1
|
Iesari S, Nava FL, Zais IE, Coubeau L, Ferraresso M, Favi E, Lerut J. Advancing immunosuppression in liver transplantation: A narrative review. Hepatobiliary Pancreat Dis Int 2024; 23:441-448. [PMID: 38523030 DOI: 10.1016/j.hbpd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation (LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solid-organ transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.
Collapse
Affiliation(s)
- Samuele Iesari
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Francesca Laura Nava
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Ilaria Elena Zais
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Laurent Coubeau
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium; Service de Chirurgie et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, 55 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Mariano Ferraresso
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy
| | - Evaldo Favi
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy.
| | - Jan Lerut
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| |
Collapse
|
2
|
Chmiel J, Stasiak M, Skrzypkowska M, Samson L, Łuczkiewicz P, Trzonkowski P. Regulatory T lymphocytes as a treatment method for rheumatoid arthritis - Superiority of allogeneic to autologous cells. Heliyon 2024; 10:e36512. [PMID: 39319132 PMCID: PMC11419861 DOI: 10.1016/j.heliyon.2024.e36512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cellular therapies utilizing regulatory T cells (Tregs) have flourished in the autoimmunity space as a new pillar of medicine. These cells have shown a great promise in the treatment of such devastating conditions as type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE) and graft versus host disease (GVHD). Novel treatment protocols, which utilize Tregs-mediated suppressive mechanisms, are based on the two main strategies: administration of immunomodulatory factors affecting Tregs or adoptive cell transfer (ACT). ACT involves extraction, in vitro expansion and subsequent administration of Tregs that could be either of autologous or allogeneic origin. Rheumatoid arthritis (RA) is another autoimmune candidate where this treatment approach is being considered. RA remains an especially challenging adversary since it is one of the most frequent and debilitating conditions among all autoaggressive disorders. Noteworthy, Tregs circulating in RA patients' blood have been proven defective and unable to suppress inflammation and joint destruction. With this knowledge, adoptive transfer of compromised autologous Tregs in the fledgling clinical trials involving RA patients should be reconsidered. In this article we hypothesize that incorporation of healthy donor allogeneic Tregs may provide more lucid and beneficial results.
Collapse
Affiliation(s)
- Joanna Chmiel
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Mariusz Stasiak
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Lucjan Samson
- University Clinical Centre in Gdańsk, Second Clinic of Orthopaedics and Kinetic Organ Traumatology, Poland
- Faculty of Medicine, Medical University of Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Poland
| |
Collapse
|
3
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
4
|
Stucchi A, Maspes F, Montee-Rodrigues E, Fousteri G. Engineered Treg cells: The heir to the throne of immunotherapy. J Autoimmun 2024; 144:102986. [PMID: 36639301 DOI: 10.1016/j.jaut.2022.102986] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Recently, increased interest in the use of Tregs as adoptive cell therapy for the treatment of autoimmune diseases and transplant rejection had led to several advances in the field. However, Treg cell therapies, while constantly advancing, indiscriminately suppress the immune system without the permanent stabilization of certain diseases. Genetically modified Tregs hold great promise towards solving these problems, but, challenges in identifying the most potent Treg subtype, accompanied by the ambiguity involved in identifying the optimal Treg source, along with its expansion and engineering in a clinical-grade setting remain paramount. This review highlights the recent advances in methodologies for the development of genetically engineered Treg cell-based treatments for autoimmune, inflammatory diseases, and organ rejection. Additionally, it provides a systematized guide to all the recent progress in the field and informs the readers of the feasibility and safety of engineered adoptive Treg cell therapy, with the aim to provide a framework for researchers involved in the development of engineered Tregs.
Collapse
Affiliation(s)
- Adriana Stucchi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Maspes
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ely Montee-Rodrigues
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Cambridge Epigenetix, Cambridge, Cambridgeshire, United Kingdom
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
5
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023; 19:2164159. [PMID: 36681905 PMCID: PMC9870008 DOI: 10.1080/15476278.2022.2164159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
Affiliation(s)
- Kassandra J. Baron
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Infectious Disease and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hēth R. Turnquist Departments of Surgery, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute 200 Lothrop Street, BST W1542, PittsburghPA 15213, USA
| |
Collapse
|
6
|
Sahar A, Nicorescu I, Barran G, Paterson M, Hilkens CM, Lord P. Tolerogenic dendritic cell reporting: Has a minimum information model made a difference? PeerJ 2023; 11:e15352. [PMID: 37273539 PMCID: PMC10239229 DOI: 10.7717/peerj.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 06/06/2023] Open
Abstract
Minimum information models are reporting frameworks that describe the essential information that needs to be provided in a publication, so that the work can be repeated or compared to other work. In 2016, Minimum Information about Tolerogenic Antigen-Presenting cells (MITAP) was created to standardize the reporting on tolerogenic antigen-presenting cells, including tolerogenic dendritic cells (tolDCs). tolDCs is a generic term for dendritic cells that have the ability to (re-)establish immune tolerance; they have been developed as a cell therapy for autoimmune diseases or for the prevention of transplant rejection. Because protocols to generate these therapeutic cells vary widely, MITAP was deemed to be a pivotal reporting tool by and for the tolDC community. In this paper, we explored the impact that MITAP has had on the tolDC field. We did this by examining a subset of the available literature on tolDCs. Our analysis shows that MITAP is used in only the minority of relevant papers (14%), but where it is used the amount of metadata available is slightly increased over where it is not. From this, we conclude that MITAP has been a partial success, but that much more needs to be done if standardized reporting is to become common within the discipline.
Collapse
Affiliation(s)
- Ayesha Sahar
- School of Computing Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ioana Nicorescu
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Gabrielle Barran
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Megan Paterson
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catharien M.U. Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Phillip Lord
- School of Computing Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
7
|
Zieliński M, Żalińska M, Iwaszkiewicz-Grześ D, Gliwiński M, Hennig M, Jaźwińska-Curyłło A, Kamińska H, Sakowska J, Wołoszyn-Durkiewicz A, Owczuk R, Młynarski W, Jarosz-Chobot P, Bossowski A, Szadkowska A, Siebert J, Myśliwiec M, Marek-Trzonkowska N, Trzonkowski P. Combined therapy with CD4 + CD25highCD127 - T regulatory cells and anti-CD20 antibody in recent-onset type 1 diabetes is superior to monotherapy: Randomized phase I/II trial. Diabetes Obes Metab 2022; 24:1534-1543. [PMID: 35441440 DOI: 10.1111/dom.14723] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023]
Abstract
AIMS Monotherapy with autologous expanded CD4+ CD25high CD127- T regulatory cells (Tregs) or rituximab has been documented to slow disease progression in patients with recent-onset type 1 diabetes mellitus (T1DM). Whether a combined therapy including both drugs would further benefit this patient population is unknown. MATERIALS AND METHODS We conducted a three-arms clinical trial to explore the efficacy and safety of the combined treatment with Tregs and rituximab in paediatric patients with T1DM. The patients were allocated to three groups: Tregs only (n = 13), Tregs + rituximab (n = 12) and control (n = 11). The key primary efficacy analyses were C-peptide levels (mixed meal tolerance test) and the proportion of patients in remission at 12 and 24 months. RESULTS At month 24, as compared with the control, both treatment groups remained superior in the area under the curve of C-peptide mixed meal tolerance test, whereas in the analysis of all visits only the combined therapy improved area under the curve at 12 and 24 months. The proportion of patients in remission was significantly higher in the combined group than in the control group at 3, 6, 9 and 21 months but not at 18 and 24 months. There was no significant difference between the Tregs only group and control group. Adverse events occurred in 80% patients, mostly in the combined group and Tregs only group. No adverse events led to the withdrawal of the intervention or death. All comparisons were performed with alpha level of 5%. CONCLUSIONS Over 2 years, combined therapy with Tregs and rituximab was consistently superior to monotherapy in delaying T1DM progression in terms of C-peptide levels and the maintenance of remission.
Collapse
Affiliation(s)
- Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
- Poltreg S.A., Gdańsk, Poland
| | - Magdalena Żalińska
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Dorota Iwaszkiewicz-Grześ
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
- Poltreg S.A., Gdańsk, Poland
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
- Poltreg S.A., Gdańsk, Poland
| | - Matylda Hennig
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Halla Kamińska
- Department of Children's Diabetology, Medical University of Silesia, Katowice, Poland
| | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
- Poltreg S.A., Gdańsk, Poland
| | - Anna Wołoszyn-Durkiewicz
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Radosław Owczuk
- Department of Anaesthesiology and Critical Care, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Młynarski
- Department of Paediatrics, Oncology and Haematology, Medical University of Lodz, Lodz, Poland
| | | | - Artur Bossowski
- Department of Peadiatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Białystok, Poland
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| | - Janusz Siebert
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Poltreg S.A., Gdańsk, Poland
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Marek-Trzonkowska
- Poltreg S.A., Gdańsk, Poland
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdańsk, Gdańsk, Poland
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
- Poltreg S.A., Gdańsk, Poland
| |
Collapse
|
8
|
Challenges and opportunities in achieving effective regulatory T cell therapy in autoimmune liver disease. Semin Immunopathol 2022; 44:461-474. [PMID: 35641679 PMCID: PMC9256571 DOI: 10.1007/s00281-022-00940-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/15/2022] [Indexed: 12/29/2022]
Abstract
Autoimmune liver diseases (AILD) include autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). These immune-mediated liver diseases involve a break down in peripheral self-tolerance with largely unknown aetiology. Regulatory T cells (Treg) are crucial in maintaining immunological tolerance. Hence, Treg immunotherapy is an attractive therapeutic option in AILD. Currently, AILD do not have a curative treatment option and patients take life-long immunosuppression or bile acids to control hepatic or biliary inflammation. Clinical investigations using good manufacturing practice (GMP) Treg in autoimmune liver disease have thus far demonstrated that Treg therapy is safe and that Treg migrate to inflamed liver tissue. For Treg immunotherapy to achieve efficacy in AILD, Treg must be retained within the liver and maintain their suppressive phenotype to dampen ongoing immune responses to hepatocytes and biliary epithelium. Therefore, therapeutic Treg subsets should be selected for tissue residency markers and maximal functionality. Optimisation of dosing regime and understanding longevity of Treg in vivo are critical to successful Treg therapy. It is also essential to consider combination therapy options to complement infused Treg, for instance low-dose interleukin-2 (IL-2) to support pre-existing and infused Treg survival and suppressive function. Understanding the hepatic microenvironment in both early- and late-stage AILD presents significant opportunity to better tailor Treg therapy in different patient groups. Modification of a hostile microenvironment to a more favourable one either prior to or during Treg therapy could enhance the efficacy and longevity of infused GMP-Treg. Applying recent technology to discovery of autoantigen responses in AILD, T cell receptor (TCR) sequencing and use of chimeric antigen receptor (CAR) technology represents the next frontier for disease-specific CAR-Treg therapies. Consideration of all these aspects in future trials and discovery research would position GMP Treg immunotherapy as a viable personalised-medicine treatment option for effective control of autoimmune liver diseases.
Collapse
|
9
|
Yuan Y, Kolios AGA, Liu Y, Zhang B, Li H, Tsokos GC, Zhang X. Therapeutic potential of interleukin-2 in autoimmune diseases. Trends Mol Med 2022; 28:596-612. [PMID: 35624009 DOI: 10.1016/j.molmed.2022.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are characterized by dysregulation and aberrant activation of cells in the immune system. Therefore, restoration of the immune balance represents a promising therapeutic target in autoimmune diseases. Interleukin-2 (IL-2) can promote the expansion and differentiation of different immune cell subsets dose-dependently. At high doses, IL-2 can promote the differentiation and expansion of effector and memory T cells, whereas at low doses, IL-2 can promote the differentiation, survival, and function of regulatory T (Treg) cells, a CD4+ T cell subset that is essential for the maintenance of immune homeostasis and immune tolerance. Therefore, IL-2 exerts immunostimulatory and immunosuppressive effects in autoimmune diseases. The immunoregulatory role of low-dose IL-2 has sparked excitement for the therapeutic exploration of modulating the IL-2-Treg axis in the context of autoimmune diseases. In this review, we discuss recent advances in the therapeutic potential of IL-2 or IL-2-derived molecules in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yeshuang Yuan
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Antonios G A Kolios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bo Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
10
|
Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity. Nat Commun 2022; 13:856. [PMID: 35165293 PMCID: PMC8844425 DOI: 10.1038/s41467-022-28338-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cell-based immunotherapies can provide safe and effective treatments for various disorders including autoimmunity, cancer, and excessive proinflammatory events in sepsis or viral infections. However, to achieve this goal there is a need for deeper understanding of mechanisms of the intercellular interactions. Regulatory T cells (Tregs) are a lymphocyte subset that maintain peripheral tolerance, whilst mesenchymal stem cells (MSCs) are multipotent nonhematopoietic progenitor cells. Despite coming from different origins, Tregs and MSCs share immunoregulatory properties that have been tested in clinical trials. Here we demonstrate how direct and indirect contact with allogenic MSCs improves Tregs’ potential for accumulation of immunosuppressive adenosine and suppression of conventional T cell proliferation, making them more potent therapeutic tools. Our results also demonstrate that direct communication between Tregs and MSCs is based on transfer of active mitochondria and fragments of plasma membrane from MSCs to Tregs, an event that is HLA-dependent and associates with HLA-C and HLA-DRB1 eplet mismatch load between Treg and MSC donors. Regulatory T (Treg) cells and mesenchymal stem cells (MSCs) are both cell populations capable of immune tolerance induction. Here the authors show that the transfer of mitochondria from mesenchymal stem cells to allogeneic Treg cells in an HLA-dependent manner results in enhanced immunosuppressive functions of Treg cells.
Collapse
|
11
|
Janssens I, Campillo Davó D, Van den Bos J, De Reu H, Berneman ZN, Wens I, Cools N. Engineering of regulatory T cells by means of mRNA electroporation in a GMP-compliant manner. Cytotherapy 2022; 24:659-672. [DOI: 10.1016/j.jcyt.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
12
|
Ou K, Hamo D, Schulze A, Roemhild A, Kaiser D, Gasparoni G, Salhab A, Zarrinrad G, Amini L, Schlickeiser S, Streitz M, Walter J, Volk HD, Schmueck-Henneresse M, Reinke P, Polansky JK. Strong Expansion of Human Regulatory T Cells for Adoptive Cell Therapy Results in Epigenetic Changes Which May Impact Their Survival and Function. Front Cell Dev Biol 2021; 9:751590. [PMID: 34869339 PMCID: PMC8639223 DOI: 10.3389/fcell.2021.751590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022] Open
Abstract
Adoptive transfer of regulatory T cells (Treg) is a promising new therapeutic option to treat detrimental inflammatory conditions after transplantation and during autoimmune disease. To reach sufficient cell yield for treatment, ex vivo isolated autologous or allogenic Tregs need to be expanded extensively in vitro during manufacturing of the Treg product. However, repetitive cycles of restimulation and prolonged culture have been shown to impact T cell phenotypes, functionality and fitness. It is therefore critical to scrutinize the molecular changes which occur during T cell product generation, and reexamine current manufacturing practices. We performed genome-wide DNA methylation profiling of cells throughout the manufacturing process of a polyclonal Treg product that has proven safety and hints of therapeutic efficacy in kidney transplant patients. We found progressive DNA methylation changes over the duration of culture, which were donor-independent and reproducible between manufacturing runs. Differentially methylated regions (DMRs) in the final products were significantly enriched at promoters and enhancers of genes implicated in T cell activation. Additionally, significant hypomethylation did also occur in promoters of genes implicated in functional exhaustion in conventional T cells, some of which, however, have been reported to strengthen immunosuppressive effector function in Tregs. At the same time, a set of reported Treg-specific demethylated regions increased methylation levels with culture, indicating a possible destabilization of Treg identity during manufacturing, which was independent of the purity of the starting material. Together, our results indicate that the repetitive TCR-mediated stimulation lead to epigenetic changes that might impact functionality of Treg products in multiple ways, by possibly shifting to an effector Treg phenotype with enhanced functional activity or by risking destabilization of Treg identity and impaired TCR activation. Our analyses also illustrate the value of epigenetic profiling for the evaluation of T cell product manufacturing pipelines, which might open new avenues for the improvement of current adoptive Treg therapies with relevance for conventional effector T cell products.
Collapse
Affiliation(s)
- Kristy Ou
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dania Hamo
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Schulze
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gilles Gasparoni
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Ghazaleh Zarrinrad
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Streitz
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia K Polansky
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
13
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, et alCossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Show More Authors] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
14
|
Mammadli M, Harris R, Suo L, May A, Gentile T, Waickman AT, Bah A, August A, Nurmemmedov E, Karimi M. Interleukin-2-inducible T-cell kinase (Itk) signaling regulates potent noncanonical regulatory T cells. Clin Transl Med 2021; 11:e625. [PMID: 34919342 PMCID: PMC8679839 DOI: 10.1002/ctm2.625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in controlling autoimmunity and limiting tissue damage and inflammation. IL2-inducible T cell kinase (Itk) is part of the Tec family of tyrosine kinases and is a critical component of T cell receptor mediated signaling. Here, we showed that either genetic ablation of Itk signaling or inhibition of Itk signaling pathways resulted in increased frequency of "noncanonical" CD4+ CD25- FOXP3+ Tregs (ncTregs), as well as of "canonical" CD4+ CD25+ FOXP3+ Tregs (canTregs). Using in vivo models, we showed that ncTregs can avert the formation of acute graft-versus-host disease (GVHD), in part by reducing conventional T cell proliferation, proinflammatory cytokine production, and tissue damage. This reduction in GVHD occurred without disruption of graft-versus-leukaemia (GVL) effects. RNA sequencing revealed that a number of effector, cell adhesion, and migration molecules were upregulated in Itk-/- ncTregs. Furthermore, disrupting the SLP76: ITK interaction using a specific peptide inhibitor led to enhanced Treg development in both mouse and primary human cells. This peptide inhibitor also significantly reduced inflammatory cytokine production in primary GVHD patient samples and mouse T cells without causing cell death or apoptosis. We provide evidence that specifically targeting Itk signaling could be a therapeutic strategy to treat autoimmune disorders.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Adriana May
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Teresa Gentile
- Department of Hematology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Adam T Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Elmar Nurmemmedov
- Department of Translational Neurosciences Saint John's Cancer Institute, Santa Monica, California, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
15
|
Abstract
Failure of regulatory T (Treg) cells to properly control immune responses leads invariably to autoimmunity and organ damage. Decreased numbers or impaired function of Treg cells, especially in the context of inflammation, has been documented in many human autoimmune diseases. Restoration of Treg cell fitness and/or expansion of their numbers using low-dose natural IL-2, the main cytokine driving Treg cell survival and function, has demonstrated clinical efficacy in early clinical trials. Genetically modified IL-2 with an extended half-life and increased selectivity for Treg cells is now in clinical development. Administration of IL-2 combined with therapies targeting other pathways involved in the expression of autoimmune diseases should further enhance its therapeutic potential. Ongoing clinical efforts that capitalize on the early clinical success of IL-2 treatment should bring the use of this cytokine to the forefront of biological treatments for autoimmune diseases.
Collapse
|
16
|
Ishay Y, Potruch A, Schwartz A, Berg M, Jamil K, Agus S, Ilan Y. A digital health platform for assisting the diagnosis and monitoring of COVID-19 progression: An adjuvant approach for augmenting the antiviral response and mitigating the immune-mediated target organ damage. Biomed Pharmacother 2021; 143:112228. [PMID: 34649354 PMCID: PMC8455249 DOI: 10.1016/j.biopha.2021.112228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is a respiratory illness associated with high mortality, has been classified as a pandemic. The major obstacles for the clinicians to contain the disease are limited information availability, difficulty in disease diagnosis, predicting disease prognosis, and lack of disease monitoring tools. Additionally, the lack of valid therapies has further contributed to the difficulties in containing the pandemic. Recent studies have reported that the dysregulation of the immune system leads to an ineffective antiviral response and promotes pathological immune response, which manifests as ARDS, myocarditis, and hepatitis. In this study, a novel platform has been described for disseminating information to physicians for the diagnosis and monitoring of patients with COVID-19. An adjuvant approach using compounds that can potentiate antiviral immune response and mitigate COVID-19-induced immune-mediated target organ damage has been presented. A prolonged beneficial effect is achieved by implementing algorithm-based individualized variability measures in the treatment regimen.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Assaf Potruch
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Asaf Schwartz
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Marc Berg
- Altus Care powered by Oberon Sciences, Denmark, Israel; Department of Pediatrics, Lucile Packard Children's Hospital, Stanford, USA.
| | - Khurram Jamil
- Altus Care powered by Oberon Sciences, Denmark, Israel.
| | - Samuel Agus
- Altus Care powered by Oberon Sciences, Denmark, Israel.
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
17
|
Jarvis LB, Rainbow DB, Coppard V, Howlett SK, Georgieva Z, Davies JL, Mullay HK, Hester J, Ashmore T, Van Den Bosch A, Grist JT, Coles AJ, Mousa HS, Pluchino S, Mahbubani KT, Griffin JL, Saeb-Parsy K, Issa F, Peruzzotti-Jametti L, Wicker LS, Jones JL. Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Commun Biol 2021; 4:1186. [PMID: 34650224 PMCID: PMC8516976 DOI: 10.1038/s42003-021-02721-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression.
Collapse
Affiliation(s)
- Lorna B Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel B Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Valerie Coppard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sarah K Howlett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Zoya Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jessica L Davies
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Joanna Hester
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | | | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hani S Mousa
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Imperial College London Dementia Research Institute & Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Fadi Issa
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Safinia N, Vaikunthanathan T, Lechler RI, Sanchez‐Fueyo A, Lombardi G. Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance? Eur J Immunol 2021; 51:2373-2386. [PMID: 34375446 PMCID: PMC10015994 DOI: 10.1002/eji.202048875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver disease. Breakthroughs in surgical practice and immunosuppression have seen considerable advancements in survival after transplantation. However, the intricate management of immunosuppressive regimens, balancing desired immunological quiescence while minimizing toxicity has proven challenging. Diminishing improvements in long-term morbidity and mortality have been inextricably linked with the protracted use of these medications. As such, there is now enormous interest to devise protocols that will allow us to minimize or completely withdraw immunosuppressants after transplantation. Immunosuppression withdrawal trials have proved the reality of tolerance following liver transplantation, however, without intervention will only occur after several years at the risk of potential cumulative immunosuppression-related morbidity. Focus has now been directed at accelerating this phenomenon through tolerance-inducing strategies. In this regard, efforts have seen the use of regulatory cell immunotherapy. Here we focus particularly on regulatory T cells, discussing preclinical data that propagated several clinical trials of adoptive cell therapy in liver transplantation. Furthermore, we describe efforts to further optimize the specificity and survival of regulatory cell therapy guided by concurrent immunomonitoring studies and the development of novel technologies including chimeric antigen receptors and co-administration of low-dose IL-2.
Collapse
Affiliation(s)
- Niloufar Safinia
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Robert Ian Lechler
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Giovanna Lombardi
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| |
Collapse
|
19
|
Jones M, Nankervis B, Roballo KS, Pham H, Bushman J, Coeshott C. A Comparison of Automated Perfusion- and Manual Diffusion-Based Human Regulatory T Cell Expansion and Functionality Using a Soluble Activator Complex. Cell Transplant 2021; 29:963689720923578. [PMID: 32662685 PMCID: PMC7586259 DOI: 10.1177/0963689720923578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Absence or reduced frequency of human regulatory T cells (Tregs) can limit the control of inflammatory responses, autoimmunity, and the success of transplant engraftment. Clinical studies indicate that use of Tregs as immunotherapeutics would require billions of cells per dose. The Quantum® Cell Expansion System (Quantum system) is a hollow-fiber bioreactor that has previously been used to grow billions of functional T cells in a short timeframe, 8–9 d. Here we evaluated expansion of selected Tregs in the Quantum system using a soluble activator to compare the effects of automated perfusion with manual diffusion-based culture in flasks. Treg CD4+CD25+ cells from three healthy donors, isolated via column-free immunomagnetic negative/positive selection, were grown under static conditions and subsequently seeded into Quantum system bioreactors and into T225 control flasks in an identical culture volume of PRIME-XV XSFM medium with interleukin-2, for a 9-d expansion using a soluble anti-CD3/CD28/CD2 monoclonal antibody activator complex. Treg harvests from three parallel expansions produced a mean of 3.95 × 108 (range 1.92 × 108 to 5.58 × 108) Tregs in flasks (mean viability 71.3%) versus 7.00 × 109 (range 3.57 × 109 to 13.00 × 109) Tregs in the Quantum system (mean viability 91.8%), demonstrating a mean 17.7-fold increase in Treg yield for the Quantum system over that obtained in flasks. The two culture processes gave rise to cells with a memory Treg CD4+CD25+FoxP3+CD45RO+ phenotype of 93.7% for flasks versus 97.7% for the Quantum system. Tregs from the Quantum system demonstrated an 8-fold greater interleukin-10 stimulation index than cells from flask culture following restimulation. Quantum system–expanded Tregs proliferated, maintained their antigenic phenotype, and suppressed effector immune cells after cryopreservation. We conclude that an automated perfusion bioreactor can support the scale-up expansion of functional Tregs more efficiently than diffusion-based flask culture.
Collapse
Affiliation(s)
| | | | | | - Huong Pham
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Jared Bushman
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | | |
Collapse
|
20
|
First-in-human phase 1 trial of induced regulatory T cells for graft-versus-host disease prophylaxis in HLA-matched siblings. Blood Adv 2021; 5:1425-1436. [PMID: 33666654 DOI: 10.1182/bloodadvances.2020003219] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023] Open
Abstract
Human CD4+25- T cells cultured in interleukin 2 (IL-2), rapamycin, and transforming growth factor β (TGFβ) along with anti-CD3 monoclonal antibody-loaded artificial antigen-presenting cells generate FoxP3+ induced regulatory T cells (iTregs) with potent suppressive function. We performed a phase 1, single-center, dose-escalation study to determine the safety profile of iTregs in adults with high-risk malignancy treated with reduced-intensity conditioning and mobilized peripheral blood stem cells (PBSCs) from HLA-identical sibling donors. Sixteen patients were enrolled and 14 were treated (2 productions failed to meet desired doses). One patient each received 3.0 × 106/kg, 3.0 × 107/kg, and 3.0 × 108/kg iTregs with corresponding T-conventional-to-iTreg ratios of 86:1, 8:1, and 1:2. After 3 patients received 3.0 × 108/kg in the presence of cyclosporine (CSA) and mycophenolate mofetil (MMF) with no dose-limiting toxicities, subsequent patients were to receive iTregs in the presence of sirolimus/MMF that favors Foxp3 stability based on preclinical modeling. However, 2 of 2 developed grade 3 acute graft-versus-host disease (GVHD), resulting in suspension of the sirolimus/MMF. An additional 7 patients received 3.0 × 108/kg iTregs with CSA/MMF. In the 14 patients treated with iTregs and CSA/MMF, there were no severe infusional toxicities with all achieving neutrophil recovery (median, day 13). Of 10 patients who received 3.0 × 108/kg iTregs and CSA/MMF, 7 had no aGVHD, 2 had grade 2, and 1 had grade 3. Circulating Foxp3+ iTregs were detectable through day 14. In summary, iTregs in the context of CSA/MMF can be delivered safely at doses as high as 3 × 108/kg. This trial was registered at www.clinicaltrials.gov as #NCT01634217.
Collapse
|
21
|
Mansilla MJ, Presas-Rodríguez S, Teniente-Serra A, González-Larreategui I, Quirant-Sánchez B, Fondelli F, Djedovic N, Iwaszkiewicz-Grześ D, Chwojnicki K, Miljković Đ, Trzonkowski P, Ramo-Tello C, Martínez-Cáceres EM. Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy. Cell Mol Immunol 2021; 18:1353-1374. [PMID: 33958746 PMCID: PMC8167140 DOI: 10.1038/s41423-020-00618-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a leading cause of chronic neurological disability in young to middle-aged adults, affecting ~2.5 million people worldwide. Currently, most therapeutics for MS are systemic immunosuppressive or immunomodulatory drugs, but these drugs are unable to halt or reverse the disease and have the potential to cause serious adverse events. Hence, there is an urgent need for the development of next-generation treatments that, alone or in combination, stop the undesired autoimmune response and contribute to the restoration of homeostasis. This review analyzes current MS treatments as well as different cell-based therapies that have been proposed to restore homeostasis in MS patients (tolerogenic dendritic cells, regulatory T cells, mesenchymal stem cells, and vaccination with T cells). Data collected from preclinical studies performed in the experimental autoimmune encephalomyelitis (EAE) model of MS in animals, in vitro cultures of cells from MS patients and the initial results of phase I/II clinical trials are analyzed to better understand which parameters are relevant for obtaining an efficient cell-based therapy for MS.
Collapse
Affiliation(s)
- M J Mansilla
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - S Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Teniente-Serra
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - I González-Larreategui
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - B Quirant-Sánchez
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Fondelli
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Djedovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - D Iwaszkiewicz-Grześ
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - K Chwojnicki
- Department of Anaesthesiology & Intensive Care, Medical University of Gdańsk, Gdańsk, Poland
| | - Đ Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - P Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - C Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - E M Martínez-Cáceres
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
22
|
Ley K. Fortified Tregs to fight atherosclerosis. Cardiovasc Res 2021; 117:1987-1988. [PMID: 33744912 DOI: 10.1093/cvr/cvab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Klaus Ley
- Inflammation Biology Laboratory, La Jolla Institute for Immunology, La Jolla, CA, USA
| |
Collapse
|
23
|
Dudreuilh C, Basu S, Scottà C, Dorling A, Lombardi G. Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Front Immunol 2021; 11:612848. [PMID: 33603742 PMCID: PMC7884443 DOI: 10.3389/fimmu.2020.612848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) constitute a small proportion of circulating CD4+ T cells that function to maintain homeostasis and prevent autoimmunity. In light of their powerful immunosuppressive and tolerance-promoting properties, Tregs have become an interesting potential candidate for therapeutic use in conditions such as solid organ transplant or to treat autoimmune and inflammatory conditions. Clinical studies have demonstrated the safety of polyclonally expanded Tregs in graft-versus-host disease, type 1 diabetes, and more recently in renal and liver transplantation. However, Tregs are heterogenous. Recent insights indicate that only a small proportion of Tregs, called T follicular regulatory cells (Tfr) regulate interactions between B cells and T follicular helper (Tfh) cells within the germinal center. Tfr have been mainly described in mouse models due to the challenges of sampling secondary lymphoid organs in humans. However, emerging human studies, characterize Tfr as being CD4+CD25+FOXP3+CXCR5+ cells with different levels of PD-1 and ICOS expression depending on their localization, in the blood or the germinal center. The exact role they play in transplantation remains to be elucidated. However, given the potential ability of these cells to modulate antibody responses to allo-antigens, there is great interest in exploring translational applications in situations where B cell responses need to be regulated. Here, we review the current knowledge of Tfr and the role they play focusing on human diseases and transplantation. We also discuss the potential future applications of Tfr therapy in transplantation and examine the evidence for a role of Tfr in antibody production, acute and chronic rejection and tertiary lymphoid organs. Furthermore, the potential impact of immunosuppression on Tfr will be explored. Based on preclinical research, we will analyse the rationale of Tfr therapy in solid organ transplantation and summarize the different challenges to be overcome before Tfr therapy can be implemented into clinical practice.
Collapse
Affiliation(s)
- Caroline Dudreuilh
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Sumoyee Basu
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Cristiano Scottà
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
24
|
Kim J, Hope CM, Perkins GB, Stead SO, Scaffidi JC, Kette FD, Carroll RP, Barry SC, Coates PT. Rapamycin and abundant TCR stimulation are required for the generation of stable human induced regulatory T cells. Clin Transl Immunology 2020; 9:e1223. [PMID: 33425354 PMCID: PMC7780108 DOI: 10.1002/cti2.1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/07/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Regulatory T cells (Tregs) are a vital sub-population of CD4+ T cells with major roles in immune tolerance and homeostasis. Given such properties, the use of regulatory T cells for immunotherapies has been extensively investigated, with a focus on adoptive transfer of ex vivo expanded natural Tregs (nTregs). For immunotherapies, induced Tregs (iTregs), generated in vitro from naïve CD4+ T cells, provide an attractive alternative, given the ease of generating cell numbers required for clinical dosage. While the combination of TGF-β, ATRA and rapamycin has been shown to generate highly suppressive iTregs, the challenge for therapeutic iTreg generation has been their instability. Here, we investigate the impact of rapamycin concentrations and α-CD3/CD28 bead ratios on human iTreg stability. METHODS We assess iTregs generated with various concentrations of rapamycin and differing ratios of α-CD3/CD28 beads for their differentiation, stability, expression of Treg signature molecules and T helper effector cytokines, and Treg-specific demethylation region (TSDR) status. RESULTS iTregs generated in the presence of TGF-β, ATRA, rapamycin and a higher ratio of α-CD3/CD28 beads were highly suppressive and stable upon in vitro re-stimulation. These iTregs exhibited a similar expression profile of Treg signature molecules and T helper effector cytokines to nTregs, in the absence of TSDR demethylation. CONCLUSION This work establishes a method to generate human iTregs which maintain stable phenotype and function upon in vitro re-stimulation. Further validation in pre-clinical models will be needed to ensure its suitability for applications in adoptive transfer.
Collapse
Affiliation(s)
- Juewan Kim
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Christopher M Hope
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Griffith B Perkins
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Sebastian O Stead
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Jacqueline C Scaffidi
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Francis D Kette
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Robert P Carroll
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
- Division of Medical SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Simon C Barry
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Patrick Toby Coates
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
| |
Collapse
|
25
|
Ilan Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front Digit Health 2020; 2:569178. [PMID: 34713042 PMCID: PMC8521820 DOI: 10.3389/fdgth.2020.569178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) digital health systems have drawn much attention over the last decade. However, their implementation into medical practice occurs at a much slower pace than expected. This paper reviews some of the achievements of first-generation AI systems, and the barriers facing their implementation into medical practice. The development of second-generation AI systems is discussed with a focus on overcoming some of these obstacles. Second-generation systems are aimed at focusing on a single subject and on improving patients' clinical outcomes. A personalized closed-loop system designed to improve end-organ function and the patient's response to chronic therapies is presented. The system introduces a platform which implements a personalized therapeutic regimen and introduces quantifiable individualized-variability patterns into its algorithm. The platform is designed to achieve a clinically meaningful endpoint by ensuring that chronic therapies will have sustainable effect while overcoming compensatory mechanisms associated with disease progression and drug resistance. Second-generation systems are expected to assist patients and providers in adopting and implementing of these systems into everyday care.
Collapse
|
26
|
Janssens I, Cools N. Regulating the regulators: Is introduction of an antigen-specific approach in regulatory T cells the next step to treat autoimmunity? Cell Immunol 2020; 358:104236. [PMID: 33137651 DOI: 10.1016/j.cellimm.2020.104236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
In autoimmunity, the important and fragile balance between immunity and tolerance is disturbed, resulting in abnormal immune responses to the body's own tissues and cells. CD4+CD25hiFoxP3+ regulatory T cells (Tregs) induce peripheral tolerance in vivo by means of direct cell-cell contact and release of soluble factors, or indirectly through antigen-presenting cells (APC), thereby controlling auto-reactive effector T cells. Based on these unique capacities of Tregs, preclinical studies delivered proof-of-principle for the clinical use of Tregs for the treatment of autoimmune diseases. To date, the first clinical trials using ex vivo expanded polyclonal Tregs have been completed. These pioneering studies demonstrate the feasibility of generating large numbers of polyclonal Tregs in a good manufacturing practices (GMP)-compliant manner, and that infusion of Tregs is well tolerated by patients with no evidence of general immunosuppression. Nonetheless, only modest clinical results were observed, arguing that a more antigen-specific approach might be needed to foster a durable patient-specific clinical cell therapy without the risk for general immunosuppression. In this review, we discuss current knowledge, applications and future goals of adoptive immune-modulatory Treg therapy for the treatment of autoimmune disease and transplant rejection. We describe the key advances and prospects of the potential use of T cell receptor (TCR)- and chimeric antigen receptor (CAR)-engineered Tregs in future clinical applications. These approaches could deliver the long-awaited breakthrough in stopping undesired autoimmune responses and transplant rejections.
Collapse
Affiliation(s)
- Ibo Janssens
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
27
|
Picarda E, Bézie S, Usero L, Ossart J, Besnard M, Halim H, Echasserieau K, Usal C, Rossjohn J, Bernardeau K, Gras S, Guillonneau C. Cross-Reactive Donor-Specific CD8 + Tregs Efficiently Prevent Transplant Rejection. Cell Rep 2020; 29:4245-4255.e6. [PMID: 31875536 DOI: 10.1016/j.celrep.2019.11.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
To reduce the use of non-specific immunosuppressive drugs detrimental to transplant patient health, therapies in development aim to achieve antigen-specific tolerance by promoting antigen-specific regulatory T cells (Tregs). However, identification of the natural antigens recognized by Tregs and the contribution of their dominance in transplantation has been challenging. We identify epitopes derived from distinct major histocompatibility complex (MHC) class II molecules, sharing a 7-amino acid consensus sequence positioned in a central mobile section in complex with MHC class I, recognized by cross-reactive CD8+ Tregs, enriched in the graft. Antigen-specific CD8+ Tregs can be induced in vivo with a 16-amino acid-long peptide to trigger transplant tolerance. Peptides derived from human HLA class II molecules, harboring the rat consensus sequence, also activate and expand human CD8+ Tregs, suggesting its potential in human transplantation. Altogether, this work should facilitate the development of therapies with peptide epitopes for transplantation and improve our understanding of CD8+ Treg recognition.
Collapse
Affiliation(s)
- Elodie Picarda
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Séverine Bézie
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Lorena Usero
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jason Ossart
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Marine Besnard
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Hanim Halim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Klara Echasserieau
- Plateforme de protéines recombinantes P2R IFR26, CRCNA-UMR892 INSERM, Nantes, France
| | - Claire Usal
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Karine Bernardeau
- Plateforme de protéines recombinantes P2R IFR26, CRCNA-UMR892 INSERM, Nantes, France
| | - Stéphanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Carole Guillonneau
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.
| |
Collapse
|
28
|
Liu YH, Mölzer C, Makinen K, Kamoi K, Corbett CLC, Klaska IP, Reid DM, Wilson HM, Kuffová L, Cornall RJ, Forrester JV. Treatment With FoxP3+ Antigen-Experienced T Regulatory Cells Arrests Progressive Retinal Damage in a Spontaneous Model of Uveitis. Front Immunol 2020; 11:2071. [PMID: 33013877 PMCID: PMC7498671 DOI: 10.3389/fimmu.2020.02071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023] Open
Abstract
We specify the clinical features of a spontaneous experimental autoimmune uveitis (EAU) model, in which foreign hen-egg lysozyme (HEL) is expressed in the retina, controlled by the promoter for interphotoreceptor retinol binding protein (IRBP). We previously reported 100% P21 (post-partum day) IRBP:HEL single transgenic (sTg) mice, when crossed to transgenic T cell receptor mice (3A9) generating the double transgenic (dTg) genotype, develop EAU despite profound lymphopenia (thymic HEL-specific T cell deletion). In this work, we characterized the immune component of this model and found conventional dTg CD4+ T cells were less anergic than those from 3A9 controls. Furthermore, prior in vitro HEL-activation of 3A9 anergic T cells (Tan) rendered them uveitogenic upon adoptive transfer (Tx) to sTg mice, while antigen-experienced (AgX, dTg), but not naïve (3A9) T cells halted disease in P21 dTg mice. Flow cytometric analysis of the AgX cells elucidated the underlying pathology: FoxP3+CD25hiCD4+ T regulatory cells (Treg) comprised ∼18%, while FR4+CD73+FoxP3-CD25lo/–CD4+ Tan comprised ∼1.2% of total cells. Further Treg-enrichment (∼80%) of the AgX population indicated FoxP3+CD25hiCD4+ Treg played a key role in EAU-suppression while FoxP3-CD25lo/–CD4+ T cells did not. Here we present the novel concept of dual immunological tolerance where spontaneous EAU is due to escape from anergy with consequent failure of Treg induction and subsequent imbalance in the [Treg:Teffector] cell ratio. The reduced numbers of Tan, normally sustaining Treg to prevent autoimmunity, are the trigger for disease, while immune homeostasis can be restored by supplementation with AgX, but not naïve, antigen-specific Treg.
Collapse
Affiliation(s)
- Yi-Hsia Liu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Kimmo Makinen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Koju Kamoi
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Clare L C Corbett
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Izabela P Klaska
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delyth M Reid
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffová
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Richard J Cornall
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
29
|
Iwaszkiewicz-Grzes D, Gliwinski M, Eugster A, Piotrowska M, Dahl A, Marek-Trzonkowska N, Trzonkowski P. Antigen-reactive regulatory T cells can be expanded in vitro with monocytes and anti-CD28 and anti-CD154 antibodies. Cytotherapy 2020; 22:629-641. [PMID: 32778404 DOI: 10.1016/j.jcyt.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND In recent years, therapies with CD4+CD25highFoxP3+ regulatory T cells (Tregs) have been successfully tested in many clinical trials. The important issue regarding the use of this treatment in autoimmune conditions remains the specificity toward particular antigen, as because of epitope spread, there are usually multiple causative autoantigens to be regulated in such conditions. METHODS Here we show a method of generation of Tregs enriched with antigen-reactive clones that potentially covers the majority of such autoantigens. In our research, Tregs were expanded with anti-CD28 and anti-CD154 antibodies and autologous monocytes and loaded with a model peptide, such as whole insulin or insulin β chain peptide 9-23. The cells were then sorted into cells recognizing the presented antigen. The reactivity was verified with functional assays in which Tregs suppressed proliferation or interferon gamma production of autologous effector T cells (polyclonal and antigen-specific) used as responders challenged with the model peptide. Finally, we analyzed clonotype distribution and TRAV gene usage in the specific Tregs. RESULTS Altogether, the applied technique had a good yield and allowed us to obtain a Treg product enriched with a specific subset, as confirmed in the functional tests. The product consisted of many clones; nevertheless, the content of these clones was different from that found in polyclonal or unspecific Tregs. CONCLUSIONS The presented technique might be used to generate populations of Tregs enriched with cells reactive to any given peptide, which can be used as a cellular therapy medicinal product in antigen-targeted therapies.
Collapse
Affiliation(s)
- Dorota Iwaszkiewicz-Grzes
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland.
| | - Mateusz Gliwinski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland
| | - Anne Eugster
- Technische Universität Dresden, DFG-Center for Regenerative Therapies Dresden and the Cluster of Excellence, Dresden, Germany
| | | | - Andreas Dahl
- Technische Universität Dresden, DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Dresden, Germany
| | - Natalia Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland; International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland; Poltreg S.A., Gdańsk, Poland.
| |
Collapse
|
30
|
de Wolf ACMT, Herberts CA, Hoefnagel MHN. Dawn of Monitoring Regulatory T Cells in (Pre-)clinical Studies: Their Relevance Is Slowly Recognised. Front Med (Lausanne) 2020; 7:91. [PMID: 32300597 PMCID: PMC7142310 DOI: 10.3389/fmed.2020.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) have a prominent role in the control of immune homeostasis. Pharmacological impact on their activity or balance with effector T cells could contribute to (impaired) clinical responses or adverse events. Monitoring treatment-related effects on T cell subsets may therefore be part of (pre-)clinical studies for medicinal products. However, the extent of immune monitoring performed in studies for marketing authorisation and the degree of correspondence with data available in the public domain is not known. We evaluated the presence of T cell immunomonitoring in 46 registration dossiers of monoclonal antibodies indicated for immune-related disorders and published scientific papers. We found that the depth of Treg analysis in registration dossiers was rather small. Nevertheless, data on treatment-related Treg effects are available in public academia-driven studies (post-registration) and suggest that Tregs may act as a biomarker for clinical responses. However, public data are fragmented and obtained with heterogeneity of experimental approaches from a diversity of species and tissues. To reveal the potential added value of T cell (and particular Treg) evaluation in (pre-)clinical studies, more cell-specific data should be acquired, at least for medicinal products with an immunomodulatory mechanism. Therefore, extensive analysis of T cell subset contribution to clinical responses and the relevance of treatment-induced changes in their levels is needed. Preferably, industry and academia should work together to obtain these data in a standardised manner and to enrich our knowledge about T cell activity in disease pathogenesis and therapies. This will ultimately elucidate the necessity of T cell subset monitoring in the therapeutic benefit-risk assessment.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Over the last decade, myocarditis has been increasingly recognized as common cause of sudden cardiac death in young adults and heart failure overall. The purpose of this review is to discuss hypothesis of development of non-infectious myocarditis, to provide a description of the immunopathogenesis and the most common mechanisms of autoimmunity in myocarditis, and to provide an update on therapeutic options. RECENT FINDINGS A new entity of myocarditis is immune checkpoint inhibitor (ICI) induced myocarditis. ICIs are used in advanced cancer to "disinhibit" the immune system and make it more aggressive in fighting cancer. This novel drug class has doubled life expectancy in metastatic melanoma and significantly increased progression free survival in advanced non-small-cell lung cancer, but comes with a risk of autoimmune diseases such as myocarditis resulting from an overly aggressive immune system. Myocarditis is an inflammatory disease of the heart with major public health impact. Thorough understanding of its immunopathogenesis is crucial for accurate diagnosis and effective treatment.
Collapse
|
32
|
Gliwiński M, Iwaszkiewicz-Grześ D, Wołoszyn-Durkiewicz A, Tarnowska M, Żalińska M, Hennig M, Zielińska H, Dukat-Mazurek A, Zielkowska-Dębska J, Zieliński M, Jaźwińska-Curyłło A, Owczuk R, Jarosz-Chobot P, Bossowski A, Szadkowska A, Młynarski W, Marek-Trzonkowska N, Moszkowska G, Siebert J, Myśliwiec M, Trzonkowski P. Proinsulin-specific T regulatory cells may control immune responses in type 1 diabetes: implications for adoptive therapy. BMJ Open Diabetes Res Care 2020; 8:8/1/e000873. [PMID: 32098895 PMCID: PMC7206972 DOI: 10.1136/bmjdrc-2019-000873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/12/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Here we looked for possible mechanisms regulating the progression of type 1 diabetes mellitus (T1DM). In this disease, autoaggressive T cells (T conventional cells, Tconvs) not properly controlled by T regulatory cells (Tregs) destroy pancreatic islets. RESEARCH DESIGN AND METHODS We compared the T-cell compartment of patients with newly diagnosed T1DM (NDT1DM) with long-duration T1DM (LDT1DM) ones. The third group consisted of patients with LDT1DM treated previously with polyclonal Tregs (LDT1DM with Tregs). We have also looked if the differences might be dependent on the antigen specificity of Tregs expanded for clinical use and autologous sentinel Tconvs. RESULTS Patients with LDT1DM were characterized by T-cell immunosenescence-like changes and expansion of similar vβ/T-cell receptor (TCR) clones in Tconvs and Tregs. The treatment with Tregs was associated with some inhibition of these effects. Patients with LDT1DM possessed an increased percentage of various proinsulin-specific T cells but not GAD65-specific ones. The percentages of all antigen-specific subsets were higher in the expansion cultures than in the peripheral blood. The proliferation was more intense in proinsulin-specific Tconvs than in specific Tregs but the levels of some proinsulin-specific Tregs were exceptionally high at baseline and remained higher in the expanded clinical product than the levels of respective Tconvs in sentinel cultures. CONCLUSIONS T1DM is associated with immunosenescence-like changes and reduced diversity of T-cell clones. Preferential expansion of the same TCR families in both Tconvs and Tregs suggests a common trigger/autoantigen responsible. Interestingly, the therapy with polyclonal Tregs was associated with some inhibition of these effects. Proinsulin-specific Tregs appeared to be dominant in the immune responses in patients with T1DM and probably associated with better control over respective autoimmune Tconvs. TRIAL REGISTRATION NUMBER EudraCT 2014-004319-35.
Collapse
Affiliation(s)
- Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna Wołoszyn-Durkiewicz
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Tarnowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Żalińska
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Matylda Hennig
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Zielińska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Radosław Owczuk
- Department of Anaesthesiology and Critical Care, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Artur Bossowski
- Department of Peadiatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Białystok, Białystok, Poland
| | - Agnieszka Szadkowska
- Department of Paediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Łódź, Łódź, Poland
| | - Wojciech Młynarski
- Department of Paediatrics, Oncology, and Haematology, Medical University of Łódź, Łódź, Poland
| | - Natalia Marek-Trzonkowska
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdańsk, Gdańsk, Poland
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Poltreg S.A, Gdańsk, Poland
| | - Grażyna Moszkowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Janusz Siebert
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Department of Pediatric Diabetology and Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
- Poltreg S.A, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
- Poltreg S.A, Gdańsk, Poland
| |
Collapse
|
33
|
Khoury T, Ilan Y. Introducing Patterns of Variability for Overcoming Compensatory Adaptation of the Immune System to Immunomodulatory Agents: A Novel Method for Improving Clinical Response to Anti-TNF Therapies. Front Immunol 2019; 10:2726. [PMID: 31824506 PMCID: PMC6879658 DOI: 10.3389/fimmu.2019.02726] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Primary lack of response and secondary loss of response (LOR) are major obstacles to the use of anti-tumor necrosis factor (TNF)-based therapies in patients with rheumatoid arthritis or inflammatory bowel disease. Here, we review the mechanisms and methods for predicting LOR and the currently used methods for overcoming the ineffectiveness of anti-TNFs. The complex functions of TNF and anti-TNF antibodies, which can promote both pro- or anti-inflammatory actions, and the factors that affect the induction of immune tolerance to their effects are presented. The lack of rules and the continuous dynamics of the immune processes partly underlie the unpredictability of the response to anti-TNFs. Variability is inherent to biological systems, including immune processes, and intra/inter-patient variability has been described in the response to drugs. This variability is viewed as a compensatory adaptation mechanism of the immune system in response to drugs and may contribute to treatment LOR. Dose reductions and drug holidays have been tested in patients treated with anti-TNFs. Regular dose-based regimens may be incompatible with physiological variability, further contributing to treatment inefficacy. We present the concept of overcoming immune system adaptation to anti-TNFs by introducing patient-tailored patterns of variability to treatment regimens.
Collapse
Affiliation(s)
- Tawfik Khoury
- Department of Gastroenterology, Galilee Medical Center, Nahariya, Israel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
34
|
Flippe L, Bézie S, Anegon I, Guillonneau C. Future prospects for CD8 + regulatory T cells in immune tolerance. Immunol Rev 2019; 292:209-224. [PMID: 31593314 PMCID: PMC7027528 DOI: 10.1111/imr.12812] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD8+ Tregs have been long described and significant progresses have been made about their phenotype, their functional mechanisms, and their suppressive ability compared to conventional CD4+ Tregs. They are now at the dawn of their clinical use. In this review, we will summarize their phenotypic characteristics, their mechanisms of action, the similarities, differences and synergies between CD8+ and CD4+ Tregs, and we will discuss the biology, development and induction of CD8+ Tregs, their manufacturing for clinical use, considering open questions/uncertainties and future technically accessible improvements notably through genetic modifications.
Collapse
Affiliation(s)
- Léa Flippe
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Bézie
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
35
|
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov 2019; 18:749-769. [PMID: 31541224 PMCID: PMC7773144 DOI: 10.1038/s41573-019-0041-4] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Regulatory T cells (Treg cells) are a small subset of immune cells that are dedicated to curbing excessive immune activation and maintaining immune homeostasis. Accordingly, deficiencies in Treg cell development or function result in uncontrolled immune responses and tissue destruction and can lead to inflammatory disorders such as graft-versus-host disease, transplant rejection and autoimmune diseases. As Treg cells deploy more than a dozen molecular mechanisms to suppress immune responses, they have potential as multifaceted adaptable smart therapeutics for treating inflammatory disorders. Indeed, early-phase clinical trials of Treg cell therapy have shown feasibility, tolerability and potential efficacy in these disease settings. In the meantime, progress in the development of chimeric antigen receptors and in genome editing (including the application of CRISPR-Cas9) over the past two decades has facilitated the genetic optimization of primary T cell therapy for cancer. These technologies are now being used to enhance the specificity and functionality of Treg cells. In this Review, we describe the key advances and prospects in designing and implementing Treg cell-based therapy in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA
| | - Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA.
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Petsiou A, Paschou SA, Vartholomatos G, Chatzigianni K, Kolaitis N, Giotaki E, Bondinas GP, Moustakas AK, Karamoutsios A, Zervou E, Tigas S, Tsatsoulis A, Papadopoulos GK. A modified flow cytometry method for objective estimation of human CD4 + regulatory T cells (CD4 + Tregs) in peripheral blood, via CD4/CD25/CD45RO/FoxP3 labeling. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:259-269. [PMID: 31571372 DOI: 10.1002/cyto.b.21841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Several methods exist for flow-cytometric estimation of human peripheral blood CD4+ T regulatory cells (CD4+ Tregs). METHODS We report our experience with the estimation of human CD4+ Tregs via three different characterizations using flow cytometry (CD25high FoxP3+ , CD25high CD127low/- FoxP3+ , and CD4+ CD25high/int CD45ROFoxP3+ ) in normal subjects. We have used these methods on the control populations from two studies (32 and 36 subjects, respectively), the latter two methods retrospectively on the subjects of the first study. The six CD4+ T cell fractions obtained by the third method were differentially colored to ascertain the distribution of these cell fractions in the CD25/FoxP3, CD45RO/FoxP3, and CD25/CD127 dot plots from CD4/CD25/CD45RO/FoxP3 and CD4/CD25/CD45RO/CD127 panels. RESULTS Each approach gives significantly different estimates of Tregs (expressed as percentage of CD4+ T cells), with the second almost invariably yielding higher percentages than the other two. Only the third approach can distinguish among effector and naïve Tregs and FoxP3+ non-Tregs. Analysis of CD25/CD127 dot plots reveals that Treg delineation via the widely used definition of CD4+ CD25high CD127low/- cells unavoidably yields a mixture of nearly all effector and most of naïve Tregs, as well as FoxP3+ non-Tregs plus other cells. Delineation of effector/naïve Tregs and FoxP3+ non-Tregs is possible via CD45RO/CD25 dot plots but not by CD45RO/FoxP3 counterparts (as done previously) because of overlapping FoxP3 intensities among Tregs and non-Tregs. CONCLUSION Our comparison shows that CD4/CD25/CD45RO/FoxP3 panels are an objective means of estimating effector and naïve Tregs via colored dot plots, aiding thus in Treg delineation in health and detecting aberrations in disease.
Collapse
Affiliation(s)
- Asimina Petsiou
- Unit of Molecular Biology, Laboratory of Hematology, University Hospital of Ioannina, Ioannina, Greece
| | - Stavroula A Paschou
- Department of Endocrinology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Georgios Vartholomatos
- Unit of Molecular Biology, Laboratory of Hematology, University Hospital of Ioannina, Ioannina, Greece
| | - Katerina Chatzigianni
- Unit of Molecular Biology, Laboratory of Hematology, University Hospital of Ioannina, Ioannina, Greece
| | - Nikolaos Kolaitis
- Laboratory of Hematology, University Hospital of Ioannina, Ioannina, Greece
| | - Eleni Giotaki
- Department of Nursing, Technological Educational Institute of Epirus, Ioannina, Greece
| | - George P Bondinas
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - Antonis K Moustakas
- Department of Food Science and Technology, Technological Educational Institute of Ionian Islands, Argostoli, Greece
| | - Achilleas Karamoutsios
- Laboratory of Animal Health-Food Hygiene and Quality, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - Eleftheria Zervou
- Department of Bloodbank, University Hospital of Ioannina, Ioannina, Greece
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina School of Medicine, Ioannina, Greece
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Adoptive cell therapy using CD4FOXP3 regulatory T cells (Treg) has emerged as a promising therapeutic strategy to treat autoimmunity and alloimmunity. Preclinical studies suggest that the efficacy of Treg therapy can be improved by modifying the antigen specificity, stability and function of therapeutic Tregs. We review recent innovations that considerably enhance the possibilities of controlling these parameters. RECENT FINDINGS Antigen-specific Tregs can be generated by genetically modifying polyclonal Tregs to express designated T-cell receptors or single-chain chimeric antigen receptors. The benefits of this approach can be further extended by using novel strategies to fine-tune the antigen-specificity and affinity of Treg in vivo. CRISPR/Cas 9 technology now enables the modification of therapeutic Tregs so they are safer, more stable and long lived. The differentiation and homing properties of Tregs can also be modulated by gene editing or modifying ex-vivo stimulation conditions. SUMMARY A new wave of innovation has considerably increased the number of strategies that could be used to increase the therapeutic potential of Treg therapy. However, the increased complexity of these approaches may limit their wide accessibility. Third-party therapy with off-the-shelf Treg products could be a solution.
Collapse
|
38
|
Yamamoto A, Hester J, Macklin PS, Kawai K, Uchiyama M, Biggs D, Bishop T, Bull K, Cheng X, Cawthorne E, Coleman ML, Crockford TL, Davies B, Dow LE, Goldin R, Kranc K, Kudo H, Lawson H, McAuliffe J, Milward K, Scudamore CL, Soilleux E, Issa F, Ratcliffe PJ, Pugh CW. Systemic silencing of PHD2 causes reversible immune regulatory dysfunction. J Clin Invest 2019; 129:3640-3656. [PMID: 31162141 PMCID: PMC6715380 DOI: 10.1172/jci124099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes which regulate HIFs. Genetic interventions on HIF/PHD pathways reveal multiple phenotypes that extend the known biology of hypoxia. Recent studies unexpectedly implicate HIF in aspects of multiple immune and inflammatory pathways. However such studies are often limited by systemic lethal effects and/or use tissue-specific recombination systems, which are inherently irreversible, un-physiologically restricted and difficult to time. To study these processes better we developed recombinant mice which express tetracycline-regulated shRNAs broadly targeting the main components of the HIF/PHD pathway, permitting timed bi-directional intervention. We have shown that stabilization of HIF levels in adult mice through PHD2 enzyme silencing by RNA interference, or inducible recombination of floxed alleles, results in multi-lineage leukocytosis and features of autoimmunity. This phenotype was rapidly normalized on re-establishment of the hypoxia-sensing machinery when shRNA expression was discontinued. In both situations these effects were mediated principally through the Hif2a isoform. Assessment of cells bearing regulatory T cell markers from these mice revealed defective function and pro-inflammatory effects in vivo. We believe our findings have shown a new role for the PHD2/Hif2a couple in the reversible regulation of T cell and immune activity.
Collapse
Affiliation(s)
- Atsushi Yamamoto
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S. Macklin
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kento Kawai
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Masateru Uchiyama
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Daniel Biggs
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tammie Bishop
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine Bull
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiaotong Cheng
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleanor Cawthorne
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mathew L. Coleman
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tanya L. Crockford
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ben Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lukas E. Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Rob Goldin
- Department of Cellular Pathology, Imperial College London, London, United Kingdom
| | - Kamil Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Hiromi Kudo
- Department of Cellular Pathology, Imperial College London, London, United Kingdom
| | - Hannah Lawson
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - James McAuliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kate Milward
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Cheryl L. Scudamore
- Veterinary Pathology, MRC Harwell, Mary Lyon Centre, Harwell Campus, Oxford, United Kingdom
| | - Elizabeth Soilleux
- Department of Pathology, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Peter J. Ratcliffe
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Chris W. Pugh
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, Geissler EK, Lombardi G, Trzonkowski P, Martinez-Caceres E. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol 2019; 10:181. [PMID: 30853957 PMCID: PMC6395407 DOI: 10.3389/fimmu.2019.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, MRC Centre for Transplantation, School of Immunology and Microbial Sciences, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Berlin Institute of Health, Institute for Medical Immunology, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, IGTP, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
40
|
Marín Morales JM, Münch N, Peter K, Freund D, Oelschlägel U, Hölig K, Böhm T, Flach AC, Keßler J, Bonifacio E, Bornhäuser M, Fuchs A. Automated Clinical Grade Expansion of Regulatory T Cells in a Fully Closed System. Front Immunol 2019; 10:38. [PMID: 30778344 PMCID: PMC6369367 DOI: 10.3389/fimmu.2019.00038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Adoptive transfer of T regulatory cells (Treg) has been successfully exploited in the context of graft-versus-host disease, transplantation, and autoimmune disease. For the majority of applications, clinical administration of Treg requires laborious ex vivo expansion and typically involves open handling for culture feeds and repetitive sampling. Here we show results from our approach to translate manual Treg manufacturing to the fully closed automated CliniMACS Prodigy® system reducing contamination risk, hands-on time, and quality variation from human intervention. Polyclonal Treg were isolated from total nucleated cells obtained through leukapheresis of healthy donors by CD8+ cell depletion and subsequent CD25high enrichment. Treg were expanded with the CliniMACS Prodigy® device using clinical-grade cell culture medium, rapamycin, IL-2, and αCD3/αCD28 beads for 13–14 days. We successfully integrated expansion bead removal and final formulation into the automated procedure, finalizing the process with a ready to use product for bedside transfusion. Automated Treg expansion was conducted in parallel to an established manual manufacturing process using G-Rex cell culture flasks. We could prove similar expansion kinetics leading to a cell yield of up to 2.12 × 109 cells with the CliniMACS Prodigy® and comparable product phenotype of >90% CD4+CD25highCD127lowFOXP3+ cells that had similar in vitro immunosuppressive function. Efficiency of expansion bead depletion was comparable to the CliniMACS® Plus system and the final ready-to-infuse product had phenotype stability and high vitality after overnight storage. We anticipate this newly developed closed system expansion approach to be a starting point for the development of enhanced throughput clinical scale Treg manufacture, and for safe automated generation of antigen-specific Treg grafted with a chimeric antigen receptor (CAR Treg).
Collapse
Affiliation(s)
- José Manuel Marín Morales
- GMP Facility, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technische Universität Dresden, Dresden, Germany
| | - Nadine Münch
- GMP Facility, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technische Universität Dresden, Dresden, Germany
| | - Katja Peter
- GMP Facility, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technische Universität Dresden, Dresden, Germany
| | - Daniel Freund
- GMP Facility, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technische Universität Dresden, Dresden, Germany
| | - Uta Oelschlägel
- Department of Hematology, Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristina Hölig
- Department of Hematology, Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thea Böhm
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | - Jörg Keßler
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Ezio Bonifacio
- DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Hematology, Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Dresden, Germany
| | - Anke Fuchs
- GMP Facility, DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technische Universität Dresden, Dresden, Germany.,Department of Hematology, Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,DFG-Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|