1
|
Anderson G, Cosway EJ, James KD, Ohigashi I, Takahama Y. Generation and repair of thymic epithelial cells. J Exp Med 2024; 221:e20230894. [PMID: 38980292 PMCID: PMC11232892 DOI: 10.1084/jem.20230894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the vertebrate immune system, thymus stromal microenvironments support the generation of αβT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.
Collapse
Affiliation(s)
- Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Emilie J. Cosway
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kieran D. James
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Ocampo-Godinez JM, Gonzalez-Quiroz JL, Cote-Palafox H, George E, Vergara-Lope Nuñez JA, Villagomez-Olea G, Vazquez-Vazquez FC, Lopez-Villegas EO, Leon-Avila G, Dominguez-Lopez ML, Alvarez-Perez MA. Primary explants of the postnatal thymus allow the expansion of clonogenic thymic epithelial cells that constitute thymospheres. Stem Cell Res Ther 2023; 14:312. [PMID: 37904232 PMCID: PMC10617125 DOI: 10.1186/s13287-023-03529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Thymic epithelial cells (TECs) are responsible for shaping the repertoires of T cells, where their postnatal regeneration depends on a subset of clonogenic TECs. Despite the implications for regenerative medicine, their cultivation and expansion remain challenging. Primary explant cell culture is a technique that allows the seeding and expansion of difficult-to-culture cells. Here, we report a reliable and simple culture system to obtain functional TECs and thymic interstitial cells (TICs). METHODS To establish primary thymic explants, we harvested 1 mm cleaned fragments of thymus from 5-week-old C57/BL6 mice. Tissue fragments of a complete thymic lobe were placed in the center of a Petri dish with 1 mL of DMEM/F-12 medium supplemented with 20% fetal bovine serum (FBS) and 1% penicillin‒streptomycin. To compare, thymic explants were also cultivated by using serum-free DMEM/F-12 medium supplemented with 10% KnockOut™. RESULTS We obtained high numbers of functional clonogenic TECs and TICs from primary thymic explants cultivated with DMEM/F-12 with 20% FBS. These cells exhibited a highly proliferative and migration profile and were able to constitute thymospheres. Furthermore, all the subtypes of medullary TECs were identified in this system. They express functional markers to shape T-cell and type 2 innate lymphoid cells repertoires, such as Aire, IL25, CCL21 and CD80. Finally, we also found that ≥ 70% of lineage negative TICs expressed high amounts of Aire and IL25. CONCLUSION Thymic explants are an efficient method to obtain functional clonogenic TECs, all mTEC subsets and different TICs Aire+IL25+ with high regenerative capacity.
Collapse
Affiliation(s)
- Juan M Ocampo-Godinez
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Genética, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Mexico City, Estado de Mexico, Mexico
- Laboratorio de Inmunoquímica I, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jose L Gonzalez-Quiroz
- Laboratorio de Inmunoquímica I, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Hector Cote-Palafox
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Mexico City, Estado de Mexico, Mexico
| | - Elizabeth George
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Mexico City, Estado de Mexico, Mexico
| | - Jael A Vergara-Lope Nuñez
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Central de Microscopia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Guillermo Villagomez-Olea
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Febe C Vazquez-Vazquez
- Laboratorio de Investigación de Materiales Dentales y Biomateriales, Departamento de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar O Lopez-Villegas
- Central de Microscopia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gloria Leon-Avila
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Mexico City, Estado de Mexico, Mexico
| | - Maria L Dominguez-Lopez
- Laboratorio de Inmunoquímica I, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Marco A Alvarez-Perez
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
3
|
Morales-Sanchez A, Shissler SC, Cowan JE, Bhandoola A. Revelations in Thymic Epithelial Cell Biology and Heterogeneity from Single-Cell RNA Sequencing and Lineage Tracing Methodologies. Methods Mol Biol 2023; 2580:25-49. [PMID: 36374449 PMCID: PMC10802793 DOI: 10.1007/978-1-0716-2740-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thymic epithelial cells (TECs) make up the thymic microenvironments that support the generation of a functionally competent and self-tolerant T-cell repertoire. Cortical (c)TECs, present in the cortex, are essential for early thymocyte development including selection of thymocytes expressing functional TCRs (positive selection). Medullary (m)TECs, located in the medulla, play a key role in late thymocyte development, including depletion of self-reactive T cells (negative selection) and selection of regulatory T cells. In recent years, transcriptomic analysis by single-cell (sc)RNA sequencing (Seq) has revealed TEC heterogeneity previously masked by population-level RNA-Seq or phenotypic studies. We summarize the discoveries made possible by scRNA-Seq, including the identification of novel mTEC subsets, advances in understanding mTEC promiscuous gene expression, and TEC alterations from embryonic to adult stages. Whereas pseudotime analyses of scRNA-Seq data can suggest relationships between TEC subsets, experimental methods such as lineage tracing and reaggregate thymic organ culture (RTOC) are required to test these hypotheses. Lineage tracing - namely, of β5t or Aire expressing cells - has exposed progenitor and parent-daughter cellular relationships within TEC.
Collapse
Affiliation(s)
- Abigail Morales-Sanchez
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico.
| | - Susannah C Shissler
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer E Cowan
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022; 13:926516. [PMID: 35844535 PMCID: PMC9280625 DOI: 10.3389/fimmu.2022.926516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The thymus is the organ responsible for T cell development and the formation of the adaptive immunity function. Its multicellular environment consists mainly of the different stromal cells and maturing T lymphocytes. Thymus-specific progenitors of epithelial, mesenchymal, and lymphoid cells with stem cell properties represent only minor populations. The thymic stromal structure predominantly determines the function of the thymus. The stromal components, mostly epithelial and mesenchymal cells, form this specialized area. They support the consistent developmental program of functionally distinct conventional T cell subpopulations. These include the MHC restricted single positive CD4+ CD8- and CD4- CD8+ cells, regulatory T lymphocytes (Foxp3+), innate natural killer T cells (iNKT), and γδT cells. Several physiological causes comprising stress and aging and medical treatments such as thymectomy and chemo/radiotherapy can harm the thymus function. The present review summarizes our knowledge of the development and function of the thymus with a focus on thymic epithelial cells as well as other stromal components and the signaling and transcriptional pathways underlying the thymic cell interaction. These critical thymus components are significant for T cell differentiation and restoring the thymic function after damage to reach the therapeutic benefits.
Collapse
|
5
|
Chakrabarti S, Hoque M, Jamil NZ, Singh VJ, Pollacksmith D, Meer N, Pezzano MT. Bone Marrow-Derived Cells Contribute to the Maintenance of Thymic Stroma including TECs. J Immunol Res 2022; 2022:6061746. [PMID: 35528618 PMCID: PMC9076333 DOI: 10.1155/2022/6061746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022] Open
Abstract
In paradox to critical functions for T-cell selection and self-tolerance, the thymus undergoes profound age-associated atrophy and loss of T-cell function, further enhanced by cancer therapies. Identifying thymic epithelial progenitor populations capable of forming functional thymic tissue will be critical in understanding thymic epithelial cell (TEC) ontogeny and designing strategies to reverse involution. We identified a new population of progenitor cells, present in both the thymus and bone marrow (BM) of mice, that coexpress the hematopoietic marker CD45 and the definitive thymic epithelial marker EpCAM and maintain the capacity to form functional thymic tissue. Confocal analysis and qRT-PCR of sorted cells from both BM and thymus confirmed coexpression of CD45 and EpCAM. Grafting of C57BL/6 fetal thymi under the kidney capsule of H2BGFP transgenic mice revealed that peripheral CD45+ EpCAM+ GFP-expressing cells migrate into the developing thymus and contribute to both TECs and FSP1-expressing thymic stroma. Sorted BM-derived CD45+ EpCAM+ cells contribute to reaggregate thymic organ cultures (RTOCs) and differentiate into keratin and FoxN1-expressing TECs, demonstrating that BM cells can contribute to the maintenance of TEC microenvironments previously thought to be derived solely from endoderm. BM-derived CD45+ EpCAM+ cells represent a new source of progenitor cells that contribute to thymic homeostasis. Future studies will characterize the contribution of BM-derived CD45+ EpCAM+ TEC progenitors to distinct functional TEC microenvironments in both the steady-state thymus and under conditions of demand. Cell therapies utilizing this population may help counteract thymic involution in cancer patients.
Collapse
Affiliation(s)
- Shami Chakrabarti
- Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Mohammed Hoque
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Nawshin Zara Jamil
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Varan J. Singh
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Daniel Pollacksmith
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Neelab Meer
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Mark T. Pezzano
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
- Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
6
|
Perniola R, Fierabracci A, Falorni A. Autoimmune Addison's Disease as Part of the Autoimmune Polyglandular Syndrome Type 1: Historical Overview and Current Evidence. Front Immunol 2021; 12:606860. [PMID: 33717087 PMCID: PMC7953157 DOI: 10.3389/fimmu.2021.606860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
The autoimmune polyglandular syndrome type 1 (APS1) is caused by pathogenic variants of the autoimmune regulator (AIRE) gene, located in the chromosomal region 21q22.3. The related protein, AIRE, enhances thymic self-representation and immune self-tolerance by localization to chromatin and anchorage to multimolecular complexes involved in the initiation and post-initiation events of tissue-specific antigen-encoding gene transcription. Once synthesized, the self-antigens are presented to, and cause deletion of, the self-reactive thymocyte clones. The clinical diagnosis of APS1 is based on the classic triad idiopathic hypoparathyroidism (HPT)-chronic mucocutaneous candidiasis-autoimmune Addison's disease (AAD), though new criteria based on early non-endocrine manifestations have been proposed. HPT is in most cases the first endocrine component of the syndrome; however, APS1-associated AAD has received the most accurate biochemical, clinical, and immunological characterization. Here is a comprehensive review of the studies on APS1-associated AAD from initial case reports to the most recent scientific findings.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics-Neonatal Intensive Care, V. Fazzi Hospital, ASL LE, Lecce, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alberto Falorni
- Section of Internal Medicine and Endocrinological and Metabolic Sciences, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Ishikawa T, Akiyama N, Akiyama T. In Pursuit of Adult Progenitors of Thymic Epithelial Cells. Front Immunol 2021; 12:621824. [PMID: 33717123 PMCID: PMC7946825 DOI: 10.3389/fimmu.2021.621824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral T cells capable of discriminating between self and non-self antigens are major components of a robust adaptive immune system. The development of self-tolerant T cells is orchestrated by thymic epithelial cells (TECs), which are localized in the thymic cortex (cortical TECs, cTECs) and medulla (medullary TECs, mTECs). cTECs and mTECs are essential for differentiation, proliferation, and positive and negative selection of thymocytes. Recent advances in single-cell RNA-sequencing technology have revealed a previously unknown degree of TEC heterogeneity, but we still lack a clear picture of the identity of TEC progenitors in the adult thymus. In this review, we describe both earlier and recent findings that shed light on features of these elusive adult progenitors in the context of tissue homeostasis, as well as recovery from stress-induced thymic atrophy.
Collapse
Affiliation(s)
- Tatsuya Ishikawa
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Nobuko Akiyama
- Laboratory for Immunogenetics, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory of Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
8
|
García-Ceca J, Montero-Herradón S, Zapata AG. Intrathymic Selection and Defects in the Thymic Epithelial Cell Development. Cells 2020; 9:cells9102226. [PMID: 33023072 PMCID: PMC7601110 DOI: 10.3390/cells9102226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Intimate interactions between thymic epithelial cells (TECs) and thymocytes (T) have been repeatedly reported as essential for performing intrathymic T-cell education. Nevertheless, it has been described that animals exhibiting defects in these interactions were capable of a proper positive and negative T-cell selection. In the current review, we first examined distinct types of TECs and their possible role in the immune surveillance. However, EphB-deficient thymi that exhibit profound thymic epithelial (TE) alterations do not exhibit important immunological defects. Eph and their ligands, the ephrins, are implicated in cell attachment/detachment and govern, therefore, TEC–T interactions. On this basis, we hypothesized that a few normal TE areas could be enough for a proper phenotypical and functional maturation of T lymphocytes. Then, we evaluated in vivo how many TECs would be necessary for supporting a normal T-cell differentiation, concluding that a significantly low number of TEC are still capable of supporting normal T lymphocyte maturation, whereas with fewer numbers, T-cell maturation is not possible.
Collapse
Affiliation(s)
- Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Correspondence: ; Tel.: +34-91-394-4979
| |
Collapse
|
9
|
Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, Sit RV, Neff NF, Darmanis S, Tan W, May AP, Marioni JC, Ponting CP, Holländer GA. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. eLife 2020; 9:e56221. [PMID: 32840480 PMCID: PMC7490013 DOI: 10.7554/elife.56221] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell death and compromised organ function. This is first observed in the thymus, the primary lymphoid organ that generates and selects T cells. However, the molecular and cellular mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse ageing leads to less efficient T cell selection, decreased self-antigen representation and increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the function of individual mature thymic epithelial cells is compromised only modestly. Specifically, an early-life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs the core immunological functions of the thymus.
Collapse
Affiliation(s)
| | - Michael D Morgan
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research United Kingdom - Cambridge Institute, Li Ka Shing Centre, University of CambridgeCambridgeUnited Kingdom
| | - Stefano Maio
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Fatima Dhalla
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Irene Calvo-Asensio
- Department of Biomedicine, University of Basel, and University Children’s HospitalBaselSwitzerland
| | - Mary E Deadman
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
| | - Adam E Handel
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Steven Chen
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Foad Green
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Rene V Sit
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Norma F Neff
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Weilun Tan
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Andy P May
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research United Kingdom - Cambridge Institute, Li Ka Shing Centre, University of CambridgeCambridgeUnited Kingdom
- EMBL-EBI, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Chris P Ponting
- MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - Georg A Holländer
- Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
- Department of Paediatrics, University of Oxford, Cancer ResearchOxfordUnited Kingdom
- Department of Biomedicine, University of Basel, and University Children’s HospitalBaselSwitzerland
- Department of Biosystems Science and Engineering, ETH ZurichBaselSwitzerland
| |
Collapse
|
10
|
Kinsella S, Dudakov JA. When the Damage Is Done: Injury and Repair in Thymus Function. Front Immunol 2020; 11:1745. [PMID: 32903477 PMCID: PMC7435010 DOI: 10.3389/fimmu.2020.01745] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jarrod A. Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Lepletier A, Hun ML, Hammett MV, Wong K, Naeem H, Hedger M, Loveland K, Chidgey AP. Interplay between Follistatin, Activin A, and BMP4 Signaling Regulates Postnatal Thymic Epithelial Progenitor Cell Differentiation during Aging. Cell Rep 2020; 27:3887-3901.e4. [PMID: 31242421 DOI: 10.1016/j.celrep.2019.05.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/06/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
A key feature of immune functional impairment with age is the progressive involution of thymic tissue responsible for naive T cell production. In this study, we identify two major phases of thymic epithelial cell (TEC) loss during aging: a block in mature TEC differentiation from the pool of immature precursors, occurring at the onset of puberty, followed by impaired bipotent TEC progenitor differentiation and depletion of Sca-1lo cTEC and mTEC lineage-specific precursors. We reveal that an increase in follistatin production by aging TECs contributes to their own demise. TEC loss occurs primarily through the antagonism of activin A signaling, which we show is required for TEC maturation and acts in dissonance to BMP4, which promotes the maintenance of TEC progenitors. These results support a model in which an imbalance of activin A and BMP4 signaling underpins the degeneration of postnatal TEC maintenance during aging, and its reversal enables the transient replenishment of mature TECs.
Collapse
Affiliation(s)
- Ailin Lepletier
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Maree V Hammett
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Haroon Naeem
- Monash Bioinformatics Platform, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Mark Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - Kate Loveland
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
12
|
Dumont-Lagacé M, Daouda T, Depoërs L, Zumer J, Benslimane Y, Brochu S, Harrington L, Lemieux S, Perreault C. Qualitative Changes in Cortical Thymic Epithelial Cells Drive Postpartum Thymic Regeneration. Front Immunol 2020; 10:3118. [PMID: 32010151 PMCID: PMC6974522 DOI: 10.3389/fimmu.2019.03118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 12/05/2022] Open
Abstract
During gestation, sex hormones cause a significant thymic involution which enhances fertility. This thymic involution is rapidly corrected following parturition. As thymic epithelial cells (TECs) are responsible for the regulation of thymopoiesis, we analyzed the sequential phenotypic and transcriptomic changes in TECs during the postpartum period in order to identify mechanisms triggering postpartum thymic regeneration. In particular, we performed flow cytometry analyses and deep RNA-sequencing on purified TEC subsets at several time points before and after parturition. We report that pregnancy-induced involution is not caused by loss of TECs since their number does not change during or after pregnancy. However, during pregnancy, we observed a significant depletion of all thymocyte subsets downstream of the double-negative 1 (DN1) differentiation stage. Variations in thymocyte numbers correlated with conspicuous changes in the transcriptome of cortical TECs (cTECs). The transcriptomic changes affected predominantly cTEC expression of Foxn1, its targets and several genes that are essential for thymopoiesis. By contrast, medullary TECs (mTECs) showed very little transcriptomic changes in the early postpartum regenerative phase, but seemed to respond to the expansion of single-positive (SP) thymocytes in the late phase of regeneration. Together, these results show that postpartum thymic regeneration is orchestrated by variations in expression of a well-defined subset of cTEC genes, that occur very early after parturition.
Collapse
Affiliation(s)
- Maude Dumont-Lagacé
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Tariq Daouda
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.,Functional and Structural Bioinformatics Research Unit, Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Lucyle Depoërs
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jérémie Zumer
- Functional and Structural Bioinformatics Research Unit, Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Yahya Benslimane
- Telomere Length Homeostasis and Genomic Instability Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Brochu
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Lea Harrington
- Telomere Length Homeostasis and Genomic Instability Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Lemieux
- Functional and Structural Bioinformatics Research Unit, Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Immunobiology Research Unit, Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Abstract
The generation of a functional T cell repertoire in the thymus is mainly orchestrated by thymic epithelial cells (TECs), which provide developing T cells with cues for their navigation, proliferation, differentiation and survival. The TEC compartment has been segregated historically into two major populations of medullary TECs and cortical TECs, which differ in their anatomical localization, molecular characteristics and functional roles. However, recent studies have shown that TECs are highly heterogeneous and comprise multiple subpopulations with distinct molecular and functional characteristics, including tuft cell-like or corneocyte-like phenotypes. Here, we review the most recent advances in our understanding of TEC heterogeneity from a molecular, functional and developmental perspective. In particular, we highlight the key insights that were recently provided by single-cell genomic technologies and in vivo fate mapping and discuss them in the context of previously published data.
Collapse
|
14
|
Kaneko KB, Tateishi R, Miyao T, Takakura Y, Akiyama N, Yokota R, Akiyama T, Kobayashi TJ. Quantitative analysis reveals reciprocal regulations underlying recovery dynamics of thymocytes and thymic environment in mice. Commun Biol 2019; 2:444. [PMID: 31815199 PMCID: PMC6884561 DOI: 10.1038/s42003-019-0688-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/10/2019] [Indexed: 01/17/2023] Open
Abstract
Thymic crosstalk, a set of reciprocal regulations between thymocytes and the thymic environment, is relevant for orchestrating appropriate thymocyte development as well as thymic recovery from various exogenous insults. In this work, interactions shaping thymic crosstalk and the resultant dynamics of thymocytes and thymic epithelial cells are inferred based on quantitative analysis and modeling of the recovery dynamics induced by irradiation. The analysis identifies regulatory interactions consistent with known molecular evidence and reveals their dynamic roles in the recovery process. Moreover, the analysis also predicts, and a subsequent experiment verifies, a previously unrecognized regulation of CD4+CD8+ double positive thymocytes which temporarily increases their proliferation rate upon the decrease in their population size. Our model establishes a pivotal step towards the dynamic understanding of thymic crosstalk as a regulatory network system.
Collapse
Affiliation(s)
- Kazumasa B. Kaneko
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo, 113-8656 Japan
| | - Ryosuke Tateishi
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Takahisa Miyao
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Yuki Takakura
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Nobuko Akiyama
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ryo Yokota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505 Japan
| | - Taishin Akiyama
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Tetsuya J. Kobayashi
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku Tokyo, 113-8656 Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505 Japan
- PREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
15
|
Guo H, Tian L, Zhang JZ, Kitani T, Paik DT, Lee WH, Wu JC. Single-Cell RNA Sequencing of Human Embryonic Stem Cell Differentiation Delineates Adverse Effects of Nicotine on Embryonic Development. Stem Cell Reports 2019; 12:772-786. [PMID: 30827876 PMCID: PMC6449785 DOI: 10.1016/j.stemcr.2019.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Nicotine, the main chemical constituent of tobacco, is highly detrimental to the developing fetus by increasing the risk of gestational complications and organ disorders. The effects of nicotine on human embryonic development and related mechanisms, however, remain poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) of human embryonic stem cell (hESC)-derived embryoid body (EB) in the presence or absence of nicotine. Nicotine-induced lineage-specific responses and dysregulated cell-to-cell communication in EBs, shedding light on the adverse effects of nicotine on human embryonic development. In addition, nicotine reduced cell viability, increased reactive oxygen species (ROS), and altered cell cycling in EBs. Abnormal Ca2+ signaling was found in muscle cells upon nicotine exposure, as verified in hESC-derived cardiomyocytes. Consequently, our scRNA-seq data suggest direct adverse effects of nicotine on hESC differentiation at the single-cell level and offer a new method for evaluating drug and environmental toxicity on human embryonic development in utero.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Tian
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomoya Kitani
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David T Paik
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|