1
|
Bailly E, Macedo C, Gu X, Hollingshead D, Bentlejewski C, Fong E, Morel PA, Randhawa P, Zeevi A, Lefaucheur C, Metes D. FCGR2C Q 13 and FCGR3A V 176 alleles jointly associate with worse natural killer cell-mediated antibody-dependent cellular cytotoxicity and microvascular inflammation in kidney allograft antibody-mediated rejection. Am J Transplant 2025; 25:302-315. [PMID: 39332679 DOI: 10.1016/j.ajt.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
Natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) is a major mechanism of humoral allograft injury. FCGR3A V176/F176 polymorphism influences ADCC activity. Additionally, NK cell FcγRIIc expression, dictated by the Q13/STP13 polymorphism, was never investigated in kidney transplantation. To assess the clinical relevance of FCGR2C Q13/STP13 polymorphism in conjunction with FCGR3A V176/F176 polymorphism, 242 kidney transplant recipients were genotyped. NK cell Fc gamma receptor (FcγR) expression and ADCC activity were assessed. RNA sequencing was performed on kidney allograft biopsies to explore the presence of infiltrating FcγR+ NK cells. The FCGR2C Q13 allele was enriched in antibody-mediated rejection patients. FcγRIIc Q13+ NK cells had higher ADCC activity than FcγRIIc Q13- NK cells. In combination with the high-affinity FCGR3A V176 allele, Q13+V176+ NK cells were the most functionally potent. Q13+ was associated with worse microvascular inflammation and a higher risk of allograft loss. Among V176- patients, previously described in the literature as lower-risk patients, Q13+V176- showed a lower graft survival than Q13-V176- patients. In antibody-mediated rejection biopsies, FCGR2C transcripts were enriched and associated with ADCC-related transcripts. Our results suggest that FCGR2C Q13 in addition to FCGR3A V176 is a significant risk allele that may enhance NK cell-mediated ADCC and contribute to allograft injury and poor survival.
Collapse
Affiliation(s)
- Elodie Bailly
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; INSERM UMR-S976, Université Paris Cité, Paris, France.
| | - Camila Macedo
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xinyan Gu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Hollingshead
- University of Pittsburgh Health Sciences Core Research Facilities, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carol Bentlejewski
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erica Fong
- University of Pittsburgh Health Sciences Core Research Facilities, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Penelope A Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adriana Zeevi
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Diana Metes
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
2
|
Mangiola M, Ellison M, Marrari M, Xu Q, Mankowski M, Sese D, Lonze BE, Montgomery RA, Zeevi A. HLA EPLET Frequencies Are Similar in Six Population Groups and Are Expressed by the Most Common HLA Alleles. HLA 2024; 104:e70000. [PMID: 39711219 DOI: 10.1111/tan.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/09/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
The degree of immunological compatibility between donors and recipients greatly impacts allograft survival. In the United States kidney allocation system, HLA antigen-level matching has been shown to cause ethnic disparities and thus, has been de-emphasised. However, priority points are still awarded for antigen-level zero-ABDR matching, zero-DR matching and one-DR matching. Recently, the degree of HLA molecular (eplet) mismatch has emerged as a more accurate measure of immunological risk, and eplet mismatch load has gained attention as a possible biomarker to improve HLA compatibility. However, little is known about the frequency of eplets in population groups, which is a necessary step to ensure that candidates from any ethnical background can have similar chances at a well-matched organ. Eplet frequencies were estimated using HLA alleles in the Common, Intermediate and Well-Documented (CIWD) 3.0.0 catalogue for six population groups: African-American (AFA), Asian-Pacific Islander (API), European/European descent (EURO), Middle East/North Coast of Africa (MENA), Hispanic/Latino (HIS) and Native-American (NAM). We determined that 98.6% (484 out of 491) of HLA eplets are expressed by the common HLA alleles in all population groups. Of the seven eplets that were expressed by less common HLA alleles, six were Class I eplets and one was expressed by HLA-DQB1 alleles and most were expressed by HLA alleles that were more commonly observed in European/European descent populations. Our observations indicate that HLA eplets will not cause any significant disparity if applied to HLA molecular compatibility, regardless of the ethnic origin of both recipients and donors.
Collapse
Affiliation(s)
| | - Mitchell Ellison
- University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, USA
| | - Marilyn Marrari
- University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, USA
| | - Qingyong Xu
- University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, USA
| | | | - Doreen Sese
- NYU Langone Transplant Institute, New York, New York, USA
| | - Bonnie E Lonze
- NYU Langone Transplant Institute, New York, New York, USA
| | | | - Adriana Zeevi
- University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Figueiredo C, Chen-Wacker C, Salman J, Carvalho-Oliveira M, Monthé TS, Höffler K, Rother T, Hacker K, Valdivia E, Pogozhykh O, Hammer S, Sommer W, Yuzefovych Y, Wenzel N, Haverich A, Warnecke G, Blasczyk R. Knockdown of swine leukocyte antigen expression in porcine lung transplants enables graft survival without immunosuppression. Sci Transl Med 2024; 16:eadi9548. [PMID: 39018368 DOI: 10.1126/scitranslmed.adi9548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/21/2023] [Accepted: 06/21/2024] [Indexed: 07/19/2024]
Abstract
Immune rejection remains the major obstacle to long-term survival of allogeneic lung transplants. The expression of major histocompatibility complex molecules and minor histocompatibility antigens triggers allogeneic immune responses that can lead to allograft rejection. Transplant outcomes therefore depend on long-term immunosuppression, which is associated with severe side effects. To address this problem, we investigated the effect of genetically engineered transplants with permanently down-regulated swine leukocyte antigen (SLA) expression to prevent rejection in a porcine allogeneic lung transplantation (LTx) model. Minipig donor lungs with unmodified SLA expression (control group, n = 7) or with modified SLA expression (treatment group, n = 7) were used to evaluate the effects of SLA knockdown on allograft survival and on the nature and strength of immune responses after terminating an initial 4-week period of immunosuppression after LTx. Genetic engineering to down-regulate SLA expression was achieved during ex vivo lung perfusion by lentiviral transduction of short hairpin RNAs targeting mRNAs encoding β2-microglobulin and class II transactivator. Whereas all grafts in the control group were rejected within 3 months, five of seven animals in the treatment group maintained graft survival without immunosuppression during the 2-year monitoring period. Compared with controls, SLA-silenced lung recipients had lower donor-specific antibodies and proinflammatory cytokine concentrations in the serum. Together, these data demonstrate a survival benefit of SLA-down-regulated lung transplants in the absence of immunosuppression.
Collapse
Affiliation(s)
- Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Chen Chen-Wacker
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Marco Carvalho-Oliveira
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | | | - Klaus Höffler
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Karolin Hacker
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Emilio Valdivia
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Olena Pogozhykh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Wiebke Sommer
- Department of Cardiac Surgery, University of Kiel, 24105 Kiel, Germany
| | - Yuliia Yuzefovych
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Nadine Wenzel
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University of Kiel, 24105 Kiel, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
4
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
5
|
Bailly E, Macedo C, Ossart J, Louis K, Gu X, Ramaswami B, Bentlejewski C, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Interleukin-21 promotes Type-1 activation and cytotoxicity of CD56 dimCD16 bright natural killer cells during kidney allograft antibody-mediated rejection showing a new link between adaptive and innate humoral allo-immunity. Kidney Int 2023; 104:707-723. [PMID: 37220805 PMCID: PMC10524858 DOI: 10.1016/j.kint.2023.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
The role of Natural killer (NK) cells during kidney allograft antibody-mediated rejection (ABMR) is increasingly recognized, but an in-depth characterization of mechanisms that contribute to such immune response is still under investigation. Here, we characterized phenotypic, functional, and transcriptomic profiles of peripheral blood circulating and allograft infiltrating CD56dimCD16bright NK cells during anti-HLA donor-specific antibody (DSA)+ ABMR. Cross-sectional analyses performed in 71 kidney transplant recipients identified a unique phenotypic circulating CD56dimCD16bright NK cell cluster expanded in DSA+ ABMR. This cluster co-expressed high levels of the interleukin-21 Receptor (IL-21R); Type-1 transcription factors T-bet and EOMES, CD160 and natural killer group 2D cytotoxic and activating co-stimulatory receptors. CD160+ IL-21R+ NK cells correlated with elevated plasma IL-21, Ki-67+ ICOS+ (CD278) IL-21-producing circulating T follicular helper cells, enhanced Type-1 pro-inflammatory cytokines, NK cell cytotoxicity, worse microvascular inflammation and graft loss. Single-cell transcriptomic analysis of circulating NK cells delineated an expanded cluster in DSA+ ABMR characterized by elevated pro-inflammatory/cytotoxic pathways, IL-21/STAT3 signaling, and leukocyte trans-endothelial migration pathways. Infiltration of CD160+ IL-21R+ NK cells with similar transcriptomic profile was detected in DSA+ ABMR allograft biopsies, potentially contributing to allograft injury. Thus, the IL-21/IL-21R axis, linking adaptive and innate humoral allo-immunity, or NK cells may represent appealing immunotherapy targets in DSA+ ABMR.
Collapse
Affiliation(s)
- Elodie Bailly
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France.
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Ossart
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Louis
- Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France
| | - Xinyan Gu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bala Ramaswami
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carol Bentlejewski
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carmen Lefaucheur
- Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Lv Y, Ricard L, Gaugler B, Huang H, Ye Y. Biology and clinical relevance of follicular cytotoxic T cells. Front Immunol 2022; 13:1036616. [PMID: 36591286 PMCID: PMC9794565 DOI: 10.3389/fimmu.2022.1036616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Follicular cytotoxic T (Tfc) cells are a newly identified subset of CD8+ T cells enriched in B cell follicles and their surroundings, which integrate multiple functions such as killing, memory, supporting and regulation. Tfc cells share similarities with follicular helper T (Tfh) cells, conventional cytotoxic CD8+ T (Tc cells)cells and follicular regulatory T (Tfr) cells, while they express distinct transcription factors, phenotype, and perform different functions. With the participation of cytokines and cell-cell interactions, Tfc cells modulate Tfh cells and B cells and play an essential role in regulating the humoral immunity. Furthermore, Tfc cells have been found to change in their frequencies and functions during the occurrence and progression of chronic infections, immune-mediated diseases and cancers. Strategies targeting Tfc cells are under investigations, bringing novel insights into control of these diseases. We summarize the characteristics of Tfc cells, and introduce the roles and potential targeting modalities of Tfc cells in different diseases.
Collapse
Affiliation(s)
- Yuqi Lv
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China
| | - Laure Ricard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| |
Collapse
|
7
|
Bharadwaj P, Shrestha S, Pongracz T, Concetta C, Sharma S, Le Moine A, de Haan N, Murakami N, Riella LV, Holovska V, Wuhrer M, Marchant A, Ackerman ME. Afucosylation of HLA-specific IgG1 as a potential predictor of antibody pathogenicity in kidney transplantation. Cell Rep Med 2022; 3:100818. [PMID: 36384101 PMCID: PMC9729883 DOI: 10.1016/j.xcrm.2022.100818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Antibody-mediated rejection (AMR) is the leading cause of graft failure. While donor-specific antibodies (DSAs) are associated with a higher risk of AMR, not all patients with DSAs develop rejection, suggesting that the characteristics of alloantibodies determining their pathogenicity remain undefined. Using human leukocyte antigen (HLA)-A2-specific antibodies as a model, we apply systems serology tools to investigate qualitative features of immunoglobulin G (IgG) alloantibodies including Fc-glycosylation patterns and FcγR-binding properties. Levels of afucosylated anti-A2 antibodies are elevated in seropositive patients, especially those with AMR, suggesting potential cytotoxicity via FcγRIII-mediated mechanisms. Afucosylation of both glycoengineered monoclonal and naturally glycovariant polyclonal serum IgG specific to HLA-A2 drives potentiated binding to, slower dissociation from, and enhanced signaling through FcγRIII, a receptor widely expressed on innate effector cells, and greater cytotoxicity against HLA-A2+ cells mediated by natural killer (NK) cells. Collectively, these results suggest that afucosylated DSA may be a biomarker of AMR and contribute to pathogenesis.
Collapse
Affiliation(s)
- Pranay Bharadwaj
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Sweta Shrestha
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Catalano Concetta
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium; Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles, Bruxelles, Belgium
| | - Shilpee Sharma
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Alain Le Moine
- Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles, Bruxelles, Belgium
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Naoka Murakami
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonardo V Riella
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Vanda Holovska
- HLA Laboratory, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB), Hôpital Erasme ULB, Brussels, Belgium
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
8
|
Smirnova NF, Riemondy K, Bueno M, Collins S, Suresh P, Wang X, Patel KN, Cool C, Königshoff M, Sharma NS, Eickelberg O. Single-cell transcriptome mapping identifies a local, innate B cell population driving chronic rejection after lung transplantation. JCI Insight 2022; 7:156648. [PMID: 36134664 PMCID: PMC9675462 DOI: 10.1172/jci.insight.156648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is the main reason for poor outcomes after lung transplantation (LTx). We and others have recently identified B cells as major contributors to BOS after LTx. The extent of B cell heterogeneity and the relative contributions of B cell subpopulations to BOS, however, remain unclear. Here, we provide a comprehensive analysis of cell population changes and their gene expression patterns during chronic rejection after orthotopic LTx in mice. Of 11 major cell types, Mzb1-expressing plasma cells (PCs) were the most prominently increased population in BOS lungs. These findings were validated in 2 different cohorts of human BOS after LTx. A Bhlhe41, Cxcr3, and Itgb1 triple-positive B cell subset, also expressing classical markers of the innate-like B-1 B cell population, served as the progenitor pool for Mzb1+ PCs. This subset accounted for the increase in IgG2c production within BOS lung grafts. A genetic lack of Igs decreased BOS severity after LTx. In summary, we provide a detailed analysis of cell population changes during BOS. IgG+ PCs and their progenitors — an innate B cell subpopulation — are the major source of local Ab production and a significant contributor to BOS after LTx.
Collapse
Affiliation(s)
- Natalia F Smirnova
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC) - INSERM U1297, University of Toulouse III, Toulouse, France
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marta Bueno
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan Collins
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pavan Suresh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xingan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kapil N Patel
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital, Tampa, Florida, USA
| | - Carlyne Cool
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nirmal S Sharma
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital, Tampa, Florida, USA.,Division of Pulmonary & Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Zimmerer JM, Han JL, Peterson CM, Zeng Q, Ringwald BA, Cassol C, Chaudhari S, Hart M, Hemminger J, Satoskar A, Abdel-Rasoul M, Wang JJ, Warren RT, Zhang ZJ, Breuer CK, Bumgardner GL. Antibody-suppressor CXCR5 + CD8 + T cellular therapy ameliorates antibody-mediated rejection following kidney transplant in CCR5 KO mice. Am J Transplant 2022; 22:1550-1563. [PMID: 35114045 PMCID: PMC9177711 DOI: 10.1111/ajt.16988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 01/25/2023]
Abstract
CCR5 KO kidney transplant (KTx) recipients are extraordinarily high alloantibody producers and develop pathology that mimics human antibody-mediated rejection (AMR). C57BL/6 and CCR5 KO mice (H-2b ) were transplanted with A/J kidneys (H-2a ); select cohorts received adoptive cell therapy (ACT) with alloprimed CXCR5+ CD8+ T cells (or control cells) on day 5 after KTx. ACT efficacy was evaluated by measuring posttransplant alloantibody, pathology, and allograft survival. Recipients were assessed for the quantity of CXCR5+ CD8+ T cells and CD8-mediated cytotoxicity to alloprimed IgG+ B cells. Alloantibody titer in CCR5 KO recipients was four-fold higher than in C57BL/6 recipients. The proportion of alloprimed CXCR5+ CD8+ T cells 7 days after KTx in peripheral blood, lymph node, and spleen was substantially lower in CCR5 KO compared to C57BL/6 recipients. In vivo cytotoxicity towards alloprimed IgG+ B cells was also reduced six-fold in CCR5 KO recipients. ACT with alloprimed CXCR5+ CD8+ T cells (but not alloprimed CXCR5- CD8+ or third-party primed CXCR5+ CD8+ T cells) substantially reduced alloantibody titer, ameliorated AMR pathology, and prolonged allograft survival. These results indicate that a deficiency in quantity and function of alloprimed CXCR5+ CD8+ T cells contributes to high alloantibody and AMR in CCR5 KO recipient mice, which can be rescued with ACT.
Collapse
Affiliation(s)
- Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Chelsea M. Peterson
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Bryce A. Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Clarissa Cassol
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Madison Hart
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert T. Warren
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Zheng J. Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
10
|
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010113. [PMID: 35054506 PMCID: PMC8780861 DOI: 10.3390/life12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
11
|
Catar RA, Wischnewski O, Chen L, Heidecke H, Rutz C, Schülein R, Dragun D, Philippe A, Kusch A. Non-HLA antibodies targeting angiotensin II type 1 receptors and endothelin-1 type A receptors impair endothelial repair via a β2-arrestin link to the mTOR pathway. Kidney Int 2021; 101:498-509. [PMID: 34757123 DOI: 10.1016/j.kint.2021.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
Functional non-HLA antibodies (antibodies to non-human leukocyte antigens) targeting the G protein-coupled receptors angiotensin II type 1 receptor (AT1R) and endothelin-1 type A receptor (ETAR) are implicated in the pathogenesis of transplant vasculopathy. While ERK signaling (a regulator of cell growth) may represent a general cellular response to agonist stimulation, the molecular link between receptor stimulation and development of vascular obliteration has not been fully established. Here we hypothesize involvement of the versatile adaptor proteins, β-arrestins, and the major regulator of cell growth, PI3K/mTOR signaling, in impaired endothelial repair. To test this, human microvascular endothelial cells were treated with AT1R/ETAR antibodies isolated from patients with kidney transplant vasculopathy. These antibodies activated both mTOR complexes via AT1R and ETAR in a PI3K-dependent and ERK-independent manner. The mTOR inhibitor, rapamycin, completely abolished activation of mTORC1 and mTORC2 after long-term treatment with receptor antibodies. Imaging studies revealed that β2- but not β1-arrestin was recruited to ETAR in response to ET1 and patient antibodies but not with antibodies isolated from healthy individuals. Silencing of β2-arrestin by siRNA transfection significantly reduced ERK1/2 and mTORC2 activation. Non-HLA antibodies impaired endothelial repair by AT1R- and ETAR-induced mTORC2 signaling. Thus, we provide evidence that functional AT1R/ETAR antibodies induce ERK1/2 and mTOR signaling involving β2-arrestin in human microvascular endothelium. Hence, our data may provide a translational rational for mTOR inhibitors in combination with receptor blockers in patients with non-HLA receptor recognizing antibodies.
Collapse
Affiliation(s)
- Rusan Ali Catar
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, Charitéplatz 1, Berlin, Germany.
| | - Oskar Wischnewski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany
| | - Lei Chen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, Guandong Province, People's Republic of China
| | | | - Claudia Rutz
- Leibniz Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Ralf Schülein
- Leibniz Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Duska Dragun
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, Charitéplatz 1, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, Berlin, Germany
| | - Aurélie Philippe
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, Charitéplatz 1, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, Berlin, Germany
| | - Angelika Kusch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, Charitéplatz 1, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| |
Collapse
|
12
|
Mujtahedi SS, Yigitbilek F, Ozdogan E, Schinstock CA, Stegall MD. Antibody-Mediated Rejection: the Role of Plasma Cells and Memory B Cells. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
McQuiston A, Emtiazjoo A, Angel P, Machuca T, Christie J, Atkinson C. Set Up for Failure: Pre-Existing Autoantibodies in Lung Transplant. Front Immunol 2021; 12:711102. [PMID: 34456920 PMCID: PMC8385565 DOI: 10.3389/fimmu.2021.711102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Lung transplant patients have the lowest long-term survival rates compared to other solid organ transplants. The complications after lung transplantation such as primary graft dysfunction (PGD) and ultimately chronic lung allograft dysfunction (CLAD) are the main reasons for this limited survival. In recent years, lung-specific autoantibodies that recognize non-HLA antigens have been hypothesized to contribute to graft injury and have been correlated with PGD, CLAD, and survival. Mounting evidence suggests that autoantibodies can develop during pulmonary disease progression before lung transplant, termed pre-existing autoantibodies, and may participate in allograft injury after transplantation. In this review, we summarize what is known about pulmonary disease autoantibodies, the relationship between pre-existing autoantibodies and lung transplantation, and potential mechanisms through which pre-existing autoantibodies contribute to graft injury and rejection.
Collapse
Affiliation(s)
- Alexander McQuiston
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Amir Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Tiago Machuca
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Jason Christie
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carl Atkinson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Liu W, Wang K, Xiao YL, Liu C, Gao W, Li DH. Clinical relevance of donor-specific human leukocyte antigen antibodies after pediatric liver transplantation. Exp Ther Med 2021; 22:867. [PMID: 34194545 PMCID: PMC8237393 DOI: 10.3892/etm.2021.10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/30/2020] [Indexed: 11/06/2022] Open
Abstract
Donor-specific human leukocyte antigen (HLA) antibodies (DSAs) have a significant role in graft survival after pediatric liver transplantation. To understand the significance of DSAs, a retrospective cohort study of 48 pediatric liver transplant recipients with posttransplant serum samples that were analyzed for DSAs was performed. According to their test results, the recipients were divided into a DSA-positive group and a DSA-negative group. Postoperative liver transplantation biopsies were performed in patients with abnormal liver function. The liver condition and prognosis of the recipients were recorded, and their association was analyzed. A total of 48 recipients were followed up for 2.7±0.8 years. DSA positivity was detected in 10 cases (20.8%). One case was positive for HLA class I and HLA class II antibodies, whereas 9 cases were positive for HLA class II antibodies, and the gene loci were HLA-DR and/or DQ. Antibody-mediated rejection (AMR) occurred in four of 10 patients in the DSA-positive group. Liver function was abnormal in 3 of 38 cases in the DSA-negative group. Multivariate analysis revealed that DSA positivity was an independent risk factor for liver insufficiency and long-term survival of recipients. In addition, Kaplan-Meier survival analysis demonstrated that there were significant differences in the survival of graft recipients between the DSA-positive group and the DSA-negative group (P<0.05). The positivity of DSAs after pediatric liver transplantation was closely related to the occurrence of AMR. These results suggested that DSAs should be routinely monitored post-operatively, and that DSA-positive recipients should be screened as soon as possible and given appropriate treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Blood Transfusion, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Kai Wang
- Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Yan-Li Xiao
- Department of Blood Transfusion, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Chun Liu
- Department of Blood Transfusion, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Wei Gao
- Department of Transplantation Surgery, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Dai-Hong Li
- Department of Blood Transfusion, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The development of donor-specific antibodies (DSA) after lung transplantation has been recognized as an important risk factor for poor outcomes over the past 20 years. Recently, this has been a focus of intense research, and the purpose of this review is to summarize our current understanding of humoral responses and important recent findings as well as to identify areas of future research. RECENT FINDINGS Recent studies have identified donor-derived cell-free DNA (ddcfDNA) as an important biomarker associated with antibody-mediated rejection (AMR). Importantly, ddcfDNA levels are noted to be elevated approximately 3 months before the onset of clinical allograft dysfunction, making ddcfDNA a particularly appealing biomarker to predict the onset of AMR. Additional notable recent findings include the identification of an independent association between the isolation of Pseudomonas aeruginosa from respiratory specimens and the development of DSA. This finding provides potential insights into crosstalk between innate and alloimmune responses and identifies a potential therapeutic target to prevent the development of DSA. SUMMARY Progress in the field of humoral responses after lung transplantation has been slow, but ongoing and future research in this area are critically necessary to improve patient outcomes in the future.
Collapse
|
16
|
Goldsmith P, Lowe D, Wong C, Ridgway D, Howse M, Hammad A, Mehra S, Christmas S, Jones A. Investigating the relationship between class I HLA-specific immunoglobulin-G subclasses, Pan-IgG single antigen bead assays and complement mediated interference in sera from renal transplant recipients. Transpl Immunol 2020; 63:101332. [PMID: 32927096 DOI: 10.1016/j.trim.2020.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Antibody mediated rejection is the leading cause of kidney transplant failure. Not all antibodies are harmful and some may be protective. Immunoglulin Gs, of which there are four subtypes, are detected by single antigen bead testing. The aims of this study were to characterise the IgG subclass profiles for class I HLA-specific antibodies in an uncensored post-transplant population and to determine the underlying relationship between reactivity patterns and MFI cut-offs with the pan-IgG assay. METHODS Patients were recruited to the study who were transplanted in our centre between 2009 and 2014. Prospectively stored post-transplant serum initially underwent a Labscreen Mixed assay and those positive for class I HLA-specific antibody underwent standard SAB testing, EDTA, 1 in 10 dilution and IgG subclass modifications using the Luminex platform. A total of 4947 bead reactions from 51 patients were analysed. RESULTS A 1 in 10 dilution was used as a comparator pan-IgG assay for summed subclass and individual subclass linear regression analyses. Using a dilution to standard assay ratio we characterised all reactions for prozone potential i.e. how likely there is to be inhibition related to complement complex formation. We stratified samples into degrees of association and were able to determine suggested MFI thresholds of Log 5.35 for the dilution assay and Log 5.05 for the summed subclass assay when considering a Log MFI of 6.9 (1000) in the standard assay. Using individual subclass dominant reactions (>70%) we were able to determine linear relationships between the 1 in 10 dilution pan-IgG assay and the individual subclass assays (excluding prozone potential reactions for IgG1/3) enabling us to suggest Log MFI thresholds of 5.03, 3.58, 4.3 and 4.05 respectively for IgG1-4. DISCUSSION We recommend a 1 in 10 dilution as the optimum pan-IgG comparator assay for a subclass analysis. We advocate the utilisation of the summed subclass assay to determine overall relationships and potential subclass failures. Following others, we recommend serum pre-treatment of the subclass assays to mitigate prozone. We suggest cut-offs for each IgG subclass which should be used with caution given the many inhibitory influences which may include competitive inhibition for bead binding, IgM and IgA interference and under-representation of specific subclasses on the bead panel.
Collapse
Affiliation(s)
- Petra Goldsmith
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot Street, Liverpool L7 8XP, UK.
| | - David Lowe
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot Street, Liverpool L7 8XP, UK
| | - Chang Wong
- Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK
| | - Dan Ridgway
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot Street, Liverpool L7 8XP, UK
| | - Matthew Howse
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot Street, Liverpool L7 8XP, UK
| | - Abdul Hammad
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot Street, Liverpool L7 8XP, UK
| | - Sanjay Mehra
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot Street, Liverpool L7 8XP, UK
| | - Steve Christmas
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Andrew Jones
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
17
|
Validation and cross-reactivity pattern assessment of monoclonal antibodies used for the screening of donor-specific IgG antibody subclasses in transplant recipients. J Immunol Methods 2020; 486:112847. [PMID: 32888965 DOI: 10.1016/j.jim.2020.112847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
The screening for IgG subclass donor-specific antibodies (DSAs) in allograft recipients uses IgG1-4 subclass-specific monoclonal antibodies (mAbs) that should be mono-specific. The cross-reactivity discrepancies reported for IgG subclass-specific mAbs warranted a critical cross-reactivity pattern analysis of the IgG subclass-specific mAbs most commonly used to detect DSAs. We tested the reactivity of 2 anti-IgG1-, 3 anti-IgG2-, 1 anti-IgG3-, and 2 anti-IgG4-specific PE-conjugated mAbs against microbeads coated with IgG1-4 proteins separately. Each IgG subclass protein was coated at three densities on the beads (0.5, 1, and 2 μg of protein per 106 beads), and the PE-conjugated mAbs were titrated from 0.04 μg/mL to 5 μg/mL. The IgG subclass reactivity of the sample was acquired on the Luminex multiplex platform. Among the IgG subclass-specific mAbs, only the anti-IgG3 (clone: HP6050) mAb was mono-specific. All other mAbs tested were binding to IgG subclass proteins other than their respective immunogen, thereby being cross-reactive. IgG subclass cross-reactivity patterns were dependent on the concentration of both IgG subclass-specific mAbs and IgG1-4 protein targets coated onto the beads. With the current IgG subclass mAbs available, 3 of the 15 possible combinations of IgG1-4 subclass protein could be identified. While the remaining 12 unique combinations cannot be distinguished clearly, 6 groups that corresponded to two different unique combinations of IgG1-4 subclass protein could be identified. The dilution of serum samples and IgG subclass-specific mAbs, other than the anti-IgG3 (clone: HP6050), must be further optimized before their implementation in IgG subclass DSA screening in allograft recipients.
Collapse
|
18
|
Chong AS. Mechanisms of organ transplant injury mediated by B cells and antibodies: Implications for antibody-mediated rejection. Am J Transplant 2020; 20 Suppl 4:23-32. [PMID: 32538534 PMCID: PMC7482418 DOI: 10.1111/ajt.15844] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 01/25/2023]
Abstract
Recent adjustments to the histological diagnosis and the introduction of molecular classification are providing renewed support for the paradigm that antibody-mediated rejection (ABMR) is an important clinical problem for which there is an urgent need for better therapies. Acute ABMR is observed when the graft is exposed to rapid increases in high-titer donor-specific antibodies (DSA) that are most often generated as anamnestic responses in sensitized recipients or de novo responses in nonsensitized patients who are nonadherent. Chronic ABMR is associated with slower increases in DSA, which may be high or low titer and transient or persistent. These DSA elicit cycles of injury and repair that manifest as multilamination of the peritubular capillary basement membrane or arteriopathy manifesting as intimal fibrosis. Mitigating the problem of AMBR requires the anamnestic and de novo DSA responses to be prevented and established DSA responses to be reversed. To this end, a better understanding of the immunobiology of DSA production is necessary and also the development of assays capable of detecting early humoral immune responses.Recent advances in understanding the immunobiology of B cells and areas requiring further investigation that might lead to new therapies or better diagnosis are discussed in this review.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Lattimore S, Skill NJ, Maluccio MA, Elliott H, Dobben E, Shafuddin A, Goggins WC. Antithymocyte Globulin Antibody Titer Congruent With Kidney Transplantation: Analysis of Incidence, Outcomes, Cost, and Alternative Targets. Transplant Direct 2019; 5:e493. [PMID: 31723588 PMCID: PMC6791597 DOI: 10.1097/txd.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 11/25/2022] Open
Abstract
Rabbit antithymocyte globulin (rATG) use for immunosuppression induction is widespread but is contraindicated by the presence of anti-rATG antibodies. This study reports the incidence of positive anti-rATG antibody titers in patients before and after renal transplant and evaluates associated outcomes and costs. In addition, it will correlate CD40L and interleukin (IL)-21 with anti-rATG antibody titers. METHODS Clinical and billing records from the Indiana University Transplant Laboratory were reviewed for positive versus negative anti-rATG antibody titers, graft survival, and 7-day readmission costs between 2004 and 2018. Serum from patients with positive and negative rATG antibody titers were quantitated for CD40L and IL-21 by enzyme-linked immunosorbent assay. RESULTS On average, between 2004 and May 2018, 163 kidney transplants per year were performed. Anti-rATG antibody titers were ordered for 17 patients/year, of which 18.2% were positive at 1:100 titer either pre- or post-transplant. Time to graft loss correlated with a positive rATG titer at time of readmission. Moreover, second kidney transplant increased the anti-rATG positive rate. A weak correlation was observed between anti-rATG titer and recipient age. Seven-day readmission treatment costs were significantly lower in patients with positive anti-rATG titer. IL-21 and CD40L were significantly greater in patients with positive anti-rATG titers after transplant when compared with negative anti rATG patients. CONCLUSIONS Positive anti-rATG antibody titer is associated with a significant negative impact on outcomes. Monitoring of anti-rATG antibody titer is recommended to optimize treatment options in patients, especially in the setting of second transplants. Elucidation of the mechanisms associated with positive anti-rATG antibody is required. IL-21 and CD40L are potential targets for future study.
Collapse
Affiliation(s)
- Sherene Lattimore
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Nicholas J. Skill
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Mary A. Maluccio
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Holly Elliott
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Elizabeth Dobben
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Asif Shafuddin
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - William C. Goggins
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
20
|
Zimmerer JM, Ringwald BA, Elzein SM, Avila CL, Warren RT, Abdel-Rasoul M, Bumgardner GL. Antibody-suppressor CD8+ T Cells Require CXCR5. Transplantation 2019; 103:1809-1820. [PMID: 30830040 PMCID: PMC6713619 DOI: 10.1097/tp.0000000000002683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND We previously reported the novel activity of alloprimed CD8 T cells that suppress posttransplant alloantibody production. The purpose of the study is to investigate the expression and role of CXCR5 on antibody-suppressor CD8 T-cell function. METHODS C57BL/6 mice were transplanted with FVB/N hepatocytes. Alloprimed CD8 T cells were retrieved on day 7 from hepatocyte transplant recipients. Unsorted or flow-sorted (CXCR5CXCR3 and CXCR3CXCR5) alloprimed CD8 T-cell subsets were analyzed for in vitro cytotoxicity and capacity to inhibit in vivo alloantibody production following adoptive transfer into C57BL/6 or high alloantibody-producing CD8 knock out (KO) hepatocyte transplant recipients. Alloantibody titer was assessed in CD8 KO mice reconstituted with naive CD8 T cells retrieved from C57BL/6, CXCR5 KO, or CXCR3 KO mice. Antibody suppression by ovalbumin (OVA)-primed monoclonal OVA-specific t-cell receptor transgenic CD8+ T cells (OT-I) CXCR5 or CXCR3 CD8 T-cell subsets was also investigated. RESULTS Alloprimed CXCR5CXCR3CD8 T cells mediated in vitro cytotoxicity of alloprimed "self" B cells, while CXCR3CXCR5CD8 T cells did not. Only flow-sorted alloprimed CXCR5CXCR3CD8 T cells (not flow-sorted alloprimed CXCR3CXCR5CD8 T cells) suppressed alloantibody production and enhanced graft survival when transferred into transplant recipients. Unlike CD8 T cells from wild-type or CXCR3 KO mice, CD8 T cells from CXCR5 KO mice do not develop alloantibody-suppressor function. Similarly, only flow-sorted CXCR5CXCR3 (and not CXCR3CXCR5) OVA-primed OT-I CD8 T cells mediated in vivo suppression of anti-OVA antibody production. CONCLUSIONS These data support the conclusion that expression of CXCR5 by antigen-primed CD8 T cells is critical for the function of antibody-suppressor CD8 T cells.
Collapse
Affiliation(s)
- Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Bryce A. Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Steven M. Elzein
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Christina L. Avila
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Robert T. Warren
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
21
|
Navas A, Molina J, Agüera ML, Guler I, Jurado A, Rodríguez-Benot A, Alonso C, Solana R. Characterization of the C1q-Binding Ability and the IgG1-4 Subclass Profile of Preformed Anti-HLA Antibodies by Solid-Phase Assays. Front Immunol 2019; 10:1712. [PMID: 31428086 PMCID: PMC6687874 DOI: 10.3389/fimmu.2019.01712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Humoral alloimmunity, particularly that triggered by preformed antibodies against human leukocyte antigens (HLA), is associated with an increased prevalence of rejection and reduced transplant survival. The high sensitivity of solid phase assays, based on microbeads coated with single antigens (SAB), consolidated them as the gold-standard method to characterize anti-HLA antibodies, ensuring a successful allograft allocation. Mean fluorescence intensity (MFI) provided by SAB is regularly used to stratify the immunological risk, assuming it as a reliable estimation of the antibody-level, but it is often limited by artifacts. Beyond MFI, other properties, such as the complement-binding ability or the IgG1-4 subclass profile have been examined to more accurately define the clinical relevance of antibodies and clarify their functional properties. However, there are still unresolved issues. Neat serum-samples from 20 highly-sensitized patients were analyzed by SAB-panIgG, SAB-IgG1-4 subclass and SAB-C1q assays. All 1:16 diluted serum-samples were additionally analyzed by SAB-panIgG and SAB-IgG1-4 subclass assays. A total of 1,285 anti-HLA antibodies were identified as positive, 473 (36.8%) of which were C1q-binding. As expected, serum-dilution enhanced the correlation between the C1q-binding ability and the antibody-strength, measured as the MFI (rneat = 0.248 vs. rdiluted = 0.817). SAB-subclass assay revealed at least one IgG1-4 subclass in 1,012 (78.8%) positive antibody-specificities. Among them, strong complement-binding subclasses, mainly IgG1, were particularly frequent (98.9%) and no differences were found between C1q- and non-C1q-binding antibodies regarding their presence (99.4 vs. 98.5%; p = 0.193). In contrast, weak or non-C1q-binding subclasses (IgG2/IgG4) were more commonly detected in C1q-binding antibodies (78.9 vs. 38.6%; p < 0.001). Interestingly, a strong association was found between the C1q-binding ability and the IgG1 strength (rIgG1dil = 0.796). Though lower, the correlation between the IgG2 strength and the C1q-binding ability was also strong (rIgG2dil = 0.758), being both subclasses closely related (rIgG1−IgG2 = 0.817). We did not find any correlation with the C1q-binding ability considering the remaining subclasses. In conclusion, we demonstrate that a particular profile of IgG subclasses (IgG1/IgG3) itself does not determine at all the ability to bind complement of anti-HLA antibodies assessed by SAB-C1q assay. It is the IgG subclass strength, mainly of IgG1, which usually appears in combination with IgG2, that best correlates with it.
Collapse
Affiliation(s)
- Ana Navas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Immunology and Allergy, Reina Sofia University Hospital, Cordoba, Spain
| | - Juan Molina
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Immunology and Allergy, Reina Sofia University Hospital, Cordoba, Spain
| | - María-Luisa Agüera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Nephrology, Reina Sofia University Hospital, Cordoba, Spain
| | - Ipek Guler
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Aurora Jurado
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Immunology and Allergy, Reina Sofia University Hospital, Cordoba, Spain
| | - Alberto Rodríguez-Benot
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Nephrology, Reina Sofia University Hospital, Cordoba, Spain
| | - Corona Alonso
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Immunology and Allergy, Reina Sofia University Hospital, Cordoba, Spain
| | - Rafael Solana
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Immunology and Allergy, Reina Sofia University Hospital, Cordoba, Spain
| |
Collapse
|
22
|
|
23
|
Khan MA, Shamma T. Complement factor and T-cell interactions during alloimmune inflammation in transplantation. J Leukoc Biol 2018; 105:681-694. [PMID: 30536904 DOI: 10.1002/jlb.5ru0718-288r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Complement factor and T-cell signaling during an effective alloimmune response plays a key role in transplant-associated injury, which leads to the progression of chronic rejection (CR). During an alloimmune response, activated complement factors (C3a and C5a) bind to their corresponding receptors (C3aR and C5aR) on a number of lymphocytes, including T-regulatory cells (Tregs), and these cell-molecular interactions have been vital to modulate an effective immune response to/from Th1-effector cell and Treg activities, which result in massive inflammation, microvascular impairments, and fibrotic remodeling. Involvement of the complement-mediated cell signaling during transplantation signifies a crucial role of complement components as a key therapeutic switch to regulate ongoing inflammatory state, and further to avoid the progression of CR of the transplanted organ. This review highlights the role of complement-T cell interactions, and how these interactions shunt the effector immune response during alloimmune inflammation in transplantation, which could be a novel therapeutic tool to protect a transplanted organ and avoid progression of CR.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
A comprehensive overview of FCGR3A gene variability by full-length gene sequencing including the identification of V158F polymorphism. Sci Rep 2018; 8:15983. [PMID: 30374078 PMCID: PMC6206037 DOI: 10.1038/s41598-018-34258-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023] Open
Abstract
The FCGR3A gene encodes for the receptor important for antibody-dependent natural killer cell-mediated cytotoxicity. FCGR3A gene polymorphisms could affect the success of monoclonal antibody therapy. Although polymorphisms, such as the FcγRIIIA-V158F and -48L/R/H, have been studied extensively, an overview of other polymorphisms within this gene is lacking. To provide an overview of FCGR3A polymorphisms, we analysed the 1000 Genomes project database and found a total of 234 polymorphisms within the FCGR3A gene, of which 69%, 16%, and 15% occur in the intron, UTR, and exon regions respectively. Additionally, only 16% of all polymorphisms had a minor allele frequency (MAF) > 0.01. To facilitate (full-length) analysis of FCGR3A gene polymorphism, we developed a FCGR3A gene-specific amplification and sequencing protocol for Sanger sequencing and MinION (Nanopore Technologies). First, we used the Sanger sequencing protocol to study the presence of the V158F polymorphism in 76 individuals resulting in frequencies of 38% homozygous T/T, 7% homozygous G/G and 55% heterozygous. Next, we performed a pilot with both Sanger sequencing and MinION based sequencing of 14 DNA samples which showed a good concordance between Sanger- and MinION sequencing. Additionally, we detected 13 SNPs listed in the 1000 Genome Project, from which 11 had MAF > 0.01, and 10 SNPs were not listed in 1000 Genome Project. In summary, we demonstrated that FCGR3A gene is more polymorphic than previously described. As most novel polymorphisms are located in non-coding regions, their functional relevance needs to be studied in future functional studies.
Collapse
|
25
|
Distribution of Anti-ABO Immunoglobulin G Subclass and C1q Antibody in ABO-incompatible Kidney Transplantation. Transplant Proc 2018; 50:1063-1067. [PMID: 29731066 DOI: 10.1016/j.transproceed.2018.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION To investigate the correlation between serum anti-ABO immunoglobulin G (IgG) and IgG subclasses, anti-ABO IgG subclasses were measured by flow cytometry (FCM) in ABO-incompatible (ABOi) kidney transplant recipients. We also evaluated baseline anti-ABO C1q antibody. METHOD Baseline anti-ABO IgG titers were measured by both FCM and column agglutination technique methods in 18 ABOi kidney transplant recipients. The mean florescence intensity (MFI) ratios of baseline anti-ABO IgG subclasses and anti-ABO C1q antibody were obtained by FCM and followed-up after rituximab treatment, each plasmapheresis (PP) session, and kidney transplantation. Correlation between the values of IgG subclass and total IgG titer was analyzed. RESULTS The baseline MFI ratios of total IgG, IgG1, IgG2, IgG3, and IgG4 were 202.46, 62.41, 30.01, 1.04, and 1.13, respectively. The MFI ratios of IgG1, IgG2, and total IgG measured at baseline and pre-PP were positively correlated with the baseline ABO titer was measured using the column agglutination technique. The numbers of PP sessions to reach the target titer were correlated with the baseline IgG and IgG1 levels. IgG1 and IgG2 as well as total IgG were removed effectively after serial PP. Anti-ABO C1q antibody was neither detected nor correlated with total IgG and any IgG subclasses. CONCLUSIONS Our findings suggest that IgG1 and IgG2 are the dominant IgG subclass in ABOi kidney transplant recipients. Baseline levels of IgG1 and IgG2 were correlated with baseline total IgG titer. However, anti-ABO C1q antibody was not detected in the present study.
Collapse
|
26
|
Aguilar PR, Carpenter D, Ritter J, Yusen RD, Witt CA, Byers DE, Mohanakumar T, Kreisel D, Trulock EP, Hachem RR. The role of C4d deposition in the diagnosis of antibody-mediated rejection after lung transplantation. Am J Transplant 2018; 18:936-944. [PMID: 28992372 PMCID: PMC5878693 DOI: 10.1111/ajt.14534] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/10/2017] [Accepted: 09/29/2017] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection (AMR) is an increasingly recognized form of lung rejection. C4d deposition has been an inconsistent finding in previous reports and its role in the diagnosis has been controversial. We conducted a retrospective single-center study to characterize cases of C4d-negative probable AMR and to compare these to cases of definite (C4d-positive) AMR. We identified 73 cases of AMR: 28 (38%) were C4d-positive and 45 (62%) were C4d-negative. The two groups had a similar clinical presentation, and although more patients in the C4d-positive group had neutrophilic capillaritis (54% vs. 29%, P = .035), there was no significant difference in the presence of other histologic findings. Despite aggressive antibody-depleting therapy, 19 of 73 (26%) patients in the overall cohort died within 30 days, but there was no significant difference in freedom from chronic lung allograft dysfunction (CLAD) or survival between the two groups. We conclude that AMR may cause allograft failure, but that the diagnosis requires a multidisciplinary approach and a high index of suspicion. C4d deposition does not appear to be a necessary criterion for the diagnosis, and although some cases may respond initially to therapy, there is a high incidence of CLAD and poor survival after AMR.
Collapse
Affiliation(s)
- PR Aguilar
- Baylor University Medical Center Division of Pulmonary & Critical Care, Dallas, TX
| | - D Carpenter
- St. Louis University School of Medicine Department of Pathology, St. Louis, MO
| | - J Ritter
- Washington University School of Medicine Department of Pathology & Immunology, St. Louis, MO
| | - RD Yusen
- Washington University School of Medicine Division of Pulmonary & Critical Care, St Louis, MO
| | - CA Witt
- Washington University School of Medicine Division of Pulmonary & Critical Care, St Louis, MO
| | - DE Byers
- Washington University School of Medicine Division of Pulmonary & Critical Care, St Louis, MO
| | | | - D Kreisel
- Washington University School of Medicine Division of Cardiothoracic Surgery, St. Louis, MO
| | - EP Trulock
- Washington University School of Medicine Division of Pulmonary & Critical Care, St Louis, MO
| | - RR Hachem
- Washington University School of Medicine Division of Pulmonary & Critical Care, St Louis, MO
| |
Collapse
|
27
|
Molina J, Navas A, Agüera ML, Rodelo-Haad C, Alonso C, Rodríguez-Benot A, Aljama P, Solana R. Impact of Preformed Donor-Specific Anti-Human Leukocyte Antigen Antibody C1q-Binding Ability on Kidney Allograft Outcome. Front Immunol 2017; 8:1310. [PMID: 29163462 PMCID: PMC5671504 DOI: 10.3389/fimmu.2017.01310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/28/2017] [Indexed: 12/24/2022] Open
Abstract
The consolidation of single antigen beads (SAB-panIgG) assay in the detection of preformed anti-human leukocyte antigen (HLA) antibodies has improved transplantation success. However, its high sensitivity has limited the allograft allocation for sensitized patients, increasing their waiting time. A modification of the standard SAB-panIgG assay allows the detection of that subset of antibodies capable of binding C1q (SAB-C1q assay). However, the clinical usefulness of SAB-C1q assay for determining the unacceptable mismatches is under discussion. We retrospectively analyzed the impact of preformed donor-specific anti-HLA antibodies (DSA) according to the C1q-binding ability on allograft outcome, examining 389 single-kidney transplanted patients from deceased donors. Recipients with preformed C1q-binding DSA showed the lowest allograft survival up to 7 years (40.7%) compared to patients with preformed non-C1q-binding DSA (73.4%; p = 0.001) and without DSA (79.1%; p < 0.001). Allograft survival rate was similar between patients with preformed non-C1q-binding DSA and patients without preformed DSA (p = 0.403). Interestingly, among the high-mean fluorescence intensity DSA (≥10,000) population (n = 46), those patients whose DSA were further capable of binding C1q showed a poorer allograft outcome (38.4 vs. 68.9%; p = 0.041). Moreover, in our multivariate predictive model for assessing the risk of allograft loss, the presence of C1q-binding DSA (HR 4.012; CI 95% 2.326–6.919; p < 0.001) but not of non-C1q-binding DSA (HR 1.389; CI 95% 0.784–2.461; p = 0.260) remained an independent predictor after stratifying the DSA population according to the C1q-binding ability and adjusting the model for other pre-transplantation predictive factors including donor age, cold-ischemia time, and HLA-DR mismatches. In conclusion, the unacceptable mismatch definition according to the SAB-C1q assay would improve the risk stratification of allograft loss and increase the limited allograft allocation of highly sensitized patients, shortening their waiting time.
Collapse
Affiliation(s)
- Juan Molina
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ana Navas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - María-Luisa Agüera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Nephrology, Reina Sofia University Hospital, Cordoba, Spain
| | - Cristian Rodelo-Haad
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Corona Alonso
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Allergy and Immunology, Reina Sofia University Hospital, Cordoba, Spain
| | - Alberto Rodríguez-Benot
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Nephrology, Reina Sofia University Hospital, Cordoba, Spain
| | - Pedro Aljama
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Nephrology, Reina Sofia University Hospital, Cordoba, Spain
| | - Rafael Solana
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,Department of Immunology, Infanta Cristina University Hospital, Badajoz, Spain
| |
Collapse
|
28
|
Howie HL, Delaney M, Wang X, Er LS, Kapp L, Lebedev JN, Zimring JC. Errors in data interpretation from genetic variation of human analytes. JCI Insight 2017; 2:94532. [PMID: 28679954 DOI: 10.1172/jci.insight.94532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/23/2017] [Indexed: 12/23/2022] Open
Abstract
In recent years, the extent of our vulnerability to misinterpretation due to poorly characterized reagents has become an issue of great concern. Antibody reagents have been identified as a major source of error, contributing to the "reproducibility crisis." In the current report, we define an additional dimension of the crisis; in particular, we define variation of the targets being analyzed. We report that natural variation in the immunoglobulin "constant" region alters the reactivity with commonly used subtype-specific anti-IgG reagents, resulting in cross-reactivity of polyclonal regents with inappropriate targets and blind spots of monoclonal reagents for desired targets. This raises the practical concern that numerous studies characterizing IgG subtypes in human disease may contain errors due to such previously unappreciated defects. These studies also focus attention on the broader concern that genetic variation may affect the performance of any laboratory or research test that uses antibodies for detection.
Collapse
Affiliation(s)
| | - Meghan Delaney
- BloodworksNW Research Institute, Seattle, Washington, USA.,University of Washington Department of Laboratory Medicine and Department of Internal Medicine, Division of Hematology, Seattle, Washington, USA
| | - Xiaohong Wang
- BloodworksNW Research Institute, Seattle, Washington, USA
| | - Lay See Er
- BloodworksNW Research Institute, Seattle, Washington, USA
| | - Linda Kapp
- BloodworksNW Research Institute, Seattle, Washington, USA
| | | | - James C Zimring
- BloodworksNW Research Institute, Seattle, Washington, USA.,University of Washington Department of Laboratory Medicine and Department of Internal Medicine, Division of Hematology, Seattle, Washington, USA
| |
Collapse
|
29
|
Jager NM, Poppelaars F, Daha MR, Seelen MA. Complement in renal transplantation: The road to translation. Mol Immunol 2017; 89:22-35. [PMID: 28558950 DOI: 10.1016/j.molimm.2017.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
Renal transplantation is the treatment of choice for patients with end-stage renal disease. The vital role of the complement system in renal transplantation is widely recognized. This review discusses the role of complement in the different phases of renal transplantation: in the donor, during preservation, in reperfusion and at the time of rejection. Here we examine the current literature to determine the importance of both local and systemic complement production and how complement activation contributes to the pathogenesis of renal transplant injury. In addition, we dissect the complement pathways involved in the different phases of renal transplantation. We also review the therapeutic strategies that have been tested to inhibit complement during the kidney transplantation. Several clinical trials are currently underway to evaluate the therapeutic potential of complement inhibition for the treatment of brain death-induced renal injury, renal ischemia-reperfusion injury and acute rejection. We conclude that it is expected that in the near future, complement-targeted therapeutics will be used clinically in renal transplantation. This will hopefully result in improved renal graft function and increased graft survival.
Collapse
Affiliation(s)
- Neeltina M Jager
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nephrology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands
| | - Marc A Seelen
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|