, atherosclerosis, and many other diseases, as demonstrated by human studies. In livestock production, the mechanism by which lncRNAs regulate adipose tissue deposition is still unclear. In addition, the phenomenon that different animal species have different adipose tissue accumulation abilities is not well understood. In this review, we summarize the characteristics of lncRNAs and their four functional archetypes and review the current knowledge about lncRNA functions in adipose tissue deposition in livestock species. This review could provide theoretical significance to explore the functional mechanisms of lncRNAs in adipose tissue accumulation in animals.
Collapse
Affiliation(s)
- Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
27
|
Zhang W, Xu M, Wang J, Wang S, Wang X, Yang J, Gao L, Gan S. Comparative Transcriptome Analysis of Key Genes and Pathways Activated in Response to Fat Deposition in Two Sheep Breeds With Distinct Tail Phenotype. Front Genet 2021; 12:639030. [PMID: 33897762 PMCID: PMC8060577 DOI: 10.3389/fgene.2021.639030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 01/21/2023] Open
Abstract
Fat tail in sheep presents a valuable energy reserve that has historically facilitated adaptation to harsh environments. However, in modern intensive and semi-intensive sheep industry systems, breeds with leaner tails are more desirable. In the present study, RNA sequencing (RNA-Seq) was applied to determine the transcriptome profiles of tail fat tissues in two Chinese sheep breeds, fat-rumped Altay sheep and thin-tailed Xinjiang fine wool (XFW) sheep, with extreme fat tail phenotype difference. Then the differentially expressed genes (DEGs) and their sequence variations were further analyzed. In total, 21,527 genes were detected, among which 3,965 displayed significant expression variations in tail fat tissues of the two sheep breeds (P < 0.05), including 707 upregulated and 3,258 downregulated genes. Gene Ontology (GO) analysis disclosed that 198 DEGs were related to fat metabolism. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of DEGs were significantly enriched in "adipocytokine signaling," "PPAR signaling," and "metabolic pathways" (P < 0.05); moreover, some genes were involved in multiple pathways. Among the 198 DEGs, 22 genes were markedly up- or downregulated in tail fat tissue of Altay sheep, indicating that these genes might be closely related to the fat tail trait of this breed. A total of 41,724 and 42,193 SNPs were detected in the transcriptomic data of tail fat tissues obtained from Altay and XFW sheep, respectively. The distribution of seven SNPs in the coding regions of the 22 candidate genes was further investigated in populations of three sheep breeds with distinct tail phenotypes. In particular, the g.18167532T/C (Oar_v3.1) mutation of the ATP-binding cassette transporter A1 (ABCA1) gene and g.57036072G/T (Oar_v3.1) mutation of the solute carrier family 27 member 2 (SLC27A2) gene showed significantly different distributions and were closely associated with tail phenotype (P < 0.05). The present study provides transcriptomic evidence explaining the differences in fat- and thin-tailed sheep breeds and reveals numerous DEGs and SNPs associated with tail phenotype. Our data provide a valuable theoretical basis for selection of lean-tailed sheep breeds.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Mengsi Xu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Juanjuan Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Shiyin Wang
- Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Xinhua Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jingquan Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| |
Collapse
|
28
|
Farhadi S, Shodja Ghias J, Hasanpur K, Mohammadi SA, Ebrahimie E. Molecular mechanisms of fat deposition: IL-6 is a hub gene in fat lipolysis, comparing thin-tailed with fat-tailed sheep breeds. Arch Anim Breed 2021; 64:53-68. [PMID: 34084904 PMCID: PMC8130542 DOI: 10.5194/aab-64-53-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Tail fat content affects meat quality and varies significantly among different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important Iranian local sheep breeds with different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two mentioned sheep breeds. Seven (Zel = 4 and Ghezel = 3) 7-month-old male lambs were used for this experiment. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein-protein interaction (PPI) and network and module analyses. Some of the DEGs, such as LIPG, SAA1, SOCS3, HIF-1 α , and especially IL-6, had a close association with lipid metabolism. Furthermore, functional enrichment analysis revealed pathways associated with fat deposition, including "fatty acid metabolism", "fatty acid biosynthesis" and "HIF-1 signaling pathway". The structural classification of proteins showed that major down-regulated DEGs in the Zel (thin-tailed) breed were classified under transporter class and that most of them belonged to the solute carrier transporter (SLC) families. In addition, DEGs under the transcription factor class with an important role in lipolysis were up-regulated in the Zel (thin-tailed) breed. Also, network analysis revealed that IL-6 and JUNB were hub genes for up-regulated PPI networks, and HMGCS1, VPS35 and VPS26A were hub genes for down-regulated PPI networks. Among the up-regulated DEGs, the IL-6 gene seems to play an important role in lipolysis of tail fat in thin-tailed sheep breeds via various pathways such as tumor necrosis factor (TNF) signaling and mitogen-activated protein kinase (MAPK) signaling pathways. Due to the probable role of the IL-6 gene in fat lipolysis and also due to the strong interaction of IL-6 with the other up-regulated DEGs, it seems that IL-6 accelerates the degradation of lipids in tail fat cells.
Collapse
Affiliation(s)
- Sana Farhadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja Ghias
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, South Australia 5371, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
29
|
Han J, Guo T, Yue Y, Lu Z, Liu J, Yuan C, Niu C, Yang M, Yang B. Quantitative proteomic analysis identified differentially expressed proteins with tail/rump fat deposition in Chinese thin- and fat-tailed lambs. PLoS One 2021; 16:e0246279. [PMID: 33529214 PMCID: PMC7853479 DOI: 10.1371/journal.pone.0246279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
Tail adipose as one of the important functional tissues can enhance hazardous environments tolerance for sheep. The objective of this study was to gain insight into the underlying development mechanisms of this trait. A quantitative analysis of protein abundance in ovine tail/rump adipose tissue was performed between Chinese local fat- (Kazakh, Hu and Lanzhou) and thin-tailed (Alpine Merino, Tibetan) sheep in the present study by using lable-free approach. Results showed that 3400 proteins were identified in the five breeds, and 804 were differentially expressed proteins, including 638 up regulated proteins and 83 down regulated proteins in the tail adipose tissues between fat- and thin-tailed sheep, and 8 clusters were distinguished for all the DEPs’ expression patterns. The differentially expressed proteins are mainly associated with metabolism pathways and peroxisome proliferator activated receptor signaling pathway. Furthermore, the proteomics results were validated by quantitative real-time PCR and Western Blot. Our research has also suggested that the up-regulated proteins ACSL1, HSD17β4, FABP4 in the tail adipose tissue might contribute to tail fat deposition by facilitating the proliferation of adipocytes and fat accumulation in tail/rump of sheep. Particularly, FABP4 highly expressed in the fat-tail will play an important role for tail fat deposition. Our study might provide a novel view to understanding fat accumulation in special parts of the body in sheep and other animals.
Collapse
Affiliation(s)
- Jilong Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, CAAS, Beijing, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou, China
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou, China
| | - Min Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, CAAS, Beijing, China
- * E-mail: (MY); (BY)
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou, China
- * E-mail: (MY); (BY)
| |
Collapse
|
30
|
Han F, Li J, Zhao R, Liu L, Li L, Li Q, He J, Liu N. Identification and co-expression analysis of long noncoding RNAs and mRNAs involved in the deposition of intramuscular fat in Aohan fine-wool sheep. BMC Genomics 2021; 22:98. [PMID: 33526009 PMCID: PMC7852088 DOI: 10.1186/s12864-021-07385-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). RESULTS We identified a total of 26,247 genes and 6935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. CONCLUSIONS Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.
Collapse
Affiliation(s)
- Fuhui Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- Qufu Animal Husbandry and Veterinary Technical Service Center, Qufu, 273100, China
| | - Ranran Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Lanlan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qian Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
31
|
Chen W, Lv X, Wang Y, Zhang X, Wang S, Hussain Z, Chen L, Su R, Sun W. Transcriptional Profiles of Long Non-coding RNA and mRNA in Sheep Mammary Gland During Lactation Period. Front Genet 2020; 11:946. [PMID: 33101361 PMCID: PMC7546800 DOI: 10.3389/fgene.2020.00946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sheep milk and related products have been growing in popularity around the world in recent years. However, the sheep milk industry is limited by low milk yield, and the molecular regulators of ovine lactation remain largely unknown. To investigate the transcriptomic basis of sheep lactation, RNA-Sequencing was used to explore the expression profiles of lncRNA and mRNA of the mammary gland in Hu sheep at three key time points during the lactation stage: 5 days before the expected date of parturition perinatal period (PP), 6 days after parturition early lactation (EL), and 25 days after parturition peak lactation (PL). A total of 1111, 688, and 54 differentially expressed (DE) lncRNAs as well as 1360, 660, and 17 DE mRNAs were detected in the EL vs PP, PL vs PP, and PL vs EL comparisons, respectively. Several prominent mRNAs (e.g., CSN1S1, CSN1S2, PAEP, CSN2, CSN3, and COL3A1) and lncRNAs (e.g., LNC_018483, LNC_005678, LNC_012936, and LNC_004856) were identified. Functional enrichment analysis revealed that several DE mRNAs and target genes of DE lncRNAs were involved in lactation-related pathways, such as MAPK, PPAR, and ECM-receptor interaction. This study enhances our understanding of how transcriptomic profiles change during the lactation period and pave the way for future studies examining sheep lactation.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinjun Zhang
- Animal Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zahid Hussain
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Chen
- Animal Science and Veterinary Medicine Bureau of Suzhou City, Suzhou, China
| | - Rui Su
- Suzhou Taihu Dongshang Sheep Industry Development Co., Ltd., Suzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Analysis of Transcriptome and miRNAome in the Muscle of Bamei Pigs at Different Developmental Stages. Animals (Basel) 2020; 10:ani10071198. [PMID: 32679676 PMCID: PMC7401622 DOI: 10.3390/ani10071198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/18/2020] [Accepted: 07/11/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The pigs is the most popular agricultural animal in the world. Muscle growth—which has the highest economic value in pigs—can be regulated by multiple genes and involves complex regulatory mechanisms. It is necessary to understand the dynamics of muscle transcriptome during development to understand the muscle development mechanism. However, the genes and miRNAs that play regulatory roles underlying differences in the meat quality of pigs remain unclear. In the current study, qRT-PCR, miRNA-Seq, and RNA-Seq were applied to analyze and verify muscle tissues of pigs from three different developmental stages and screened genes, miRNAs and pathways related to pig muscle development. This study focused on analyzing the mechanisms of muscle development and uncover the development differences in muscle from embryo to adult. Abstract The growth of skeletal muscle involves complex developmental processes that play an important part in the determinization of pork quality. The investigation of skeletal muscle mRNA or miRNA profiles is especially important for finding molecular approaches to improve meat quality in pig breeding. Therefore, we studied the transcriptome (mRNA and miRNA) profiles of skeletal muscle with RNA-Seq in three developmental stages of pigs: 65-day embryonic (E65), postnatal 0 days (natal) and 10 months (adult). We found 10,035, 9050 and 4841 differentially expressed (DE) genes for natal vs. E65, adult vs. E65 and adult vs. natal, 55, 101 and 85 DE miRNA for natal vs. E65, adult vs. E65 and adult vs. natal, respectively. In addition, the target genes of DE miRNA that was in a negative correlation with the corresponding miRNA in the same comparison group were selected for enrichment analysis. Gene Ontology terms were mainly classified into developmental processes. Pathway analysis revealed enrichment in the Rap1 signaling pathway, citrate cycle and oxidative phosphorylation and carbon. Finally, RT-PCR was employed for validating the level of expression of 11 DE miRNA and 14 DEGs. The transcriptome profiles of skeletal muscle from the different developmental stages of the Bamei pigs were obtained. From these data, hundreds of DE miRNA and mRNA, and the miRNA–mRNA regulatory network can provide valuable insights into further understanding of key molecular mechanisms and improving the meat quality in pig breeding.
Collapse
|
33
|
Deng K, Ren C, Fan Y, Liu Z, Zhang G, Zhang Y, You P, Wang F. miR-27a is an important adipogenesis regulator associated with differential lipid accumulation between intramuscular and subcutaneous adipose tissues of sheep. Domest Anim Endocrinol 2020; 71:106393. [PMID: 31731253 DOI: 10.1016/j.domaniend.2019.106393] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/05/2019] [Accepted: 09/04/2019] [Indexed: 01/15/2023]
Abstract
Micro ribonucleic acids (miRNAs) are crucial regulators for various biological processes. Despite important function in the proliferation and differentiation of preadipocytes, miRNA studies are limited in regional differences in adipogenesis. Here, we show that miR-27a plays an important role in regulating differential lipid accumulation between intramuscular (IM) and subcutaneous (SC) adipose tissues in sheep. Invivo, we observed that miR-27a expression in IM adipose tissue is more abundant than in SC adipose tissue. However, the expression of Peroxisome Proliferator-Activated Receptor Gamma (PPARG) and retinoid X receptor alpha (RXR alpha) in IM adipose tissue was significantly lower than that in SC adipose tissue. In the ovine preadipocyte differentiation model, we found that the expression of miR-27a was significantly decreased in differentiated ovine adipocytes. Overexpression of miR-27a significantly downregulated the expression of PPARG and RXR alpha and suppressed the accumulation of triglyceride but promoted the proliferation of ovine preadipocytes. Whereas, inhibition of miR-27a suppressed preadipocyte proliferation but enhanced PPARG and RXR alpha expression and lipid droplet formation. In addition, dual-luciferase activity assays showed that RXR alpha was a direct target of miR-27a. Thus, miR-27a enhances ovine preadipocytes proliferation and inhibits ovine preadipocytes differentiation through regulating the expression of target RXR alpha. Collectively, our study demonstrates the functional importance of miR-27a in ovine adipogenesis and provides novel insights into exploring regional differences in adipogenesis.
Collapse
Affiliation(s)
- K Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C Ren
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Y Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Z Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - G Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Y Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - P You
- Portal Agri-Industries Co, Ltd, Xingdian Street, Pikou District, Nanjing, Jiangsu, China
| | - F Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, Jiangsu, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Yang H, Ma J, Wang Z, Yao X, Zhao J, Zhao X, Wang F, Zhang Y. Genome-Wide Analysis and Function Prediction of Long Noncoding RNAs in Sheep Pituitary Gland Associated with Sexual Maturation. Genes (Basel) 2020; 11:E320. [PMID: 32192168 PMCID: PMC7140784 DOI: 10.3390/genes11030320] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays a crucial role in the hypothalamic-pituitary-testis (HPT) axis associated with sheep reproduction. The pituitary plays a connecting role in the HPT axis. However, little is known of their expression pattern and potential roles in the pituitary gland. To explore the potential lncRNAs that regulate the male sheep pituitary development and sexual maturation, we constructed immature and mature sheep pituitary cDNA libraries (three-month-old, TM, and nine-month-old, NM, respectively, n = 3) for lncRNA and mRNA high-throughput sequencing. Firstly, the expression of lncRNA and mRNA were comparatively analyzed. 2417 known lncRNAs and 1256 new lncRNAs were identified. Then, 193 differentially expressed (DE) lncRNAs and 1407 DE mRNAs were found in the pituitary between the two groups. Moreover, mRNA-lncRNA interaction network was constructed according to the target gene prediction of lncRNA and functional enrichment analysis. Five candidate lncRNAs and their targeted genes HSD17B12, DCBLD2, PDPK1, GPX3 and DLL1 that enriched in growth and reproduction related pathways were further filtered. Lastly, the interaction of candidate lncRNA TCONS_00066406 and its targeted gene HSD17B12 were validated in in vitro of sheep pituitary cells. Our study provided a systematic presentation of lncRNAs and mRNAs in male sheep pituitary, which revealed the potential role of lncRNA in male reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.M.); (Z.W.); (X.Y.); (J.Z.); (X.Z.); (F.W.)
| |
Collapse
|
35
|
Yuan Z, Xiang R, Li W, Li F, Yue X. Transcriptomic analyses revealed common tailed and perirenal adipose differentially expressed genes in four Chinese indigenous sheep breeds. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.103832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Insertion/deletion (InDel) variations in sheep PLAG1 gene locating in growth-related major QTL are associated with adult body weight and morphometric traits. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Wang L, Yang X, Zhu Y, Zhan S, Chao Z, Zhong T, Guo J, Wang Y, Li L, Zhang H. Genome-Wide Identification and Characterization of Long Noncoding RNAs of Brown to White Adipose Tissue Transformation in Goats. Cells 2019; 8:E904. [PMID: 31443273 PMCID: PMC6721666 DOI: 10.3390/cells8080904] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the thermogenesis and energy storage of brown adipose tissue (BAT). However, knowledge of the cellular transition from BAT to white adipose tissue (WAT) and the potential role of lncRNAs in goat adipose tissue remains largely unknown. In this study, we analyzed the transformation from BAT to WAT using histological and uncoupling protein 1 (UCP1) gene analyses. Brown adipose tissue mainly existed within the goat perirenal fat at 1 day and there was obviously a transition from BAT to WAT from 1 day to 1 year. The RNA libraries constructed from the perirenal adipose tissues of 1 day, 30 days, and 1 year goats were sequenced. A total number of 21,232 lncRNAs from perirenal fat were identified, including 5393 intronic-lncRNAs and 3546 antisense-lncRNAs. Furthermore, a total of 548 differentially expressed lncRNAs were detected across three stages (fold change ≥ 2.0, false discovery rate (FDR) < 0.05), and six lncRNAs were validated by qPCR. Furthermore, trans analysis found lncRNAs that were transcribed close to 890 protein-coding genes. Additionally, a coexpression network suggested that 4519 lncRNAs and 5212 mRNAs were potentially in trans-regulatory relationships (r > 0.95 or r < -0.95). In addition, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the targeted genes were involved in the biosynthesis of unsaturated fatty acids, fatty acid elongation and metabolism, the citrate cycle, oxidative phosphorylation, the mitochondrial respiratory chain complex, and AMP-activated protein kinase (AMPK) signaling pathways. The present study provides a comprehensive catalog of lncRNAs involved in the transformation from BAT to WAT and provides insight into understanding the role of lncRNAs in goat brown adipogenesis.
Collapse
Affiliation(s)
- Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yuehua Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, Hainan, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
38
|
Bakhtiarizadeh MR, Salehi A, Alamouti AA, Abdollahi-Arpanahi R, Salami SA. Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep. Sci Rep 2019; 9:9203. [PMID: 31235755 PMCID: PMC6591244 DOI: 10.1038/s41598-019-45665-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Fat-tail content of sheep breeds is varied and the molecular mechanisms regulating fat-tail development have not been well characterized. Aiming at better identifying the important candidate genes and their functional pathways contributing to fat deposition in the tail, a comparative transcriptome analysis was performed between fat- (Lori-Bakhtiari) and thin-tailed (Zel) Iranian sheep breeds using RNA-seq. The experiment was conducted on six male lambs (three lambs per each breed) at seven months of age. Four different combinations of aligners and statistical methods including Hisat2 + edgeR, Hisat2 + DESeq2, STAR + edgeR and STAR + DESeq2 were used to identify the differentially expressed genes (DEGs). The DEGs were selected for functional enrichment analysis and protein-protein interaction (PPI) network construction. Module analysis was also conducted to mine the functional sub-networks from the PPI network. In total, 264 genes including 80 up- and 184 down-regulated genes were identified as DEGs. The RNA-Seq results were validated by Q-RT-PCR. Functional analysis of DEGs and the module analysis of PPI network demonstrated that in addition to pathways affecting lipid metabolism, a series of enriched functional terms related to "response to interleukin", "MAPK signaling pathways", "Wnt signaling pathway", "ECM-receptor interaction", "regulation of actin cytoskeleton", and "response to cAMP" might contribute to the deposition of fat in tails of sheep. Overall results using RNA-Seq analysis characterized important candidate genes involved in the fatty acid metabolism and regulation of fat deposition, suggesting novel insights into molecular aspects of fat-tail metabolism in sheep. Selected DEGs should be further investigated as potential markers associated with the fat-tail development in sheep breeds.
Collapse
Affiliation(s)
| | - Abdolreza Salehi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Ali A Alamouti
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
39
|
Wei S, Li A, Zhang L, Du M. GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: Long noncoding RNAs in adipogenesis and adipose development of meat animals12. J Anim Sci 2019; 97:2644-2657. [PMID: 30959518 DOI: 10.1093/jas/skz114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Sequencing technology, especially next-generation RNA sequencing, has greatly facilitated the identification and annotation of long noncoding RNAs (lncRNAs). In mammals, a large number of lncRNAs have been identified, which regulate various biological processes. An increasing number of lncRNAs have been identified which could function as key regulators of adipogenesis (adipocyte formation), a key step of the development of adipose tissue. Because proper adipose tissue development is a key factor affecting animal growth efficiency, lean/fat ratio, and meat quality, summarizing the roles and recent advances of lncRNAs in adipogenesis is needed in order to develop strategies to effectively manage fat deposition. In this review, we updated lncRNAs contributed to the regulation of adipogenesis, focusing on their roles in fat development of farm animals.
Collapse
Affiliation(s)
- Shengjuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anning Li
- Department of Animal Sciences, Washington State University, Pullman, WA
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA
| |
Collapse
|
40
|
Xu H, Zhang X, Zang R, Cai Y, Cao X, Yang J, Li J, Lan X, Wu J. Genetic variations in the sheep SIRT7 gene and their correlation with body size traits. Arch Anim Breed 2019; 62:189-197. [PMID: 31807629 PMCID: PMC6852881 DOI: 10.5194/aab-62-189-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/19/2019] [Indexed: 11/11/2022] Open
Abstract
As a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase
and ADP ribosyl transferase, the silent information regulator 7 (Sirtuin 7,
SIRT7) plays a crucial role in regulating the differentiation of adipocytes
and myoblasts, lipid metabolism, glucose metabolism, and cellular growth in
mammals. It has been hypothesized that SIRT7 affects growth traits in animals;
therefore, in this study, the potential insertion/deletion (indel) of genetic variations within
the ovine SIRT7 gene and their correlation with sheep growth traits
were explored. A total of 709 individuals from five Chinese
and Mongolian sheep breeds were analyzed. Two novel indel loci of the sheep
SIRT7 gene were detected and were named 5′ promoter
region-insertion-7 bp (5′ promoter region-7 bp) and 3′
UTR-insertion-17 bp (3′ UTR-17 bp), respectively. In all of the sheep breeds,
frequencies of the 5′ promoter region-7 bp mutation were low, whereas
mutations of 3′ UTR-17 bp were high in Tong sheep and Lanzhou fat-tail
sheep (LFTS). Furthermore, both indel polymorphisms had significant
associations with different growth characteristics (P<0.05). Among
these associations, the 3′ UTR-17 bp was highly correlated with rump width
in small-tail Han sheep (STHS, rams; P<0.01), and
individuals with the ID genotype had better chest depth values than those
with the II genotype. In this paper, two novel indels within the sheep
SIRT7 gene were identified, and genetic diversity and its
effects on body size traits were explored. These findings will potentially provide
useful DNA markers for the improvement of economic traits in sheep genetic breeding.
Collapse
Affiliation(s)
- Hongwei Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China.,Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xiaoyu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rongxin Zang
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yong Cai
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xin Cao
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jutian Yang
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianping Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China.,current address: College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
41
|
Erdenee S, Li J, Kang Z, Xu H, Zang R, Cao X, Yang J, Cai Y, Lan X. Sheep zinc finger proteins 395 (ZNF395): insertion/deletion variations, associations with growth traits, and mRNA expression. Anim Biotechnol 2019; 31:237-244. [DOI: 10.1080/10495398.2019.1585865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sarantsetseg Erdenee
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihong Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwei Xu
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Rongxin Zang
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xin Cao
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jutian Yang
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yong Cai
- Science Experimental Center, Northwest Minzu University, Lanzhou, Gansu, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|