1
|
Mohseni M, Ashrafi FZ, Abbaspour Rodbaneh E, Mokabber H, Vafaei M, Nobakht R, Keshavarzi F, Arzhangi S, Arish S, Azar ZN, Kahrizi K, Najmabadi H, Davarnia B. Unraveling the Genetic Landscape of Hearing Loss: A Comprehensive Study of Azeri Families in Ardabil, Iran. Mol Genet Genomic Med 2025; 13:e70080. [PMID: 39967327 PMCID: PMC11836346 DOI: 10.1002/mgg3.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Hereditary hearing loss (HHL) is a clinically and genetically heterogeneous sensorineural disorder that presents challenges for diagnosis. Next-generation sequencing (NGS) approaches have facilitated a more cost-effective, streamlined diagnostic process. This study aimed to identify HHL variants using NGS in Iranian Azeri families in Ardabil Province, establishing a suitable framework for screening programs tailored to the local population. METHODS Seventy-four GJB2-negative Azeri families with HHL from Ardabil Province of Iran were studied using the OtoSCOPE panel and/or exome sequencing over 15-years from 2008 to 2023. RESULTS Data analysis revealed 53 HHL variants in 52 of the 74 most consanguineous families (70%), including 34 pathogenic/likely pathogenic variants and 19 variants of uncertain significance. Seventeen of the detected variants were novel. SLC26A4, MYO7A, USH2A, and TMPRSS3 were the most prevalent mutated genes for non-syndromic hearing loss (NSHL) and syndromic hearing loss (SHL) in this study. CONCLUSION Our results are comparable to those of previous studies, indicating that SLC26A4 is the second most common cause of HHL, after GJB2. Moreover, our study emphasizes the significance of understanding the genetic basis of HL for early diagnosis and the implementation of suitable screening programs for various ethnicities in Iran.
Collapse
Affiliation(s)
- Marzieh Mohseni
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Farzane Zare Ashrafi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | | | - Haleh Mokabber
- Department of Medical Genetics and Pathology Ardabil University of Medical SciencesArdabilIran
| | - Maryam Vafaei
- Kariminejad – Najmabadi Pathology & Genetics CenterTehranIran
| | - Ramiz Nobakht
- Department of Medical Genetics and Pathology Ardabil University of Medical SciencesArdabilIran
| | - Fatemeh Keshavarzi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Sanaz Arzhangi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Sara Arish
- Department of Medical Genetics and Pathology Ardabil University of Medical SciencesArdabilIran
| | - Zahra Nematollahi Azar
- Department of Medical Genetics and Pathology Ardabil University of Medical SciencesArdabilIran
| | - Kimia Kahrizi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Hossein Najmabadi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation SciencesTehranIran
- Kariminejad – Najmabadi Pathology & Genetics CenterTehranIran
| | - Behzad Davarnia
- Department of Medical Genetics and Pathology Ardabil University of Medical SciencesArdabilIran
| |
Collapse
|
2
|
王 月, 梁 悦, 黄 碧, 岑 晓, 黄 露, 陈 垲. [Late-onset hereditary hearing loss caused by TMPRSS3 compound heterozygous mutations]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:679-686. [PMID: 39118504 PMCID: PMC11612751 DOI: 10.13201/j.issn.2096-7993.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 08/10/2024]
Abstract
Objective:This study aims to identify the genetic etiology underlying late-onset hearing loss in two unrelated Chinese families. Methods:Detailed clinical data of recruited participants of two families were collected and analyzed using next-generation sequencing, combined with Sanger sequencing and bioinformatics tools. Results:Patients in both families manifested as down-sloping audiograms, mainly with severe mid-to-high frequency hearing loss as well as decreased speech recognition rate, both of which occurred during the second decade. Next-generation sequencing panels succeeded in identifying mutations in gene TMPRSS3, and three heterozygous mutations were screened out, among which c. 383T>C was the first reported mutation. In silico functional analysis and molecular modeling defined the five mutations as "pathogenic" or "likely pathogenic" according to official guideline. Conclusion:The novel mutation combinations in TMPRSS3 gene segregated with an exclusive auditory phenotype in the two pedigrees. Our results provided new data regarding the characteristic deafness caused by TMPRSS3 mutations during adolescent period when hearing should be closely monitored.
Collapse
Affiliation(s)
- 月莹 王
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 悦 梁
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 碧雪 黄
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 晓晴 岑
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 露莎 黄
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 垲钿 陈
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| |
Collapse
|
3
|
AitRaise I, Amalou G, Bakhchane A, Bousfiha A, Abdelghaffar H, Majida C, Bonnet C, Petit C, Barakat A. Homozygous Missense Variants in FOXI1 and TMPRSS3 Genes Associated with Non-syndromic Deafness in Moroccan Families. Biochem Genet 2024; 62:1914-1924. [PMID: 37777971 DOI: 10.1007/s10528-023-10515-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
One of the most prevalent sensorineural disorders, autosomal recessive non-syndromic hearing loss (ARNSHL) which can affect all age groups, from the newborn (congenital) to the elderly (presbycusis). Important etiologic, phenotypic, and genotypic factors can cause deafness. So far, the high genetic variability that explains deafness makes molecular diagnosis challenging. In Morocco, the GJB2 gene is the primary cause of non-syndromic hereditary deafness, while the existence of a variant in the LRTOMT gene is the second cause of this condition. After excluding these two frequently occurring GJB2 and LRTOMT variants, whole-exome sequencing was carried out in two Moroccan consanguineous families with hearing loss. As a result, two novel variants in the TMPRSS3 (c.1078G>A, p. Ala 360Thr) and FOXI1 (c.6C>G, p. Ser 2Arg) genes have been discovered in deaf patients and the pathogenic effect has been anticipated by several bioinformatics and molecular modeling systems. For the first time, these variants are identified in the Moroccan population, showing the population heterogeneity and demonstrating the value of the WES in hearing loss diagnosis.
Collapse
Affiliation(s)
- Imane AitRaise
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Biochemistry, Environment and Agri-food, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Amina Bakhchane
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Amale Bousfiha
- Laboratory of Physiopathology and Molecular Genetics, Ben M'sik Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Houria Abdelghaffar
- Laboratory of Biochemistry, Environment and Agri-food, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Charif Majida
- Genetics and Immuno-cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, 75012, Paris, France
| | - Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, 75012, Paris, France
- Collège de France, 75005, Paris, France
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
- Genomics and Human Genetics Laboratory, Département de Recherche Scientifique, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Morocco.
| |
Collapse
|
4
|
Richard ÉM, Delprat B. [Local administration of an AAV-TMPRSS3 vector in aged Tmprss3 mutant mice with progressive deafness restores hearing]. Med Sci (Paris) 2024; 40:402-404. [PMID: 38819271 DOI: 10.1051/medsci/2024042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- Élodie M Richard
- Mécanismes moléculaires dans les démences neurodégénératives, Université de Montpellier, École pratique des hautes études, Inserm U1198, Montpellier, France
| | - Benjamin Delprat
- Mécanismes moléculaires dans les démences neurodégénératives, Université de Montpellier, École pratique des hautes études, Inserm U1198, Montpellier, France
| |
Collapse
|
5
|
Colbert BM, Lanting C, Smeal M, Blanton S, Dykxhoorn DM, Tang PC, Getchell RL, Velde H, Fehrmann M, Thorpe R, Chapagain P, Elkhaligy H, Kremer H, Yntema H, Haer-Wigman L, Redfield S, Sun T, Bruijn S, Plomp A, Goderie T, van de Kamp J, Free RH, Wassink-Ruiter JK, Widdershoven J, Vanhoutte E, Rotteveel L, Kriek M, van Dooren M, Hoefsloot L, de Gier HHW, Schaefer A, Kolbe D, Azaiez H, Rabie G, Aburayyan A, Kawas M, Kanaan M, Holder J, Usami SI, Chen Z, Dai P, Holt J, Nelson R, Choi BY, Shearer E, Smith RJH, Pennings R, Liu XZ. The natural history and genotype-phenotype correlations of TMPRSS3 hearing loss: an international, multi-center, cohort analysis. Hum Genet 2024; 143:721-734. [PMID: 38691166 PMCID: PMC11098735 DOI: 10.1007/s00439-024-02648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/21/2024] [Indexed: 05/03/2024]
Abstract
TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Brett M Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL, 33136, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| | - Cris Lanting
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Molly Smeal
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL, 33136, USA
| | - Susan Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL, 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| | - Derek M Dykxhoorn
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL, 33136, USA
| | - Richard L Getchell
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| | - Hedwig Velde
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mirthe Fehrmann
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ryan Thorpe
- Department of Otolaryngology, University of Iowa, Iowa City, USA
| | - Prem Chapagain
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, USA
| | - Heidy Elkhaligy
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, USA
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger Yntema
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Tieqi Sun
- Boston Children's Hospital, Boston, USA
| | - Saskia Bruijn
- Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Astrid Plomp
- Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Thadé Goderie
- Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Rolien H Free
- Groningen University Medical Center, Groningen, The Netherlands
| | | | | | - Els Vanhoutte
- Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | - Amanda Schaefer
- Department of Otolaryngology, University of Iowa, Iowa City, USA
| | - Diana Kolbe
- Department of Otolaryngology, University of Iowa, Iowa City, USA
| | - Hela Azaiez
- Department of Otolaryngology, University of Iowa, Iowa City, USA
| | - Grace Rabie
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | | | - Mariana Kawas
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Moien Kanaan
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | | | | | - Zhengyi Chen
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, USA
| | - Pu Dai
- PLA General Hospital, Beijing, China
| | | | - Rick Nelson
- Department of Otolaryngology, Indiana University School of Medicine, Indianapolis, USA
| | - Byung Yoon Choi
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | | | | | - Ronald Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL, 33136, USA.
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA.
| |
Collapse
|
6
|
Fehrmann MLA, Huinck WJ, Thijssen MEG, Haer-Wigman L, Yntema HG, Rotteveel LJC, Widdershoven JCC, Goderie T, van Dooren MF, Hoefsloot EH, van der Schroeff MP, Mylanus EAM, Lanting CP, Pennings RJE. Stable long-term outcomes after cochlear implantation in subjects with TMPRSS3 associated hearing loss: a retrospective multicentre study. J Otolaryngol Head Neck Surg 2023; 52:82. [PMID: 38102706 PMCID: PMC10724910 DOI: 10.1186/s40463-023-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The spiral ganglion hypothesis suggests that pathogenic variants in genes preferentially expressed in the spiral ganglion nerves (SGN), may lead to poor cochlear implant (CI) performance. It was long thought that TMPRSS3 was particularly expressed in the SGNs. However, this is not in line with recent reviews evaluating CI performance in subjects with TMPRSS3-associated sensorineural hearing loss (SNHL) reporting overall beneficial outcomes. These outcomes are, however, based on variable follow-up times of, in general, 1 year or less. Therefore, we aimed to 1. evaluate long-term outcomes after CI implantation of speech recognition in quiet in subjects with TMPRSS3-associated SNHL, and 2. test the spiral ganglion hypothesis using the TMPRSS3-group. METHODS This retrospective, multicentre study evaluated long-term CI performance in a Dutch population with TMPRSS3-associated SNHL. The phoneme scores at 70 dB with CI in the TMPRSS3-group were compared to a control group of fully genotyped cochlear implant users with post-lingual SNHL without genes affecting the SGN, or severe anatomical inner ear malformations. CI-recipients with a phoneme score ≤ 70% at least 1-year post-implantation were considered poor performers and were evaluated in more detail. RESULTS The TMPRSS3 group consisted of 29 subjects (N = 33 ears), and the control group of 62 subjects (N = 67 ears). For the TMPRSS3-group, we found an average phoneme score of 89% after 5 years, which remained stable up to 10 years post-implantation. At both 5 and 10-year follow-up, no difference was found in speech recognition in quiet between both groups (p = 0.830 and p = 0.987, respectively). Despite these overall adequate CI outcomes, six CI recipients had a phoneme score of ≤ 70% and were considered poor performers. The latter was observed in subjects with residual hearing post-implantation or older age at implantation. CONCLUSION Subjects with TMPRSS3-associated SNHL have adequate and stable long-term outcomes after cochlear implantation, equal to the performance of genotyped patient with affected genes not expressed in the SGN. These findings are not in line with the spiral ganglion hypothesis. However, more recent studies showed that TMPRSS3 is mainly expressed in the hair cells with only limited SGN expression. Therefore, we cannot confirm nor refute the spiral ganglion hypothesis.
Collapse
Affiliation(s)
- M L A Fehrmann
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - W J Huinck
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - M E G Thijssen
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - L Haer-Wigman
- Department of Clinical Genetics, Radboudumc, Nijmegen, The Netherlands
| | - H G Yntema
- Department of Clinical Genetics, Radboudumc, Nijmegen, The Netherlands
| | - L J C Rotteveel
- Department of Otorhinolaryngology, Leiden UMC, Leiden, The Netherlands
| | - J C C Widdershoven
- Department of Otorhinolaryngology, Maastricht UMC, Maastricht, The Netherlands
| | - T Goderie
- Department of Otorhinolaryngology-Head and Neck Surgery, Ear and Hearing, Amsterdam UMC, Amsterdam, The Netherlands
| | - M F van Dooren
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - E H Hoefsloot
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | - E A M Mylanus
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - C P Lanting
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - R J E Pennings
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Tropitzsch A, Schade-Mann T, Gamerdinger P, Dofek S, Schulte B, Schulze M, Fehr S, Biskup S, Haack TB, Stöbe P, Heyd A, Harre J, Lesinski-Schiedat A, Büchner A, Lenarz T, Warnecke A, Müller M, Vona B, Dahlhoff E, Löwenheim H, Holderried M. Variability in Cochlear Implantation Outcomes in a Large German Cohort With a Genetic Etiology of Hearing Loss. Ear Hear 2023; 44:1464-1484. [PMID: 37438890 PMCID: PMC10583923 DOI: 10.1097/aud.0000000000001386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES The variability in outcomes of cochlear implantation is largely unexplained, and clinical factors are not sufficient for predicting performance. Genetic factors have been suggested to impact outcomes, but the clinical and genetic heterogeneity of hereditary hearing loss makes it difficult to determine and interpret postoperative performance. It is hypothesized that genetic mutations that affect the neuronal components of the cochlea and auditory pathway, targeted by the cochlear implant (CI), may lead to poor performance. A large cohort of CI recipients was studied to verify this hypothesis. DESIGN This study included a large German cohort of CI recipients (n = 123 implanted ears; n = 76 probands) with a definitive genetic etiology of hearing loss according to the American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP) guidelines and documented postoperative audiological outcomes. All patients underwent preoperative clinical and audiological examinations. Postoperative CI outcome measures were based on at least 1 year of postoperative audiological follow-up for patients with postlingual hearing loss onset (>6 years) and 5 years for children with congenital or pre/perilingual hearing loss onset (≤6 years). Genetic analysis was performed based on three different methods that included single-gene screening, custom-designed hearing loss gene panel sequencing, targeting known syndromic and nonsyndromic hearing loss genes, and whole-genome sequencing. RESULTS The genetic diagnosis of the 76 probands in the genetic cohort involved 35 genes and 61 different clinically relevant (pathogenic, likely pathogenic) variants. With regard to implanted ears (n = 123), the six most frequently affected genes affecting nearly one-half of implanted ears were GJB2 (21%; n = 26), TMPRSS3 (7%; n = 9), MYO15A (7%; n = 8), SLC26A4 (5%; n = 6), and LOXHD1 and USH2A (each 4%; n = 5). CI recipients with pathogenic variants that influence the sensory nonneural structures performed at or above the median level of speech performance of all ears at 70% [monosyllable word recognition score in quiet at 65 decibels sound pressure level (SPL)]. When gene expression categories were compared to demographic and clinical categories (total number of compared categories: n = 30), mutations in genes expressed in the spiral ganglion emerged as a significant factor more negatively affecting cochlear implantation outcomes than all clinical parameters. An ANOVA of a reduced set of genetic and clinical categories (n = 10) identified five detrimental factors leading to poorer performance with highly significant effects ( p < 0.001), accounting for a total of 11.8% of the observed variance. The single strongest category was neural gene expression accounting for 3.1% of the variance. CONCLUSIONS The analysis of the relationship between the molecular genetic diagnoses of a hereditary etiology of hearing loss and cochlear implantation outcomes in a large German cohort of CI recipients revealed significant variabilities. Poor performance was observed with genetic mutations that affected the neural components of the cochlea, supporting the "spiral ganglion hypothesis."
Collapse
Affiliation(s)
- Anke Tropitzsch
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Hearing Center, Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Center for Rare Hearing Disorders, Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Thore Schade-Mann
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Hearing Center, Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
| | - Philipp Gamerdinger
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Hearing Center, Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
| | - Saskia Dofek
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
| | - Björn Schulte
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Martin Schulze
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Sarah Fehr
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Saskia Biskup
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Petra Stöbe
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Andreas Heyd
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
| | - Jennifer Harre
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Anke Lesinski-Schiedat
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Andreas Büchner
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology—Head & Neck Surgery, Hannover Medical School, Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, Hannover, Germany
| | - Marcus Müller
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Barbara Vona
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Ernst Dahlhoff
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Neurosensory Center, Departments of Otolaryngology—Head & Neck Surgery and Ophthalmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Martin Holderried
- Department of Otolaryngology—Head & Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
- Department of Medical Development and Quality Management, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Cottrell J, Dixon P, Cao X, Kiss A, Smilsky K, Kaminskas K, Ng A, Shipp D, Dimitrijevic A, Chen J, Lin V, Kyriakopoulou L, Le T. Gene mutations as a non-invasive measure of adult cochlear implant performance: Variable outcomes in patients with select TMPRSS3 mutations. PLoS One 2023; 18:e0291600. [PMID: 37713394 PMCID: PMC10503761 DOI: 10.1371/journal.pone.0291600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND The cochlear implant (CI) has proven to be a successful treatment for patients with severe-to-profound sensorineural hearing loss, however outcome variance exists. We sought to evaluate particular mutations discovered in previously established sensory and neural partition genes and compare post-operative CI outcomes. MATERIALS AND METHODS Utilizing a prospective cohort study design, blood samples collected from adult patients with non-syndromic hearing loss undergoing CI were tested for 54 genes of interest with high-throughput sequencing. Patients were categorized as having a pathogenic variant in the sensory partition, pathogenic variant in the neural partition, pathogenic variant in both sensory and neural partition, or with no variant identified. Speech perception performance was assessed pre- and 12 months post-operatively. Performance measures were compared to genetic mutation and variant status utilizing a Wilcoxon rank sum test, with P<0.05 considered statistically significant. RESULTS Thirty-six cochlear implant patients underwent genetic testing and speech understanding measurements. Of the 54 genes that were interrogated, three patients (8.3%) demonstrated a pathogenic mutation in the neural partition (within TMPRSS3 genes), one patient (2.8%) demonstrated a pathogenic mutation in the sensory partition (within the POU4F3 genes). In addition, 3 patients (8.3%) had an isolated neural partition variance of unknown significance (VUS), 5 patients (13.9%) had an isolated sensory partition VUS, 1 patient (2.8%) had a variant in both neural and sensory partition, and 23 patients (63.9%) had no mutation or variant identified. There was no statistically significant difference in speech perception scores between patients with sensory or neural partition pathogenic mutations or VUS. Variable performance was found within patients with TMPRSS3 gene mutations. CONCLUSION The impact of genetic mutations on post-operative outcomes in CI patients was heterogenous. Future research and dissemination of mutations and subsequent CI performance is warranted to elucidate exact mutations within target genes providing the best non-invasive prognostic capability.
Collapse
Affiliation(s)
- Justin Cottrell
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Peter Dixon
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Xingshan Cao
- Department of Research Design and Biostatistics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kari Smilsky
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Kassandra Kaminskas
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Amy Ng
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - David Shipp
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Dimitrijevic
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Chen
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Lin
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Lianna Kyriakopoulou
- Department of Laboratory Medicine & Pathology–Clinical Chemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trung Le
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Lee SJ, Lee S, Han JH, Choi BY, Lee JH, Lee DH, Lee SY, Oh SH. Structural analysis of pathogenic TMPRSS3 variants and their cochlear implantation outcomes of sensorineural hearing loss. Gene 2023; 865:147335. [PMID: 36871673 DOI: 10.1016/j.gene.2023.147335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
TMPRSS3, a type II transmembrane serine protease, is involved in various biological processes including the development and maintenance of the inner ear. Biallelic variants in TMPRSS3 typically result in altered protease activity, causing autosomal recessive non-syndromic hearing loss (ARNSHL). Structural modeling has been conducted to predict the pathogenicity of TMPRSS3 variants and to gain a better understanding of their prognostic correlation. The mutant-driven changes in TMPRSS3 had substantial impacts on neighboring residues, and the pathogenicity of variants was predicted based on their distance from the active site. However, a more in-depth analysis of other factors, such as intramolecular interactions and protein stability, which affect proteolytic activities is yet to be conducted for TMPRSS3 variants. Among 620 probands who provided genomic DNA for molecular genetic testing, eight families with biallelic TMPRSS3 variants that were segregated in a trans configuration were included. Seven different mutant alleles, either homozygous or compound heterozygous, contributed to TMPRSS3-associated ARNSHL, expanding the genotypic spectrum of disease-causing TMPRSS3 variants. Through three-dimensional modeling and structural analysis, TMPRSS3 variants compromise protein stability by altering intramolecular interactions, and each mutant differently interacts with the serine protease active site. Furthermore, the changes in intramolecular interactions leading to regional instability correlate with the results of functional assay and residual hearing function, but overall stability predictions do not. Our findings also build on previous evidence indicating that most recipients with TMPRSS3 variants have favorable cochlear implantation (CI) outcomes. We found that age at CI was significantly correlated with speech performance outcomes; genotype was not correlated with these outcomes. Collectively, the results of this study contribute to a more structural understanding of the underlying mechanisms of ARNSHL caused by TMPRSS3 variants.
Collapse
Affiliation(s)
- Seung Jae Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Somin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | | | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
10
|
Abstract
Understanding the genetic basis of hearing loss is becoming increasingly relevant, as 50-70% of congenital hearing loss is hereditary and postlingual hearing loss is also often of hereditary origin. To date, more than 220 genes for hearing loss have been identified and more than 600 syndromes with hearing loss described. This review article explains the classification of genetic hearing loss into syndromic versus non-syndromic forms and the modes of inheritance involved. Some of the most common syndromes (Usher, Pendred, Jervell-Lange-Nielsen, Waardenburg, branchiootorenal, and Alport syndrome) are introductorily described. New sequencing technologies have significantly expanded the diagnostic options for genetic hearing loss and made them more accessible. This text aims to encourage initiation of genetic diagnosis in hearing-impaired patients with suspected hereditary genesis in order to provide the best possible counseling for affected individuals and their families.
Collapse
|
11
|
Peng ZE, Garcia A, Godar SP, Holt JR, Lee DJ, Litovsky RY. Hearing Preservation and Spatial Hearing Outcomes After Cochlear Implantation in Children With TMPRSS3 Mutations. Otol Neurotol 2023; 44:21-25. [PMID: 36509434 PMCID: PMC9764138 DOI: 10.1097/mao.0000000000003747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Investigate hearing preservation and spatial hearing outcomes in children with TMPRSS3 mutations who received bilateral cochlear implantation. STUDY DESIGN AND METHODS Longitudinal case series report. Two siblings (ages, 7 and 4 yr) with TMPRSS3 mutations with down-sloping audiograms received sequential bilateral cochlear implantation with hearing preservation with low-frequency acoustic amplification and high-frequency electrical stimulation. Spatial hearing, including speech perception and localization, was assessed at three time points: preoperative, postoperative of first and second cochlear implant (CI). RESULTS Both children showed low-frequency hearing preservation in unaided, acoustic-only audiograms. Both children demonstrated improvements in speech perception in both quiet and noise after CI activations. The emergence of spatial hearing was observed. Each child's overall speech perception and spatial hearing when listening with bilateral CIs were within the range or better than published group data from children with bilateral CIs of other etiology. CONCLUSION Bilateral cochlear implantation with hearing preservation is a viable option for managing hearing loss for pediatric patients with TMPRSS3 mutations.
Collapse
Affiliation(s)
- Z. Ellen Peng
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Alejandro Garcia
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Shelly P. Godar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey R. Holt
- Boston Children’s Hospital & Harvard Medical School, Boston, MA, SUA
| | - Daniel J. Lee
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Effects of CoQ10 Replacement Therapy on the Audiological Characteristics of Pediatric Patients with COQ6 Variants. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5250254. [PMID: 36124066 PMCID: PMC9482153 DOI: 10.1155/2022/5250254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
Primary coenzyme Q10 (CoQ10) deficiency refers to a group of mitochondrial cytopathies caused by genetic defects in CoQ10 biosynthesis. Primary coenzyme Q10 deficiency-6 (COQ10D6) is an autosomal recessive disorder attributable to biallelic COQ6 variants; the cardinal phenotypes are steroid-resistant nephrotic syndrome (SRNS), which inevitably progresses to kidney failure, and sensorineural hearing loss (SNHL). Here, we describe the phenotypes and genotypes of 12 children with COQ10D6 from 11 unrelated Korean families and quantitatively explore the beneficial effects of CoQ10 replacement therapy on SNHL. A diagnosis of SRNS generally precedes SNHL documentation. COQ10D6 is associated with progressive SNHL. Four causative COQ6 variants were identified in either homozygotes or compound heterozygotes: c.189_191delGAA, c.484C>T, c.686A>C, and c.782C>T. The response rate (no further hearing loss or improvement) was 42.9%; CoQ10 replacement therapy may thus limit and even improve hearing loss. Notably, the audiological benefit appeared to be genotype-specific, suggesting a genotype–phenotype correlation. The results of cochlear implantation were generally favorable, and the effects were sustained over time. Our results thus propose the beneficial effects of CoQ10 replacement therapy on hearing loss. Our work with COQ10D6 patients is a good example of personalized, genetically tailored, audiological rehabilitation of patients with syndromic deafness.
Collapse
|
13
|
Liao EN, Taketa E, Mohamad NI, Chan DK. Outcomes of Gene Panel Testing for Sensorineural Hearing Loss in a Diverse Patient Cohort. JAMA Netw Open 2022; 5:e2233441. [PMID: 36166228 PMCID: PMC9516276 DOI: 10.1001/jamanetworkopen.2022.33441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
IMPORTANCE A genetic diagnosis can help elucidate the prognosis of hearing loss, thus significantly affecting management. Previous studies on diagnostic yield of hearing loss genetic tests have been based on largely homogenous study populations. OBJECTIVES To examine the diagnostic yield of genetic testing in a diverse population of children, accounting for sociodemographic and patient characteristics, and assess whether these diagnoses are associated with subsequent changes in clinical management. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included 2075 patients seen at the Children's Communications Clinic, of whom 517 completed hearing loss gene panel testing between January 1, 2015, and November 1, 2021, at the University of California, San Francisco Benioff Children's Hospital system. From those 517 patients, 426 children with at least 2 audiograms were identified and analyzed. Data were gathered from November 2021 to January 2022 and analyzed from January to February 2022. MAIN OUTCOMES AND MEASURES The measures of interest were sociodemographic characteristics (age at testing, gender, race and ethnicity, primary language, and insurance type), hearing loss characteristics, and medical variables. The outcome was genetic testing results. Variables were compared with univariate and multivariable logistic regression. RESULTS Of the 2075 patients seen at the Children's Communications Clinic, 517 (median [range] age, 8 [0-31] years; 264 [51.1%] male; 351 [67.9%] from an underrepresented minority [URM] group) underwent a hearing loss panel genetic test between January 1, 2015, and November 1, 2021. Among those 517 patients, 426 children (median [range] age, 8 [0-18] years; 221 [51.9%] male; 304 [71.4%] from an URM group) with 2 or more audiograms were included in a subsequent analysis. On multivariable logistic regression, age at testing (odds ratio [OR], 0.87; 95% CI, 0.78-0.97), URM group status (OR, 0.29; 95% CI, 0.13-0.66), comorbidities (OR, 0.27; 95% CI, 0.14-0.53), late-identified hearing loss (passed newborn hearing screen; OR, 0.27; 95% CI, 0.08-0.86), and unilateral hearing loss (OR, 0.04; 95% CI, 0.005-0.33) were the only factors associated with genetic diagnosis. No association was found between genetic diagnosis yield and other sociodemographic variables or hearing loss characteristics. Patients in URM and non-URM groups had statistically similar clinical features. A total of 32 of 109 children (29.4%) who received a genetic diagnosis received diagnoses that significantly affected prognosis because of identification of syndromic or progressive sensorineural hearing loss or auditory neuropathy spectrum disorder relating to otoferlin. CONCLUSIONS AND RELEVANCE This cohort study's findings suggest that genetic testing may be broadly useful in improving clinical management of children with hearing loss. More research is warranted to discover and characterize diagnostic genes for those who have been historically underrepresented in research and medicine.
Collapse
Affiliation(s)
- Elizabeth N. Liao
- Department of Otolaryngology–Head & Neck Surgery, University of California, San Francisco
| | - Emily Taketa
- Department of Otolaryngology–Head & Neck Surgery, University of California, San Francisco
| | - Noura I. Mohamad
- Department of Otolaryngology–Head & Neck Surgery, University of California, San Francisco
| | - Dylan K. Chan
- Department of Otolaryngology–Head & Neck Surgery, University of California, San Francisco
| |
Collapse
|
14
|
Zhang W, Song J, Tong B, Ma M, Guo L, Yuan Y, Yang J. Identification of a novel CNV at the EYA4 gene in a Chinese family with autosomal dominant nonsyndromic hearing loss. BMC Med Genomics 2022; 15:113. [PMID: 35578334 PMCID: PMC9109401 DOI: 10.1186/s12920-022-01269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hereditary hearing loss is a heterogeneous class of disorders that exhibits various patterns of inheritance and involves many genes. Variants in the EYA4 gene in DFNA10 are known to lead to postlingual, progressive, autosomal dominant nonsyndromic hereditary hearing loss. PATIENTS AND METHODS We collected a four-generation Chinese family with autosomal-dominant nonsyndromic hearing loss (ADNSHL). We applied targeted next-generation sequencing (TNGS) in three patients of this pedigree and whole-genome sequencing (WGS) in the proband. The intrafamilial cosegregation of the variant and the deafness phenotype were confirmed by PCR, gap-PCR and Sanger sequencing. RESULTS A novel CNV deletion at 6q23 in exons 8-11 of the EYA4 gene with a 10 bp insertion was identified by TNGS and WGS and segregated with the ADNSHL phenotypes. CONCLUSIONS Our results expanded the variant spectrum and genotype‒phenotype correlation of the EYA4 gene and autosomal dominant nonsyndromic hereditary hearing loss in Chinese Han individuals. WGS is an accurate and effective method for verifying the genomic features of CNVs.
Collapse
Affiliation(s)
- Weixun Zhang
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China
- Lateral Skull Base Diagnosis and Treatment Center, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Jing Song
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China
| | - Busheng Tong
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China
| | - Mengye Ma
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China
| | - Luo Guo
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China
| | - Yasheng Yuan
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China.
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China.
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China.
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China.
- Lateral Skull Base Diagnosis and Treatment Center, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China.
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China.
| | - Juanmei Yang
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, China.
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai, 200031, China.
- Key Laboratory of Hearing Medicine of National Health Commission of the People's Republic of China, Shanghai, 20031, China.
- Research Institute of Otolaryngology, Fudan University, Shanghai, 200031, China.
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China.
| |
Collapse
|