1
|
Nelson TA, Murthy NK, Martinez-Lage M, Abramson J, Branagan AR, Ji Y, Chen YBA, Letourneau AR, Nahed BV, Arrillaga-Romany IC, Wang N, Dietrich J. Clinical Reasoning: Assessing New Neurologic Deficits in Patients With Hematologic Malignancy on Bruton Tyrosine Kinase Inhibitor Therapy. Neurology 2024; 103:e209929. [PMID: 39365973 DOI: 10.1212/wnl.0000000000209929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Affiliation(s)
- Thomas A Nelson
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Naina K Murthy
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Maria Martinez-Lage
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Jeremy Abramson
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Andrew R Branagan
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Yongli Ji
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Yi-Bin A Chen
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Alyssa R Letourneau
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Brian V Nahed
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Isabel C Arrillaga-Romany
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Nancy Wang
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| | - Jorg Dietrich
- From the Division of Neuro-Oncology (T.A.N., N.K.M., I.C.A.-R., N.W., J.D.), Department of Neurology; Department of Pathology (M.M.-L.A.); Division of Hematology and Oncology (J.A., A.R.B., Y.J., Y.-B.A.C.), Department of Medicine; Division of Infectious Diseases (A.R.L.), Department of Medicine; and Department of Neurosurgery (B.V.N.), Massachusetts General Hospital, Boston
| |
Collapse
|
2
|
Charpak-Amikam Y, Kournos M, Kotzur R, Isaacson B, Bagad Brenner T, Gomez-Cesar E, Abou-Kandil A, Ben-Ami R, Korem M, Guerra N, Osherov N, Mandelboim O. The activating receptor NKG2D is an anti-fungal pattern recognition receptor. Nat Commun 2024; 15:8664. [PMID: 39375344 PMCID: PMC11458907 DOI: 10.1038/s41467-024-52913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
NKG2D is a central activating receptor involved in target recognition and killing by Natural Killer and CD8+ T cells. The known role of NKG2D is to recognize a family of self-induced stress ligands that are upregulated on stressed cells such as cancerous or virally infected cells. Fungal pathogens are a major threat to human health, infecting more than a billion patients yearly and becoming more common and drug resistant. Here we show that NKG2D plays a critical role in the immune response against fungal infections. NKG2D can recognize fungal pathogens from most major families including Candida, Cryptococcus and Aspergillus species, and mice lacking NKG2D are extremely sensitive to fungal infections in models of both invasive and mucosal infections, making NKG2D an anti-fungal pattern recognition receptor.
Collapse
Affiliation(s)
- Yoav Charpak-Amikam
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Mark Kournos
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Rebecca Kotzur
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Batya Isaacson
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Tal Bagad Brenner
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Elidet Gomez-Cesar
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel
| | - Ammar Abou-Kandil
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, UK
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Hebrew University Medical School, IMRIC, Jerusalem, Israel.
| |
Collapse
|
3
|
Islam MS, Wang Z, Abdel-Mohsen M, Chen X, Montaner LJ. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. J Leukoc Biol 2023; 113:236-254. [PMID: 36807444 DOI: 10.1093/jleuko/qiac001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
A significant number of persons with coronavirus disease 2019 (COVID-19) experience persistent, recurrent, or new symptoms several months after the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This phenomenon, termed post-acute sequelae of SARS-CoV-2 (PASC) or long COVID, is associated with high viral titers during acute infection, a persistently hyperactivated immune system, tissue injury by NETosis-induced micro-thrombofibrosis (NETinjury), microbial translocation, complement deposition, fibrotic macrophages, the presence of autoantibodies, and lymphopenic immune environments. Here, we review the current literature on the immunological imbalances that occur during PASC. Specifically, we focus on data supporting common immunopathogenesis and tissue injury mechanisms shared across this highly heterogenous disorder, including NETosis, coagulopathy, and fibrosis. Mechanisms include changes in leukocyte subsets/functions, fibroblast activation, cytokine imbalances, lower cortisol, autoantibodies, co-pathogen reactivation, and residual immune activation driven by persistent viral antigens and/or microbial translocation. Taken together, we develop the premise that SARS-CoV-2 infection results in PASC as a consequence of acute and/or persistent single or multiple organ injury mediated by PASC determinants to include the degree of host responses (inflammation, NETinjury), residual viral antigen (persistent antigen), and exogenous factors (microbial translocation). Determinants of PASC may be amplified by comorbidities, age, and sex.
Collapse
Affiliation(s)
- Md Sahidul Islam
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Zhaoxiong Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Research Building N22, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| |
Collapse
|
4
|
Park A, Yang Y, Lee Y, Jung H, Kim TD, Noh JY, Lee S, Yoon SR. Aurantii Fructus Immaturus enhances natural killer cytolytic activity and anticancer efficacy in vitro and in vivo. Front Med (Lausanne) 2022; 9:973681. [PMID: 36059847 PMCID: PMC9433751 DOI: 10.3389/fmed.2022.973681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Aurantii Fructus Immaturus (AFI), extensively used in traditional herbal medicine, is known to have diverse physiological effects against various diseases, including obesity, diabetes, and cardiovascular disease. However, the effects of AFI on the immune system, especially natural killer (NK) cells, remain largely unknown. We aimed to investigate the effect of AFI on NK cell activity in vitro and in vivo and to elucidate the underlying mechanisms. Further, we verified the anticancer efficacy of AFI in a mouse lung metastasis model, underscoring the therapeutic potential of AFI in cancer therapy. Our results revealed that AFI significantly enhanced the cytolytic activity of NK cells in a dose-dependent manner, accompanied by an increase in the expression of NK cell-activating receptors, especially NKp30 and NKp46. AFI treatment also increased the expression of cytolytic granules, including granzyme B and perforin. Furthermore, the expression of CD107a, a degranulation marker, was increased upon treatment with AFI. A signaling study using western blot analysis demonstrated that the phosphorylation of extracellular signal-regulated kinase (ERK) was involved in increasing the NK cell activity following AFI treatment. In the in vivo study performed in mice, oral administration of AFI markedly enhanced the cytotoxic activity of spleen mononuclear cells against YAC-1 cells, which was accompanied by NKp46 upregulation. In addition, we confirmed that cancer metastasis was inhibited in a mouse cancer metastasis model, established using the mouse melanoma B16F10 cell line, by the administration of AFI in vivo. Collectively, these results indicate that AFI enhances NK cell-mediated cytotoxicity in vitro and in vivo via activation of the ERK signaling pathway and suggest that AFI could be a potential supplement for cancer immunotherapy.
Collapse
Affiliation(s)
- Arum Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yunjeong Yang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, South Korea
| | - Yunhee Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, South Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seungjin Lee
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, South Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- *Correspondence: Suk Ran Yoon,
| |
Collapse
|
5
|
From bench to bedside - translational approaches in anti-fungal immunology. Curr Opin Microbiol 2020; 58:153-159. [PMID: 33190074 DOI: 10.1016/j.mib.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Abstract
Invasive fungal infections mainly occur in patients suffering from impaired immunity. Their associated mortality is high despite antifungal treatment. Thus, several efforts have been made to translate our knowledge on protective antifungal immunity into clinical application. Since the first attempts with transfusion of neutrophilic granulocytes, these approaches have become more refined and include administration of cytokines to booster antifungal immune responses or selective stimulation of pattern recognition receptors. Recently, novel tools that have proven effective in the treatment of cancer have offered new options for enhancing antifungal immunity. These approaches include checkpoint inhibitors as well as T-cell based therapies, including chimeric antigen receptor T-cells.
Collapse
|
6
|
Using Expanded Natural Killer Cells as Therapy for Invasive Aspergillosis. J Fungi (Basel) 2020; 6:jof6040231. [PMID: 33080826 PMCID: PMC7712362 DOI: 10.3390/jof6040231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Invasive aspergillosis (IA) is a major opportunistic fungal infection in patients with haematological malignancies. Morbidity and mortality rates are high despite anti-fungal treatment, as the compromised status of immune system prevents the host from responding optimally to conventional therapy. This raises the consideration for immunotherapy as an adjunctive treatment. In this study, we evaluated the utility of expanded human NK cells as treatment against Aspergillus fumigatus infection in vitro and in vivo. The NK cells were expanded and activated by K562 cells genetically modified to express 4-1BB ligand and membrane-bound interleukin-15 (K562-41BBL-mbIL-15) as feeders. The efficacy of these cells was investigated in A. fumigatus killing assays in vitro and as adoptive cellular therapy in vivo. The expanded NK cells possessed potent killing activity at low effector-to-target ratio of 2:1. Fungicidal activity was morphotypal-dependent and most efficacious against A. fumigatus conidia. Fungicidal activity was mediated by dectin-1 receptors on the expanded NK cells leading to augmented release of perforin, resulting in enhanced direct cytolysis. In an immunocompromised mice pulmonary aspergillosis model, we showed that NK cell treatment significantly reduced fungal burden, hence demonstrating the translational potential of expanded NK cells as adjunctive therapy against IA in immunocompromised patients.
Collapse
|
7
|
Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Adv 2020; 4:1388-1406. [PMID: 32271902 PMCID: PMC7160259 DOI: 10.1182/bloodadvances.2019000699] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Human natural killer (NK) cells in peripheral blood perform many functions, and classification of specific subsets has been a longstanding goal. We report single-cell RNA sequencing of NK cells, comparing gene expression in unstimulated and interleukin (IL)-2-activated cells from healthy cytomegalovirus (CMV)-negative donors. Three NK cell subsets resembled well-described populations; CD56brightCD16-, CD56dimCD16+CD57-, and CD56dimCD16+CD57+. CD56dimCD16+CD57- cells subdivided to include a population with higher chemokine mRNA and increased frequency of killer-cell immunoglobulin-like receptor expression. Three novel human blood NK cell populations were identified: a population of type I interferon-responding NK cells that were CD56neg; a population exhibiting a cytokine-induced memory-like phenotype, including increased granzyme B mRNA in response to IL-2; and finally, a small population, with low ribosomal expression, downregulation of oxidative phosphorylation, and high levels of immediate early response genes indicative of cellular activation. Analysis of CMV+ donors established that CMV altered the proportion of NK cells in each subset, especially an increase in adaptive NK cells, as well as gene regulation within each subset. Together, these data establish an unexpected diversity in blood NK cells and provide a new framework for analyzing NK cell responses in health and disease.
Collapse
|
8
|
Brillantes M, Beaulieu AM. Memory and Memory-Like NK Cell Responses to Microbial Pathogens. Front Cell Infect Microbiol 2020; 10:102. [PMID: 32269968 PMCID: PMC7109401 DOI: 10.3389/fcimb.2020.00102] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
NK cells are cytotoxic lymphocytes that provide systemic defense against pathogens and malignancy. Although historically considered cells of the innate immune system, NK cells are now known to be capable of memory or memory-like immune responses in certain settings. Memory NK responses were initially reported over a decade ago in studies involving mouse models of cytomegalovirus infection and delayed-type hypersensitivity reactions to chemical haptens and viral antigens. Since then, a growing body of literature suggests that memory or memory-like NK cell responses may occur in a broader range of immunological settings, including in response to various viral and bacterial infections, and some immunization protocols. Memory-like NK cell responses have also now been reported in humans and non-human primates. Here, we summarize recent studies demonstrating memory or memory-like responses by NK cells in settings of infection and immunization against infectious agents.
Collapse
Affiliation(s)
- Marc Brillantes
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers—The State University of New Jersey, Newark, NJ, United States
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers—The State University of New Jersey, Newark, NJ, United States
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Rutgers—The State University of New Jersey, Newark, NJ, United States
| | - Aimee M. Beaulieu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers—The State University of New Jersey, Newark, NJ, United States
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers—The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
9
|
Granulysin: killer lymphocyte safeguard against microbes. Curr Opin Immunol 2019; 60:19-29. [PMID: 31112765 DOI: 10.1016/j.coi.2019.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022]
Abstract
Primary T cell immunodeficiency and HIV-infected patients are plagued by non-viral infections caused by bacteria, fungi, and parasites, suggesting an important and underappreciated role for T lymphocytes in controlling microbes. Here, we review recent studies showing that killer lymphocytes use the antimicrobial cytotoxic granule pore-forming peptide granulysin, induced by microbial exposure, to permeabilize cholesterol-poor microbial membranes and deliver death-inducing granzymes into these pathogens. Granulysin and granzymes cause microptosis, programmed cell death in microbes, by inducing reactive oxygen species and destroying microbial antioxidant defenses and disrupting biosynthetic and central metabolism pathways required for their survival, including protein synthesis, glycolysis, and the Krebs cycle.
Collapse
|
10
|
Marischen L, Englert A, Schmitt AL, Einsele H, Loeffler J. Human NK cells adapt their immune response towards increasing multiplicities of infection of Aspergillus fumigatus. BMC Immunol 2018; 19:39. [PMID: 30563459 PMCID: PMC6299526 DOI: 10.1186/s12865-018-0276-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The saprophytic fungus Aspergillus fumigatus reproduces by generation of conidia, which are spread by airflow throughout nature. Since humans are inhaling certain amounts of spores every day, the (innate) immune system is constantly challenged. Even though macrophages and neutrophils carry the main burden, also NK cells are regarded to contribute to the antifungal immune response. While NK cells reveal a low frequency, expression and release of immunomodulatory molecules seem to be a natural way of their involvement. RESULTS In this study we show, that NK cells secrete chemokines such as CCL3/MIP-1α, CCL4/MIP-1β and CCL5/RANTES early on after stimulation with Aspergillus fumigatus and, in addition, adjust the concentration of chemokines released to the multiplicity of infection of Aspergillus fumigatus. CONCLUSIONS These results further corroborate the relevance of NK cells within the antifungal immune response, which is regarded to be more and more important in the development and outcome of invasive aspergillosis in immunocompromised patients after hematopoietic stem cell transplantation. Additionally, the correlation between the multiplicity of infection and the expression and release of chemokines shown here may be useful in further studies for the quantification and/or surveillance of the NK cell involvement in antifungal immune responses.
Collapse
Affiliation(s)
- Lothar Marischen
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Anne Englert
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna-Lena Schmitt
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
11
|
Kumaresan PR, da Silva TA, Kontoyiannis DP. Methods of Controlling Invasive Fungal Infections Using CD8 + T Cells. Front Immunol 2018; 8:1939. [PMID: 29358941 PMCID: PMC5766637 DOI: 10.3389/fimmu.2017.01939] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections (IFIs) cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR) T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV), or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy.
Collapse
Affiliation(s)
- Pappanaicken R. Kumaresan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thiago Aparecido da Silva
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
12
|
Schmidt S, Tramsen L, Lehrnbecher T. Natural Killer Cells in Antifungal Immunity. Front Immunol 2017; 8:1623. [PMID: 29213274 PMCID: PMC5702641 DOI: 10.3389/fimmu.2017.01623] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
Invasive fungal infections are still an important cause of morbidity and mortality in immunocompromised patients such as patients suffering from hematological malignancies or patients undergoing hematopoietic stem cell transplantion. In addition, other populations such as human immunodeficiency virus-patients are at higher risk for invasive fungal infection. Despite the availability of new antifungal compounds and better supportive care measures, the fatality rate of invasive fungal infection remained unacceptably high. It is therefore of major interest to improve our understanding of the host-pathogen interaction to develop new therapeutic approaches such as adoptive immunotherapy. As experimental methodologies have improved and we now better understand the complex network of the immune system, the insight in the interaction of the host with the fungus has significantly increased. It has become clear that host resistance to fungal infections is not only associated with strong innate immunity but that adaptive immunity (e.g., T cells) also plays an important role. The antifungal activity of natural killer (NK) cells has been underestimated for a long time. In vitro studies demonstrated that NK cells from murine and human origin are able to attack fungi of different genera and species. NK cells exhibit not only a direct antifungal activity via cytotoxic molecules but also an indirect antifungal activity via cytokines. However, it has been show that fungi exert immunosuppressive effects on NK cells. Whereas clinical data are scarce, animal models have clearly demonstrated that NK cells play an important role in the host response against invasive fungal infections. In this review, we summarize clinical data as well as results from in vitro and animal studies on the impact of NK cells on fungal pathogens.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| |
Collapse
|