1
|
Nour MA, Rajabivahid M, Mehdi MSS, Tahmasebi S, Dashtgol SN, Dehghani-Ghorbi M, Vanan AG, Ghorbaninezhad F. A new era in melanoma immunotherapy: focus on DCs metabolic reprogramming. Cancer Cell Int 2025; 25:149. [PMID: 40234886 PMCID: PMC12001691 DOI: 10.1186/s12935-025-03781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Melanoma, being one of the most dangerous forms of skin cancer, is characterized by its aggressive and metastatic nature, with the potential to develop resistance to various treatments. This resistance makes the disease challenging to treat, emphasizing the need for new treatment strategies. Within the tumor microenvironment (TME), melanoma cells exploit metabolic shifts, particularly glycolysis, to create an immunosuppressive TME that prevents dendritic cells (DCs) from functioning properly. Essential metabolic alterations such as lactate and lipid accumulation, and lack of tryptophan disrupt DC maturation, antigen presentation, and T cell activation. In recent years, melanoma immunotherapy has increasingly focused on reprogramming the metabolism of DCs. This review paper aims to provide insights into the metabolic suppression of melanoma-associated DCs, allowing the design of therapeutic strategies based on metabolic interventions to promote or restore DC function. This contribution reviews the metabolic reprogramming of DCs as a new approach for melanoma immunotherapy.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marjan Sadat Seyed Mehdi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Nasirzadeh Dashtgol
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Ghorbani Vanan
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Rodrigues PF, Wu S, Trsan T, Panda SK, Fachi JL, Liu Y, Du S, de Oliveira S, Antonova AU, Khantakova D, Sudan R, Desai P, Diamond MS, Gilfillan S, Anderson SK, Cella M, Colonna M. Rorγt-positive dendritic cells are required for the induction of peripheral regulatory T cells in response to oral antigens. Cell 2025:S0092-8674(25)00293-4. [PMID: 40185101 DOI: 10.1016/j.cell.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/26/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
The intestinal immune system maintains tolerance to harmless food proteins and gut microbiota through peripherally derived RORγt+ Tregs (pTregs), which prevent food intolerance and inflammatory bowel disease. Recent studies suggested that RORγt+ antigen-presenting cells (APCs), which encompass rare dendritic cell (DC) subsets and type 3 innate lymphoid cells (ILC3s), are key to pTreg induction. Here, we developed a mouse with reduced RORγt+ APCs by deleting a specific cis-regulatory element of Rorc encoding RORγt. Single-cell RNA sequencing and flow cytometry analyses confirmed the depletion of a RORγt+ DC subset and ILC3s. These mice showed a secondary reduction in pTregs, impaired tolerance to oral antigens, and an increase in T helper (Th)2 cells. Conversely, ILC3-deficient mice showed no pTregs or Th2 cell abnormalities. Lineage tracing revealed that RORγt+ DCs share a lymphoid origin with ILC3s, consistent with their similar phenotypic traits. These findings highlight the role of lymphoid RORγt+ DCs in maintaining intestinal immune balance and preventing conditions like food allergies.
Collapse
Affiliation(s)
- Patrick Fernandes Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Shitong Wu
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - José Luís Fachi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Yizhou Liu
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Siling Du
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Sarah de Oliveira
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Darya Khantakova
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Raki Sudan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
4
|
Razavi ZS, Aliniay Sharafshadehi S, Yousefi MH, Javaheri F, Rahimi Barghani MR, Afkhami H, Heidari F. Application of novel strategies in chronic wound management with focusing on pressure ulcers: new perspective. Arch Dermatol Res 2025; 317:320. [PMID: 39888392 DOI: 10.1007/s00403-024-03790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Invading blood cells, extracellular tissue, and soluble mediators all play important roles in the wound-healing process. There is a substantial global burden of disease and mortality attributable to skin defects that do not heal. About 1% to 2% of the population in industrialized nations suffers from chronic wounds that don't heal, despite healthcare breakthroughs; this condition is very costly, costing about $25 billion each year in the US alone. Amputation, infection (affecting as many as 25% of chronic wounds), sepsis, and dermal replacements are all consequences of conventional therapeutic approaches like growth factor therapy and diabetic foot ulcers account for 85% of lower limb amputations. Despite these obstacles, scientists are constantly looking for new ways to speed healing and close wounds. The unique immunomodulatory capabilities and multipotency of mesenchymal stem cells (MSCs) have made them a potential therapeutic choice in tissue engineering and regenerative medicine. Animal models of wound healing have shown that MSCs can speed up the process by as much as 40% through enhancing angiogenesis, modulating inflammation, and promoting fibroblast migration. Clinical trials provide more evidence of their effectiveness; for instance, one RCT found that, after 12 weeks, patients treated with MSCs had a 72% smaller wound size than those in the control group. This review offers a thorough examination of MSCs by combining the latest research with preclinical evidence. Highlighting their potential to transform treatment paradigms, it delves into their biological properties, how they work during regeneration and healing, and therapeutic usefulness in controlling chronic wounds.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Aliniay Sharafshadehi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Javaheri
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
5
|
Vasiliauskas G, Žemaitė E, Skrodenienė E, Poškienė L, Maziliauskienė G, Mačionis A, Miliauskas S, Vajauskas D, Žemaitis M. Early Effects of Bronchoscopic Cryotherapy in Metastatic Non-Small Cell Lung Cancer Patients Receiving Immunotherapy: A Single-Center Prospective Study. Diagnostics (Basel) 2025; 15:201. [PMID: 39857085 PMCID: PMC11763732 DOI: 10.3390/diagnostics15020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Cryotherapy is used for local tissue destruction through rapid freeze-thaw cycles. It induces cancer cell necrosis followed by inflammation in the treated tumor microenvironment, and it stimulates systemic adaptive immunity. Combining cryotherapy with immunotherapy may provide a sustained immune response by preventing T cell exhaustion. Methods: Fifty-five patients with metastatic non-small cell lung cancer who had received no prior treatment were randomized into two groups in a 1:1 ratio: the bronchoscopic cryotherapy group or the control group. Patients received up to four cycles of pembrolizumab as monotherapy or in combination with platinum-based chemotherapy. Immune-related adverse events (irAEs), complications, tumor size changes, overall response rate (ORR), and disease control rate (DCR) were evaluated. Results: Lung tumors, treated with cryotherapy, demonstrated continuous reduction from the baseline (22.4 cm2 vs. 14.4 cm2 vs. 10.2 cm2, p < 0.001). Similar changes were observed in pulmonary tumors in the control group (19.0 cm2 vs. 10.0 cm2, p < 0.001). The median change in pulmonary tumors between two groups was not significant (-42.9% vs. -27.7%, p = 0.175). No significant differences were observed in the ORR (28.6% vs. 23.1%, p = 0.461) or target lesion decrease (-24.0% vs. -23.4%, p = 0.296) between the groups. However, the DCR was significantly higher in the cryotherapy group (95.2% vs. 73.1%, p = 0.049). No cases of serious bleeding during cryotherapy or pneumothorax were observed. Six patients (25.0%) in the cryotherapy group and eight (26.7%) in the control group experienced irAEs. Conclusions: Our study demonstrated that combined bronchoscopic cryotherapy and immunotherapy with or without chemotherapy may reduce the rate of progressive disease in metastatic non-small cell lung cancer patients while maintaining a satisfactory safety profile.
Collapse
Affiliation(s)
- Gediminas Vasiliauskas
- Department of Pulmonology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.M.); (M.Ž.)
| | - Evelina Žemaitė
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.Ž.); (E.S.)
| | - Erika Skrodenienė
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.Ž.); (E.S.)
| | - Lina Poškienė
- Department of Pathology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Gertrūda Maziliauskienė
- Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (G.M.); (A.M.); (D.V.)
| | - Aurimas Mačionis
- Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (G.M.); (A.M.); (D.V.)
| | - Skaidrius Miliauskas
- Department of Pulmonology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.M.); (M.Ž.)
| | - Donatas Vajauskas
- Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (G.M.); (A.M.); (D.V.)
| | - Marius Žemaitis
- Department of Pulmonology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (S.M.); (M.Ž.)
| |
Collapse
|
6
|
He JG, Wu XX, Li S, Yan D, Xiao GP, Mao FG. Exosomes derived from microRNA-540-3p overexpressing mesenchymal stem cells promote immune tolerance via the CD74/nuclear factor-kappaB pathway in cardiac allograft. World J Stem Cells 2024; 16:1022-1046. [PMID: 39734479 PMCID: PMC11669987 DOI: 10.4252/wjsc.v16.i12.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Heart transplantation is a crucial intervention for severe heart failure, yet the challenge of organ rejection is significant. Bone marrow mesenchymal stem cells (BMSCs) and their exosomes have demonstrated potential in modulating T cells, dendtitic cells (DCs), and cytokines to achieve immunomodulatory effects. DCs, as key antigen-presenting cells, play a critical role in shaping immune responses by influencing T-cell activation and cytokine production. Through this modulation, BMSCs and their exosomes enhance graft tolerance and prolonging survival. AIM To explore the immunomodulatory effects of exosomes derived from BMSCs overexpressing microRNA-540-3p (miR-540-3p) on cardiac allograft tolerance, focusing on how these exosomes modulating DCs and T cells activity through the CD74/nuclear factor-kappaB (NF-κB) pathway. METHODS Rat models were used to assess the impact of miR-540-3p-enhanced exosomes on immune tolerance in cardiac allografts. MiR-540-3p expression was manipulated in BMSCs, and derived exosomes were collected and administered to the rat models post-heart transplantation. The study monitored expression levels of major histocompatibility complex II, CD80, CD86, and CD274 in DCs, and quantified CD4+ and CD8+ T cells, T regulatory cells, and cytokine profiles. RESULTS Exosomes from miR-540-3p-overexpressing BMSCs lead to reduced expression of immune activation markers CD74 and NF-κB p65 in DCs and T cells. Rats treated with these exosomes showed decreased inflammation and improved cardiac function, indicated by lower levels of pro-inflammatory cytokines (interleukin-1β, interferon-γ) and higher levels of anti-inflammatory cytokines (interleukin-10, transforming growth factor β1). Additionally, miR-540-3p skewed the profiles of DCs and T cells towards immune tolerance, increasing the ratio of T regulatory cells and shifting cytokine secretion to favor graft acceptance. CONCLUSION Exosomes derived from BMSCs overexpressing miR-540-3p significantly enhance immune tolerance and prolong cardiac allograft survival by modulating the CD74/NF-κB pathway, which regulates activities of DCs and T cells. These findings highlight a promising therapeutic strategy to improve heart transplantation outcomes and potentially reduce the need for prolonged immunosuppression.
Collapse
Affiliation(s)
- Ji-Gang He
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Xin-Xin Wu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Si Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Dan Yan
- Department of Medical Intensive Care Unit, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Gao-Peng Xiao
- Department of Anaesthesia, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Fu-Gang Mao
- Department of Ultrasonic, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China.
| |
Collapse
|
7
|
Vasilieva MI, Shatalova RO, Matveeva KS, Shindyapin VV, Minskaia E, Ivanov RA, Shevyrev DV. Senolytic Vaccines from the Central and Peripheral Tolerance Perspective. Vaccines (Basel) 2024; 12:1389. [PMID: 39772050 PMCID: PMC11680330 DOI: 10.3390/vaccines12121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Preventive medicine has proven its long-term effectiveness and economic feasibility. Over the last century, vaccination has saved more lives than any other medical technology. At present, preventative measures against most infectious diseases are successfully used worldwide; in addition, vaccination platforms against oncological and even autoimmune diseases are being actively developed. At the same time, the development of medicine led to an increase in both life expectancy and the proportion of age-associated diseases, which pose a heavy socio-economic burden. In this context, the development of vaccine-based approaches for the prevention or treatment of age-related diseases opens up broad prospects for extending the period of active longevity and has high economic potential. It is well known that the development of age-related diseases is associated with the accumulation of senescent cells in various organs and tissues. It has been demonstrated that the elimination of such cells leads to the restoration of functions, rejuvenation, and extension of the lives of experimental animals. However, the development of vaccines against senescent cells is complicated by their antigenic heterogeneity and the lack of a unique marker. In addition, senescent cells are the body's own cells, which may be the reason for their low immunogenicity. This mini-review discusses the mechanisms of central and peripheral tolerance that may influence the formation of an anti-senescent immune response and be responsible for the accumulation of senescent cells with age.
Collapse
Affiliation(s)
- Mariia I. Vasilieva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Rimma O. Shatalova
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Kseniia S. Matveeva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia;
| | - Vadim V. Shindyapin
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia;
| | - Ekaterina Minskaia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Roman A. Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Daniil V. Shevyrev
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| |
Collapse
|
8
|
Farhan SH, Jasim SA, Bansal P, Kaur H, Abed Jawad M, Qasim MT, Jabbar AM, Deorari M, Alawadi A, Hadi A. Exosomal Non-coding RNA Derived from Mesenchymal Stem Cells (MSCs) in Autoimmune Diseases Progression and Therapy; an Updated Review. Cell Biochem Biophys 2024; 82:3091-3108. [PMID: 39225902 DOI: 10.1007/s12013-024-01432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Inflammation and autoimmune diseases (AD) are common outcomes of an overactive immune system. Inflammation occurs due to the immune system reacting to damaging stimuli. Exosomes are being recognized as an advanced therapeutic approach for addressing an overactive immune system, positioning them as a promising option for treating AD. Mesenchymal stem cells (MSCs) release exosomes that have strong immunomodulatory effects, influenced by their cell of origin. MSCs-exosomes, being a cell-free therapy, exhibit less toxicity and provoke a diminished immune response compared to cell-based therapies. Exosomal non-coding RNAs (ncRNA), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are intricately linked to various biological and functional aspects of human health. Exosomal ncRNAs can lead to tissue malfunction, aging, and illnesses when they experience tissue-specific alterations as a result of various internal or external problems. In this study, we will examine current trends in exosomal ncRNA researches regarding AD. Then, therapeutic uses of MSCs-exosomal ncRNA will be outlined, with a particle focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shireen Hamid Farhan
- Biotechnology department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hadi
- Department of medical laboratories techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
9
|
Andrusaite A, Lewis J, Frede A, Farthing A, Kästele V, Montgomery J, Mowat A, Mann E, Milling S. Microbiota-derived butyrate inhibits cDC development via HDAC inhibition, diminishing their ability to prime T cells. Mucosal Immunol 2024; 17:1199-1211. [PMID: 39142634 PMCID: PMC11631772 DOI: 10.1016/j.mucimm.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Conventional dendritic cells (cDC) are central to maintaining the balance between protective immune responses and tolerance to harmless antigens, especially in the intestine. Short chain fatty acids (SCFAs) such as butyrate play critical roles in regulating intestinal immunity, but the underlying mechanisms remain unclear. Here we demonstrate that microbiota-derived butyrate alters intestinal cDC populations in vivo resulting in decreased numbers of the cDC2 lineage. By establishing a novel in vitro culture model, we show that butyrate has a direct and selective ability to repress the development of cDC2 from cDC precursors, an effect that is independent of G-protein coupled receptors (GPCRs) and is due to inhibition of histone deacetylase 3. Finally, cDC derived from pre-cDC in the presence of butyrate in vitro express lower levels of costimulatory molecules and have a decreased ability to prime naïve T cells. Together, our data show that butyrate affects the developmental trajectory of cDC, selectively repressing the cDC2 lineage and reducing their ability to stimulate T cells. These properties may help explain the ability of butyrate to maintain homeostasis in the intestine.
Collapse
Affiliation(s)
- Anna Andrusaite
- School of Infection and Immunity, University of Glasgow, UK.
| | - Jennifer Lewis
- School of Infection and Immunity, University of Glasgow, UK
| | - Annika Frede
- School of Infection and Immunity, University of Glasgow, UK
| | | | - Verena Kästele
- School of Infection and Immunity, University of Glasgow, UK
| | | | - Allan Mowat
- School of Infection and Immunity, University of Glasgow, UK
| | - Elizabeth Mann
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, UK
| | - Simon Milling
- School of Infection and Immunity, University of Glasgow, UK.
| |
Collapse
|
10
|
Naaz A, Turnquist HR, Gorantla VS, Little SR. Drug delivery strategies for local immunomodulation in transplantation: Bridging the translational gap. Adv Drug Deliv Rev 2024; 213:115429. [PMID: 39142608 DOI: 10.1016/j.addr.2024.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Drug delivery strategies for local immunomodulation hold tremendous promise compared to current clinical gold-standard systemic immunosuppression as they could improve the benefit to risk ratio of life-saving or life-enhancing transplants. Such strategies have facilitated prolonged graft survival in animal models at lower drug doses while minimizing off-target effects. Despite the promising outcomes in preclinical animal studies, progression of these strategies to clinical trials has faced challenges. A comprehensive understanding of the translational barriers is a critical first step towards clinical validation of effective immunomodulatory drug delivery protocols proven for safety and tolerability in pre-clinical animal models. This review overviews the current state-of-the-art in local immunomodulatory strategies for transplantation and outlines the key challenges hindering their clinical translation.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| | - Heth R Turnquist
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States.
| | - Vijay S Gorantla
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC, 27101, United States.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
11
|
Iesari S, Nava FL, Zais IE, Coubeau L, Ferraresso M, Favi E, Lerut J. Advancing immunosuppression in liver transplantation: A narrative review. Hepatobiliary Pancreat Dis Int 2024; 23:441-448. [PMID: 38523030 DOI: 10.1016/j.hbpd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation (LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solid-organ transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.
Collapse
Affiliation(s)
- Samuele Iesari
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Francesca Laura Nava
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Ilaria Elena Zais
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Laurent Coubeau
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium; Service de Chirurgie et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, 55 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Mariano Ferraresso
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy
| | - Evaldo Favi
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy.
| | - Jan Lerut
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| |
Collapse
|
12
|
Fisher MS, Kurilin VV, Bulygin AS, Shevchenko JA, Philippova JG, Taranov OS, Ivleva EK, Maksyutov AZ, Sennikov SV. Dendritic cells transfected with DNA constructs encoding CCR9, IL-10, and type II collagen demonstrate induction of immunological tolerance in an arthritis model. Front Immunol 2024; 15:1447897. [PMID: 39161770 PMCID: PMC11330828 DOI: 10.3389/fimmu.2024.1447897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Restoring immune tolerance is a promising area of therapy for autoimmune diseases. One method that helps restore immunological tolerance is the approach using tolerogenic dendritic cells (tolDCs). In our study, we analyzed the effectiveness of using dendritic cells transfected with DNA constructs encoding IL-10, type II collagen, and CCR9 to induce immune tolerance in an experimental model of arthritis. Methods Dendritic cell cultures were obtained from bone marrow cells of Balb/c mice. Dendritic cells (DCs) cultures were transfected with pmaxCCR9, pmaxIL-10, and pmaxCollagen type II by electroporation. The phenotype and functions of DCs were studied using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Migration of electroporated DCs was assessed in vitro. Induction of antigen-collagen induced arthritis (ACIA) was carried out according to the protocol in Balb/c mice. DCs were then administered to ACIA mice. The development of arthritis was monitored by measuring paw swelling with a caliper at different time points. The immunological changes were assessed by analyzing the content of antibodies to type II collagen using enzyme immunoassay. Additionally, a histological examination of the joint tissue was conducted, followed by data analysis. The results are as follows DCs were obtained, characterized by reduced expression of CD80, CD86, and H-2Db (MHC class I), increased expression of CCR9, as well as producing IL-10 and having migratory activity to thymus cells. Transfected DCs induced T-regulatory cells (T-reg) and increased the intracellular content of IL-10 and TGF-β in CD4+T cells in their co-culture, and also suppressed their proliferative activity in response to antigen. The administration of tolDCs transfected with DNA constructs encoding type II collagen, IL-10, and CCR9 to mice with ACIA demonstrated a reduction in paw swelling, a reduction in the level of antibodies to type II collagen, and a regression of histological changes. Conclusion The study presents an approach by which DCs transfected with DNA constructs encoding epitopes of type II collagen, IL-10 and CCR9 promote the development of antigen-specific tolerance, control inflammation and reduce the severity of experimental arthritis through the studied mechanisms: induction of T-reg, IL-10, TGF-β.
Collapse
Affiliation(s)
- Marina S. Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vasily V. Kurilin
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Aleksey S. Bulygin
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia A. Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Julia G. Philippova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Oleg S. Taranov
- Department of Microscopic Research, State Research Centre for Virology and Biotechnology «Vektor», Koltsovo, Russia
| | - Elena K. Ivleva
- Department of Microscopic Research, State Research Centre for Virology and Biotechnology «Vektor», Koltsovo, Russia
| | - Amir Z. Maksyutov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Theoretical Department, State Research Center for Virology and Biotechnology “Vektor”, Koltsovo, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
13
|
Mazzoccoli L, Liu B. Dendritic Cells in Shaping Anti-Tumor T Cell Response. Cancers (Basel) 2024; 16:2211. [PMID: 38927916 PMCID: PMC11201542 DOI: 10.3390/cancers16122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Among professional antigen-presenting cells, dendritic cells (DCs) orchestrate innate and adaptive immunity and play a pivotal role in anti-tumor immunity. DCs are a heterogeneous population with varying functions in the tumor microenvironment (TME). Tumor-associated DCs differentiate developmentally and functionally into three main subsets: conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (MoDCs). There are two major subsets of cDCs in TME, cDC1 and cDC2. cDC1 is critical for cross-presenting tumor antigens to activate cytotoxic CD8+ T cells and is also required for priming earlier CD4+ T cells in certain solid tumors. cDC2 is vital for priming anti-tumor CD4+ T cells in multiple tumor models. pDC is a unique subset of DCs and produces type I IFN through TLR7 and TLR9. Studies have shown that pDCs are related to immunosuppression in the TME through the secretion of immunosuppressive cytokines and by promoting regulatory T cells. MoDCs differentiate separately from monocytes in response to inflammatory cues and infection. Also, MoDCs can cross-prime CD8+ T cells. In this review, we summarize the subsets and functions of DCs. We also discuss the role of different DC subsets in shaping T cell immunity in TME and targeting DCs for potential immunotherapeutic benefits against cancer.
Collapse
Affiliation(s)
- Luciano Mazzoccoli
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Kunanopparat A, Dinh TTH, Ponpakdee P, Padungros P, Kaewduangduen W, Ariya-anandech K, Tummamunkong P, Samaeng A, Sae-ear P, Leelahavanichkul A, Hirankarn N, Ritprajak P. Complement receptor 3-dependent engagement by Candida glabrata β-glucan modulates dendritic cells to induce regulatory T-cell expansion. Open Biol 2024; 14:230315. [PMID: 38806144 PMCID: PMC11293457 DOI: 10.1098/rsob.230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata β-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata β-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata β-glucan to CR3. Our data suggest that C. glabrata β-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.
Collapse
Affiliation(s)
- Areerat Kunanopparat
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Truc Thi Huong Dinh
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Pathophysiology and Immunology, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Pranpariya Ponpakdee
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Panuwat Padungros
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Warerat Kaewduangduen
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Kasirapat Ariya-anandech
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Phawida Tummamunkong
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Amanee Samaeng
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Pannagorn Sae-ear
- Faculty of Dentistry, Oral Biology Research Center, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Schafer S, Chen K, Ma L. Crosstalking with Dendritic Cells: A Path to Engineer Advanced T Cell Immunotherapy. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1372995. [PMID: 38911455 PMCID: PMC11192543 DOI: 10.3389/fsysb.2024.1372995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Crosstalk between dendritic cells (DCs) and T cells plays a crucial role in modulating immune responses in natural and pathological conditions. DC-T cell crosstalk is achieved through contact-dependent (i.e., immunological synapse) and contact-independent mechanisms (i.e., cytokines). Activated DCs upregulate co-stimulatory signals and secrete proinflammatory cytokines to orchestrate T cell activation and differentiation. Conversely, activated T helper cells "license" DCs towards maturation, while regulatory T cells (Tregs) silence DCs to elicit tolerogenic immunity. Strategies to efficiently modulate the DC-T cell crosstalk can be harnessed to promote immune activation for cancer immunotherapy or immune tolerance for the treatment of autoimmune diseases. Here, we review the natural crosstalk mechanisms between DC and T cells. We highlight bioengineering approaches to modulate DC-T cell crosstalk, including conventional vaccines, synthetic vaccines, and DC-mimics, and key seminal studies leveraging these approaches to steer immune response for the treatment of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Sogand Schafer
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research Institute, Children’s Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, PA 19104, USA
| | - Kaige Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leyuan Ma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, US
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Xiang J, Liu B, Li Y, Ren Y, Li Y, Zhou M, Yu J, Luo Z, Liu E, Fu Z, Ding F. TFEB regulates dendritic cell antigen presentation to modulate immune balance in asthma. Respir Res 2024; 25:182. [PMID: 38664707 PMCID: PMC11046778 DOI: 10.1186/s12931-024-02806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE Asthma stands as one of the most prevalent chronic respiratory conditions in children, with its pathogenesis tied to the actived antigen presentation by dendritic cells (DCs) and the imbalance within T cell subgroups. This study seeks to investigate the role of the transcription factor EB (TFEB) in modulating the antigen presentation process of DCs and its impact on the differentiation of T cell subgroups. METHODS Bone marrow dendritic cells (BMDCs) were activated using house dust mites (HDM) and underwent RNA sequencing (RNA-seq) to pinpoint differentially expressed genes. TFEB mRNA expression levels were assessed in the peripheral blood mononuclear cells (PBMCs) of both healthy children and those diagnosed with asthma. In an asthma mouse model induced by HDM, the TFEB expression in lung tissue DCs was evaluated. Further experiments involved LV-shTFEB BMDCs co-cultured with T cells to explore the influence of TFEB on DCs' antigen presentation, T cell subset differentiation, and cytokine production. RESULTS Transcriptomic sequencing identified TFEB as a significantly differentially expressed gene associated with immune system pathways and antigen presentation. Notably, TFEB expression showed a significant increase in the PBMCs of children diagnosed with asthma compared to healthy counterparts. Moreover, TFEB exhibited heightened expression in lung tissue DCs of HDM-induced asthmatic mice and HDM-stimulated BMDCs. Silencing TFEB resulted in the downregulation of MHC II, CD80, CD86, and CD40 on DCs. This action reinstated the equilibrium among Th1/Th2 and Th17/Treg cell subgroups, suppressed the expression of pro-inflammatory cytokines like IL-4, IL-5, IL-13, and IL-17, while augmenting the expression of the anti-inflammatory cytokine IL-10. CONCLUSION TFEB might have a vital role in asthma's development by impacting the antigen presentation of DCs, regulating T cell subgroup differentiation, and influencing cytokine secretion. Its involvement could be pivotal in rebalancing the immune system in asthma. These research findings could potentially unveil novel therapeutic avenues for treating asthma.
Collapse
Affiliation(s)
- JinYing Xiang
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China
| | - Bo Liu
- Department of Cardiothoracic Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China.
| | - Yan Li
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China
| | - Yinying Ren
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China
| | - Yuehan Li
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China
| | - Mi Zhou
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China
| | - Jinyue Yu
- Bristol Medical School, University of Bristol, Bristol, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China
| | - Enmei Liu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China
| | - Zhou Fu
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China
| | - Fengxia Ding
- Department of Respiratory Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong Dis, 400014, Chongqing, PR China.
| |
Collapse
|
17
|
Montero-Herradón S, García-Ceca J, Villarejo-Torres M, Zapata AG. Peripheral T-cell responses of EphB2- and EphB3-deficient mice in a model of collagen-induced arthritis. Cell Mol Life Sci 2024; 81:159. [PMID: 38558087 PMCID: PMC10984909 DOI: 10.1007/s00018-024-05197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Both EphB2- and EphB3-deficient mice exhibit profound histological alterations in the thymic epithelial network but few changes in T-cell differentiation, suggesting that this organization would be sufficient to produce functional T lymphocytes. Also, other antigen-presenting cells involved in immunological education could substitute the thymic epithelium. Accordingly, we found an increased frequency of plasmacytoid dendritic cells but not of conventional dendritic cells, medullary fibroblasts or intrathymic B lymphocytes. In addition, there are no lymphoid infiltrates in the organs of mutant mice nor do they contain circulating autoantibodies. Furthermore, attempts to induce arthritic lesions after chicken type II collagen administration fail totally in EphB2-deficient mice whereas all WT and half of the immunized EphB3-/- mice develop a typical collagen-induced arthritis. Our results point out that Th17 cells, IL4-producing Th2 cells and regulatory T cells are key for the induction of disease, but mutant mice appear to have deficits in T cell activation or cell migration properties. EphB2-/- T cells show reduced in vitro proliferative responses to anti-CD3/anti-CD28 antibodies, produce low levels of anti-type II collagen antibodies, and exhibit low proportions of T follicular helper cells. On the contrary, EphB3-/- lymph node cells respond accurately to the different immune stimuli although in lower levels than WT cells but show a significantly reduced migration in in vitro transwell assays, suggesting that no sufficient type II collagen-dependent activated lymphoid cells reached the joints, resulting in reduced arthritic lesions.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain.
| |
Collapse
|
18
|
Di Florio DN, Beetler DJ, McCabe EJ, Sin J, Ikezu T, Fairweather D. Mitochondrial extracellular vesicles, autoimmunity and myocarditis. Front Immunol 2024; 15:1374796. [PMID: 38550582 PMCID: PMC10972887 DOI: 10.3389/fimmu.2024.1374796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
For many decades viral infections have been suspected as 'triggers' of autoimmune disease, but mechanisms for how this could occur have been difficult to establish. Recent studies have shown that viral infections that are commonly associated with viral myocarditis and other autoimmune diseases such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are released from cells in mitochondrial vesicles that are able to activate the innate immune response. Studies have shown that Toll-like receptor (TLR)4 and the inflammasome pathway are activated by mitochondrial components. Autoreactivity against cardiac myosin and heart-specific immune responses that occur after infection with viruses where the heart is not the primary site of infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the highest density of mitochondria in the body. Evidence exists for autoantibodies against mitochondrial antigens in patients with myocarditis and dilated cardiomyopathy. Defects in tolerance mechanisms like autoimmune regulator gene (AIRE) may further increase the likelihood of autoreactivity against mitochondrial antigens leading to autoimmune disease. The focus of this review is to summarize current literature regarding the role of viral infection in the production of extracellular vesicles containing mitochondria and virus and the development of myocarditis.
Collapse
Affiliation(s)
- Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
19
|
Hong Q, Ding S, Xing C, Mu Z. Advances in tumor immune microenvironment of head and neck squamous cell carcinoma: A review of literature. Medicine (Baltimore) 2024; 103:e37387. [PMID: 38428879 PMCID: PMC10906580 DOI: 10.1097/md.0000000000037387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2024] Open
Abstract
Squamous cell carcinoma is seen as principal malignancy of head and neck. Tumor immune microenvironment plays a vital role in the occurrence, development and treatment of head and neck squamous cell carcinoma (HNSCC). The effect of immunotherapy, in particular, is closely related to tumor immune microenvironment. This review searched for high-quality literature included within PubMed, Web of Science, and Scopus using the keywords "head and neck cancers," "tumor microenvironment" and "immunotherapy," with the view to summarizing the characteristics of HNSCC immune microenvironment and how various subsets of immune cells promote tumorigenesis. At the same time, based on the favorable prospects of immunotherapy having been shown currently, the study is committed to pinpointing the latest progress of HNSCC immunotherapy, which is of great significance in not only further guiding the diagnosis and treatment of HNSCC, but also conducting its prognostic judgement.
Collapse
Affiliation(s)
- Qichao Hong
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Shun Ding
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Chengliang Xing
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Zhonglin Mu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
20
|
Kim HD, Yeh CY, Chang YC, Kim CH. Dawn era for revisited cancer therapy by innate immune system and immune checkpoint inhibitors. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167019. [PMID: 38211726 DOI: 10.1016/j.bbadis.2024.167019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Immunotherapy is a promising therapeutic strategy for cancer. However, it shows limited efficacy against certain tumor types. The activation of innate immunity can suppress tumors by mitigating inflammatory and malignant behaviors through immune surveillance. The tumor microenvironment, which is composed of immune cells and cancer cells, plays a crucial role in determining the outcomes of immunotherapy. Relying solely on immune checkpoint inhibitors is not an optimal approach. Instead, there is a need to consider the use of a combination of immune checkpoint inhibitors with other modulators of the innate immune system to improve the tumor microenvironment. This can be achieved through methods such as immune cell antigen presentation and recognition. In this review, we delve into the significance of innate immune cells in tumor regression, as well as the role of the interaction of tumor cells with innate immune cells in evading host immune surveillance. These findings pave the way for the next chapter in the field of immunotherapy.
Collapse
Affiliation(s)
- Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do 16419, Republic of Korea
| | - Chia-Ying Yeh
- Department of Biomedicine Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chan Chang
- Department of Biomedicine Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon, Gyunggi-Do 16419, Republic of Korea; Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
21
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Liu Q, Chen G, Liu X, Tao L, Fan Y, Xia T. Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS NANO 2024. [PMID: 38323542 DOI: 10.1021/acsnano.3c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Autoimmune diseases, allergies, transplant rejections, generation of antidrug antibodies, and chronic inflammatory diseases have impacted a large group of people across the globe. Conventional treatments and therapies often use systemic or broad immunosuppression with serious efficacy and safety issues. Tolerogenic vaccines represent a concept that has been extended from their traditional immune-modulating function to induction of antigen-specific tolerance through the generation of regulatory T cells. Without impairing immune homeostasis, tolerogenic vaccines dampen inflammation and induce tolerogenic regulation. However, achieving the desired potency of tolerogenic vaccines as preventive and therapeutic modalities calls for precise manipulation of the immune microenvironment and control over the tolerogenic responses against the autoantigens, allergens, and/or alloantigens. Engineered nano-/microparticles possess desirable design features that can bolster targeted immune regulation and enhance the induction of antigen-specific tolerance. Thus, particle-based tolerogenic vaccines hold great promise in clinical translation for future treatment of aforementioned immune disorders. In this review, we highlight the main strategies to employ particles as exciting tolerogenic vaccines, with a focus on the particles' role in facilitating the induction of antigen-specific tolerance. We describe the particle design features that facilitate their usage and discuss the challenges and opportunities for designing next-generation particle-based tolerogenic vaccines with robust efficacy to promote antigen-specific tolerance for immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Lu Tao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Moussion C, Delamarre L. Antigen cross-presentation by dendritic cells: A critical axis in cancer immunotherapy. Semin Immunol 2024; 71:101848. [PMID: 38035643 DOI: 10.1016/j.smim.2023.101848] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in shaping adaptive immunity. DCs have a unique ability to sample their environment, capture and process exogenous antigens into peptides that are then loaded onto major histocompatibility complex class I molecules for presentation to CD8+ T cells. This process, called cross-presentation, is essential for initiating and regulating CD8+ T cell responses against tumors and intracellular pathogens. In this review, we will discuss the role of DCs in cancer immunity, the molecular mechanisms underlying antigen cross-presentation by DCs, the immunosuppressive factors that limit the efficiency of this process in cancer, and approaches to overcome DC dysfunction and therapeutically promote antitumoral immunity.
Collapse
Affiliation(s)
| | - Lélia Delamarre
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
24
|
Klug N, Burke J, Scott E. Rational Engineering of Islet Tolerance via Biomaterial-Mediated Immune Modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:216-224. [PMID: 38166244 PMCID: PMC10766078 DOI: 10.4049/jimmunol.2300527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 01/04/2024]
Abstract
Type 1 diabetes (T1D) onset is characterized by an autoimmune attack on β islet cells within the pancreas, preventing the insulin secretion required to maintain glucose homeostasis. Targeted modulation of key immunoregulatory cell populations is a promising strategy to restore tolerance to β cells. This strategy can be used to prevent T1D onset or reverse T1D with transplanted islets. To this end, drug delivery systems can be employed to transport immunomodulatory cargo to specific cell populations that inhibit autoreactive T cell-mediated destruction of the β cell mass. The rational engineering of biomaterials into nanoscale and microscale drug carriers can facilitate targeted interactions with immune cells. The physicochemical properties of the biomaterial, the delivered immunomodulatory agent, and the target cell populations are critical variables in the design of these delivery systems. In this review, we discuss recent biomaterials-based drug delivery approaches to induce islet tolerance and the need to consider both immune and metabolic markers of disease progression.
Collapse
Affiliation(s)
- Natalie Klug
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL
| | - Jacqueline Burke
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL
| | - Evan Scott
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
25
|
Nenciarini S, Amoriello R, Bacci G, Cerasuolo B, Di Paola M, Nardini P, Papini A, Ballerini C, Cavalieri D. Yeast strains isolated from fermented beverage produce extracellular vesicles with anti-inflammatory effects. Sci Rep 2024; 14:730. [PMID: 38184708 PMCID: PMC10771474 DOI: 10.1038/s41598-024-51370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayered particles, containing various biomolecules, including nucleic acids, lipids, and proteins, released by cells from all the domains of life and performing multiple communication functions. Evidence suggests that the interaction between host immune cells and fungal EVs induces modulation of the immune system. Most of the studies on fungal EVs have been conducted in the context of fungal infections; therefore, there is a knowledge gap in what concerns the production of EVs by yeasts in other contexts rather than infection and that may affect human health. In this work, we characterized EVs obtained by Saccharomyces cerevisiae and Pichia fermentans strains isolated from a fermented milk product with probiotic properties. The immunomodulation abilities of EVs produced by these strains have been studied in vitro through immune assays after internalization from human monocyte-derived dendritic cells. Results showed a significant reduction in antigen presentation activity of dendritic cells treated with the fermented milk EVs. The small RNA fraction of EVs contained mainly yeast mRNA sequences, with a few molecular functions enriched in strains of two different species isolated from the fermented milk. Our results suggest that one of the mechanisms behind the anti-inflammatory properties of probiotic foods could be mediated by the interactions of human immune cells with yeast EVs.
Collapse
Affiliation(s)
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | | | - Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
26
|
Kalinina O, Minter LM, Sperling AI, Hollinger MK, Le P, Osborne BA, Zhang S, Stiff P, Knight KL. Exopolysaccharide-Treated Dendritic Cells Effectively Ameliorate Acute Graft-versus-Host Disease. Transplant Cell Ther 2024; 30:79.e1-79.e10. [PMID: 37924979 DOI: 10.1016/j.jtct.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Graft-versus-host disease (GVHD) is a primary and often lethal complication of allogenic hematopoietic stem cell transplantation (HSCT). Prophylactic regimens for GVHD are given as standard pretransplantation therapy; however, up to 50% of these patients develop acute GVHD (aGVHD) and require additional immunosuppressive intervention. Using a mouse GVHD model, we previously showed that injecting mice with exopolysaccharide (EPS) from Bacillus subtilis prior to GVHD induction significantly increased 80-day survival after transplantation of complete allogeneic major histocompatibility complex-mismatched cells. To ask whether EPS might also inhibit GVHD in humans, we used humanized NSG-HLA-A2 mice and induced GVHD by i.v. injection of A2neg human peripheral blood mononuclear cells (PBMCs). Because we could not inject human donors with EPS, we transferred EPS-pretreated dendritic cells (DCs) to inhibit aGVHD. We derived these DCs from CD34+ human cord blood cells, treated them with EPS, and then injected them together with PBMCs into the NSG-HLA-A2 mice. We found that all mice that received untreated DCs were dead by day 35, whereas 25% of mice receiving EPS-treated DCs (EPS-DCs) survived. This DC cell therapy could be readily translatable to humans, because we can generate large numbers of human EPS-DCs and use them as an "off the shelf" treatment for patients undergoing HSCT.
Collapse
Affiliation(s)
- Olga Kalinina
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Lisa M Minter
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Anne I Sperling
- Department of Medicine, Pulmonary Division, and Carter Center for Immunology, University of Virginia, Charlottesville, Virginia
| | | | - Phong Le
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Barbara A Osborne
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts; HasenTech, LLC, Leverett, Massachusetts
| | - Shubin Zhang
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Patrick Stiff
- Hematology-Oncology Division, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Katherine L Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois; HasenTech, LLC, Leverett, Massachusetts.
| |
Collapse
|
27
|
Wang S, Li G, Liang X, Wu Z, Chen C, Zhang F, Niu J, Li X, Yan J, Wang N, Li J, Wang Y. Small Extracellular Vesicles Derived from Altered Peptide Ligand-Loaded Dendritic Cell Act as A Therapeutic Vaccine for Spinal Cord Injury Through Eliciting CD4 + T cell-Mediated Neuroprotective Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304648. [PMID: 38037457 PMCID: PMC10797491 DOI: 10.1002/advs.202304648] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Indexed: 12/02/2023]
Abstract
The balance among different CD4+ T cell subsets is crucial for repairing the injured spinal cord. Dendritic cell (DC)-derived small extracellular vesicles (DsEVs) effectively activate T-cell immunity. Altered peptide ligands (APLs), derived from myelin basic protein (MBP), have been shown to affect CD4+ T cell subsets and reduce neuroinflammation levels. However, the application of APLs is challenging because of their poor stability and associated side effects. Herein, it is demonstrate that DsEVs can act as carriers for APL MBP87-99 A91 (A91-DsEVs) to induce the activation of 2 helper T (Th2) and regulatory T (Treg) cells for spinal cord injury (SCI) in mice. These stimulated CD4+ T cells can efficiently "home" to the lesion area and establish a beneficial microenvironment through inducing the activation of M2 macrophages/microglia, inhibiting the expression of inflammatory cytokines, and increasing the release of neurotrophic factors. The microenvironment mediated by A91-DsEVs may enhance axon regrowth, protect neurons, and promote remyelination, which may support the recovery of motor function in the SCI model mice. In conclusion, using A91-DsEVs as a therapeutic vaccine may help induce neuroprotective immunity in the treatment of SCI.
Collapse
Affiliation(s)
- Sikai Wang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and RegenerationThe Second Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Guanglei Li
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Xiongjie Liang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Zexuan Wu
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Chao Chen
- Faculty of Medicine and DentistryUniversity of AlbertaEdmontonT5C 0T2Canada
| | - Fawang Zhang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Jiawen Niu
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and RegenerationThe Second Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Xuefeng Li
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Jinglong Yan
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Nanxiang Wang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Jing Li
- Department of Pathology and Electron MicroscopyFaculty of Basic Medical ScienceHarbin Medical UniversityNo. 157 Baojian RoadHarbin150086China
| | - Yufu Wang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| |
Collapse
|
28
|
Mohaghegh N, Ahari A, Zehtabi F, Buttles C, Davani S, Hoang H, Tseng K, Zamanian B, Khosravi S, Daniali A, Kouchehbaghi NH, Thomas I, Serati Nouri H, Khorsandi D, Abbasgholizadeh R, Akbari M, Patil R, Kang H, Jucaud V, Khademhosseini A, Hassani Najafabadi A. Injectable hydrogels for personalized cancer immunotherapies. Acta Biomater 2023; 172:67-91. [PMID: 37806376 DOI: 10.1016/j.actbio.2023.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The field of cancer immunotherapy has shown significant growth, and researchers are now focusing on effective strategies to enhance and prolong local immunomodulation. Injectable hydrogels (IHs) have emerged as versatile platforms for encapsulating and controlling the release of small molecules and cells, drawing significant attention for their potential to enhance antitumor immune responses while inhibiting metastasis and recurrence. IHs delivering natural killer (NK) cells, T cells, and antigen-presenting cells (APCs) offer a viable method for treating cancer. Indeed, it can bypass the extracellular matrix and gradually release small molecules or cells into the tumor microenvironment, thereby boosting immune responses against cancer cells. This review provides an overview of the recent advancements in cancer immunotherapy using IHs for delivering NK cells, T cells, APCs, chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. First, we introduce IHs as a delivery matrix, then summarize their applications for the local delivery of small molecules and immune cells to elicit robust anticancer immune responses. Additionally, we discuss recent progress in IHs systems used for local combination therapy, including chemoimmunotherapy, radio-immunotherapy, photothermal-immunotherapy, photodynamic-immunotherapy, and gene-immunotherapy. By comprehensively examining the utilization of IHs in cancer immunotherapy, this review aims to highlight the potential of IHs as effective carriers for immunotherapy delivery, facilitating the development of innovative strategies for cancer treatment. In addition, we demonstrate that using hydrogel-based platforms for the targeted delivery of immune cells, such as NK cells, T cells, and dendritic cells (DCs), has remarkable potential in cancer therapy. These innovative approaches have yielded substantial reductions in tumor growth, showcasing the ability of hydrogels to enhance the efficacy of immune-based treatments. STATEMENT OF SIGNIFICANCE: As cancer immunotherapy continues to expand, the mode of therapeutic agent delivery becomes increasingly critical. This review spotlights the forward-looking progress of IHs, emphasizing their potential to revolutionize localized immunotherapy delivery. By efficiently encapsulating and controlling the release of essential immune components such as T cells, NK cells, APCs, and various therapeutic agents, IHs offer a pioneering pathway to amplify immune reactions, moderate metastasis, and reduce recurrence. Their adaptability further shines when considering their role in emerging combination therapies, including chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. Understanding IHs' significance in cancer therapy is essential, suggesting a shift in cancer treatment dynamics and heralding a novel period of focused, enduring, and powerful therapeutic strategies.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Indiana University Bloomington, Department of Biology, Bloomington, IN 47405, USA
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90024, USA
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, USA
| | - Benjamin Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Ariella Daniali
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, Iran
| | - Isabel Thomas
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hamed Serati Nouri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Rameshwar Patil
- Department of Basic Science and Neurosurgery, Division of Cancer Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Heemin Kang
- Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | | |
Collapse
|
29
|
Malik JA, Zafar MA, Lamba T, Nanda S, Khan MA, Agrewala JN. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes 2023; 15:2290643. [PMID: 38087439 PMCID: PMC10718154 DOI: 10.1080/19490976.2023.2290643] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Aging is an inevitable natural process that impacts every individual, and understanding its effect on the gut microbiome and dendritic cell (DC) functionality in elderly subjects is crucial. DCs are vital antigen-presenting cells (APCs) that orchestrate the immune response, maintaining immune tolerance to self-antigens and bridging innate and adaptive immunity. With aging, there is a shift toward nonspecific innate immunity, resulting in a decline in adaptive immune responses. This alteration raises significant concerns about managing the health of an elderly population. However, the precise impact of aging and microbiome changes on DC function and their implications in lung-associated diseases remain relatively understudied. To illuminate this subject, we will discuss recent advancements in understanding the connections between aging, gut dysbiosis, DCs, and lung diseases. Emphasizing the key concepts linking age-related gut microbiome changes and DC functions, we will focus on their relevance to overall health and immune response in elderly individuals. This article aims to improve our understanding of the intricate relationship between aging, gut microbiome, and DCs, potentially benefiting the management of age-associated diseases and promoting healthy aging.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Adeel Zafar
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Taruna Lamba
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Sidhanta Nanda
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Affan Khan
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Javed Naim Agrewala
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| |
Collapse
|
30
|
Hervé PL, Dioszeghy V, Matthews K, Bee KJ, Campbell DE, Sampson HA. Recent advances in epicutaneous immunotherapy and potential applications in food allergy. FRONTIERS IN ALLERGY 2023; 4:1290003. [PMID: 37965375 PMCID: PMC10641725 DOI: 10.3389/falgy.2023.1290003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Given the potent immunological properties of the skin, epicutaneous immunotherapy (EPIT) emerges as a promising treatment approach for inducing immune tolerance, particularly for food allergies. Targeting the highly immunocompetent, non-vascularized epidermis allows for the application of microgram amounts of allergen while significantly reducing the risk of allergen passage into the bloodstream, thus limiting systemic allergen exposure and distribution. This makes EPIT highly suitable for the treatment of potentially life-threatening allergies such as food allergies. Multiple approaches to EPIT are currently under investigation for the treatment of food allergy, and these include the use of allergen-coated microneedles, application of allergen on the skin pretreated by tape stripping, abrasion or laser-mediated microperforation, or the application of allergen on the intact skin using an occlusive epicutaneous system. To date, the most clinically advanced approach to EPIT is the Viaskin technology platform. Viaskin is an occlusive epicutaneous system (patch) containing dried native allergen extracts, without adjuvants, which relies on frequent application for the progressive passage of small amounts of allergen to the epidermis through occlusion of the intact skin. Numerous preclinical studies of Viaskin have demonstrated that this particular approach to EPIT can induce potent and long-lasting T-regulatory cells with broad homing capabilities, which can exert their suppressive effects in multiple organs and ameliorate immune responses from different routes of allergen exposure. Clinical trials of the Viaskin patch have studied the efficacy and safety for the treatment of life-threatening allergies in younger patients, at an age when allergic diseases start to occur. Moreover, this treatment approach is designed to provide a non-invasive therapy with no restrictions on daily activities. Taken together, the preclinical and clinical data on the use of EPIT support the continued investigation of this therapeutic approach to provide improved treatment options for patients with allergic disorders in the near future.
Collapse
Affiliation(s)
| | | | | | | | - Dianne E. Campbell
- DBV Technologies, Montrouge, France
- Department of Allergy and Immunology, University of Sydney, Sydney, NSW, Australia
| | - Hugh A. Sampson
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
31
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
32
|
Xu Q, Cheng W, Wei J, Ou Y, Xiao X, Jia Y. Synergist for antitumor therapy: Astragalus polysaccharides acting on immune microenvironment. Discov Oncol 2023; 14:179. [PMID: 37741920 PMCID: PMC10517906 DOI: 10.1007/s12672-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Various new treatments are emerging constantly in anti-tumor therapies, including chemotherapy, immunotherapy, and targeted therapy. However, the efficacy is still not satisfactory. Astragalus polysaccharide is an important bioactive component derived from the dry root of Radix astragali. Studies found that astragalus polysaccharides have gained great significance in increasing the sensitivity of anti-tumor treatment, reducing the side effects of anti-tumor treatment, reversing the drug resistance of anti-tumor drugs, etc. In this review, we focused on the role of astragalus polysaccharides in tumor immune microenvironment. We reviewed the immunomodulatory effect of astragalus polysaccharides on macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes. We found that astragalus polysaccharides can promote the activities of macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes and induce the expression of a variety of cytokines and chemokines. Furthermore, we summarized the clinical applications of astragalus polysaccharides in patients with digestive tract tumors. We summarized the effective mechanism of astragalus polysaccharides on digestive tract tumors, including apoptosis induction, proliferation inhibition, immunoactivity regulation, enhancement of the anticancer effect and chemosensitivity. Therefore, in view of the multiple functions of astragalus polysaccharides in tumor immune microenvironment and its clinical efficacy, the combination of astragalus polysaccharides with antitumor therapy such as immunotherapy may provide new sparks to the bottleneck of current treatment methods.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinrui Wei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
33
|
Asensi Cantó P, Sanz Caballer J, Solves Alcaína P, de la Rubia Comos J, Gómez Seguí I. Extracorporeal Photopheresis in Graft-versus-Host Disease. Transplant Cell Ther 2023; 29:556-566. [PMID: 37419324 DOI: 10.1016/j.jtct.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Graft-versus-host disease (GVHD) is a major cause of mortality and morbidity following allogeneic hematopoietic stem cell transplantation. Extracorporeal photopheresis (ECP), which exposes mononuclear cells to ultraviolet A irradiation in the presence of a photosensitizing agent, has shown efficacy in the treatment of GVHD. Recent observations in molecular and cell biology have revealed the mechanisms by which ECP can reverse GVHD, including lymphocyte apoptosis, differentiation of dendritic cells from circulating monocytes, and modification of the cytokine profile and T cell subpopulations. Technical innovations have made ECP accessible to a broader range of patients; however, logistical constraints may limit its use. In this review, we scrutinize the development of ECP from its origins to recent insights into the biology underlying ECP efficacy. We also review practical aspects that may complicate successful ECP treatment. Finally, we analyze how these theoretical concepts translate into clinical practice, summarizing the published experiences of leading research groups worldwide.
Collapse
Affiliation(s)
- Pedro Asensi Cantó
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.
| | - Jaime Sanz Caballer
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Pilar Solves Alcaína
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Javier de la Rubia Comos
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | - Inés Gómez Seguí
- Haematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Hatscher L, Kaszubowski T, Amon L, Dudziak D, Heger L. Circumventing pyroptosis via hyperactivation shapes superior immune responses of human type 2 dendritic cells compared to type 3 dendritic cells. Eur J Immunol 2023; 53:e2250123. [PMID: 36724513 DOI: 10.1002/eji.202250123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
Exploiting inflammasome activation in dendritic cells (DCs) is a promising approach to fight cancer and to augment adjuvant-induced immune responses. As inflammasome formation is typically accompanied by pyroptosis, hyperactivation-defined as inflammasome activation in the absence of pyroptosis-represents a mechanism of circumventing cell death of DCs while simultaneously benefitting from inflammasome signaling. We previously demonstrated a unique specialization for inflammasome responses and hyperactivation of human cDC2 among all human DC subsets. As recent investigations revealed heterogeneity among the human cDC2 population, we aimed to analyze whether the two recently identified cDC2 subpopulations DC2 and DC3 harbor similar or different inflammasome characteristics. Here, we report that both DC2 and DC3 are inflammasome competent. We show that DC3 generally induce stronger inflammasome responses, which are associated with higher levels of cell death. Although DC2 release lower levels of inflammasome-dependent IL-1β, they induce stronger CD4+ T cell responses than DC3, which are predominantly skewed toward a TH 1/TH 17 phenotype. Thus, mainly DC2 seem to be able to enter a state of hyperactivation, resulting in enhanced T cell stimulatory capacity.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91052, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, 91054, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| |
Collapse
|
35
|
Komori S, Saito Y, Nishimura T, Respatika D, Endoh H, Yoshida H, Sugihara R, Iida-Norita R, Afroj T, Takai T, Oduori OS, Nitta E, Kotani T, Murata Y, Kaneko Y, Nitta R, Ohnishi H, Matozaki T. CD47 promotes peripheral T cell survival by preventing dendritic cell-mediated T cell necroptosis. Proc Natl Acad Sci U S A 2023; 120:e2304943120. [PMID: 37549290 PMCID: PMC10440595 DOI: 10.1073/pnas.2304943120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Conventional dendritic cells (cDCs) are required for peripheral T cell homeostasis in lymphoid organs, but the molecular mechanism underlying this requirement has remained unclear. We here show that T cell-specific CD47-deficient (Cd47 ΔT) mice have a markedly reduced number of T cells in peripheral tissues. Direct interaction of CD47-deficient T cells with cDCs resulted in activation of the latter cells, which in turn induced necroptosis of the former cells. The deficiency and cell death of T cells in Cd47 ΔT mice required expression of its receptor signal regulatory protein α on cDCs. The development of CD4+ T helper cell-dependent contact hypersensitivity and inhibition of tumor growth by cytotoxic CD8+ T cells were both markedly impaired in Cd47 ΔT mice. CD47 on T cells thus likely prevents their necroptotic cell death initiated by cDCs and thereby promotes T cell survival and function.
Collapse
Affiliation(s)
- Satomi Komori
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Taichi Nishimura
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Datu Respatika
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
- Division of Reconstruction, Oculoplasty, and Oncology, Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta55281, Indonesia
| | - Hiromi Endoh
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Risa Sugihara
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Rie Iida-Norita
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Tania Afroj
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Tomoko Takai
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Okechi S. Oduori
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Yoriaki Kaneko
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Gunma371-8511, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma371-8514, Japan
| | - Takashi Matozaki
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0047, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe650-0017, Japan
| |
Collapse
|
36
|
Park J, Wu Y, Li Q, Choi J, Ju H, Cai Y, Lee J, Oh YK. Nanomaterials for antigen-specific immune tolerance therapy. Drug Deliv Transl Res 2023; 13:1859-1881. [PMID: 36094655 DOI: 10.1007/s13346-022-01233-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Abstract
Impairment of immune tolerance might cause autologous tissue damage or overactive immune response against non-pathogenic molecules. Although autoimmune disease and allergy have complicated pathologies, the current strategies have mainly focused on symptom amelioration or systemic immunosuppression which can lead to fatal adverse events. The induction of antigen-specific immune tolerance may provide therapeutic benefits to autoimmune disease and allergic response, while reducing nonspecific immune adverse responses. Diverse nanomaterials have been studied to induce antigen-specific immune tolerance therapy. This review will cover the immunological background of antigen-specific tolerance, clinical importance of antigen-specific immune tolerance, and nanomaterials designed for autoimmune and allergic diseases. As nanomaterials for modulating immune tolerances, lipid-based nanoparticles, polymeric nanoparticles, and biological carriers have been covered. Strategies to provide antigen-specific immune tolerance have been addressed. Finally, current challenges and perspectives of nanomaterials for antigen-specific immune tolerance therapy will be discussed.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyemin Ju
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
37
|
Nagy NA, Lozano Vigario F, Sparrius R, van Capel TMM, van Ree R, Tas SW, de Vries IJM, Geijtenbeek TBH, Slütter B, de Jong EC. Liposomes loaded with vitamin D3 induce regulatory circuits in human dendritic cells. Front Immunol 2023; 14:1137538. [PMID: 37359530 PMCID: PMC10288978 DOI: 10.3389/fimmu.2023.1137538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Nanomedicine provides a promising platform for manipulating dendritic cells (DCs) and the ensuing adaptive immune response. For the induction of regulatory responses, DCs can be targeted in vivo with nanoparticles incorporating tolerogenic adjuvants and auto-antigens or allergens. Methods Here, we investigated the tolerogenic effect of different liposome formulations loaded with vitamin D3 (VD3). We extensively phenotyped monocyte-derived DCs (moDCs) and skin DCs and assessed DC-induced regulatory CD4+ T cells in coculture. Results Liposomal VD3 primed-moDCs induced the development of regulatory CD4+ T cells (Tregs) that inhibited bystander memory T cell proliferation. Induced Tregs were of the FoxP3+ CD127low phenotype, also expressing TIGIT. Additionally, liposome-VD3 primed moDCs inhibited the development of T helper 1 (Th1) and T helper 17 (Th17) cells. Skin injection of VD3 liposomes selectively stimulated the migration of CD14+ skin DCs. Discussion These results suggest that nanoparticulate VD3 is a tolerogenic tool for DC-mediated induction of regulatory T cell responses.
Collapse
Affiliation(s)
- Noémi Anna Nagy
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | | | - Rinske Sparrius
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Toni M. M. van Capel
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Universitair Medische Centra (UMC), Department of Otorhinolaryngology, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. Tas
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Universitair Medische Centra (UMC), Department of Rheumatology and Clinical Immunology, University of Amsterdam, Amsterdam, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teunis B. H. Geijtenbeek
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, Netherlands
| | - Esther C. de Jong
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
38
|
Ge Y, Zhang J, Jin K, Ye Z, Wang W, Zhou Z, Ye J. Multifunctional Nanoparticles Precisely Reprogram the Tumor Microenvironment and Potentiate Antitumor Immunotherapy after Near-Infrared-II Light-Mediated Photothermal Therapy. Acta Biomater 2023:S1742-7061(23)00316-1. [PMID: 37302731 DOI: 10.1016/j.actbio.2023.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Mild-temperature photothermal therapy (mild PTT) is a safe and efficient antitumor therapy. However, mild PTT alone usually fails to activate the immune response and prevent tumor metastasis. Herein, a photothermal agent, copper sulfide@ovalbumin (CuS@OVA), with an effective PTT effect in the second near-infrared (NIR-II) window, is developed. CuS@OVA can optimize the tumor microenvironment (TME) and evoke an adaptive immune response. Copper ions are released in the acidic TME to promote the M1 polarization of tumor-associated macrophages. The model antigen OVA not only acts as a scaffold for nanoparticle growth but also promotes the maturation of dendritic cells, which primes naive T cells to stimulate adaptive immunity. CuS@OVA augments the antitumor efficiency of the immune checkpoint blockade (ICB) in vivo, which suppresses tumor growth and metastasis in a mouse melanoma model. The proposed therapeutic platform, CuS@OVA nanoparticles, may be a potential adjuvant for optimizing the TME and improving the efficiency of ICB as well as other antitumor immunotherapies. STATEMENT OF SIGNIFICANCE: Mild-temperature photothermal therapy (mild PTT) is a safe and efficient antitumor therapy, but usually fails to activate the immune response and prevent tumor metastasis. Herein, we develop a photothermal agent, copper sulfide@ovalbumin (CuS@OVA), with an excellent PTT effect in the second near-infrared (NIR-II) window. CuS@OVA can optimize the tumor microenvironment (TME) and evoke an adaptive immune response by promoting the M1 polarization of tumor-associated macrophages and the maturation of dendritic cells. CuS@OVA augments the antitumor efficiency of the immune checkpoint blockade (ICB) in vivo, suppressing tumor growth and metastasis. The platform may be a potential adjuvant for optimizing the TME and improving the efficiency of ICB as well as other antitumor immunotherapies.
Collapse
Affiliation(s)
- Yanni Ge
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Jiaojiao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kai Jin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Ziqiang Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhuxian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Shiratori H, Oguchi H, Isobe Y, Han KH, Sen A, Yakebe K, Takahashi D, Fukushima M, Arita M, Hase K. Gut microbiota-derived lipid metabolites facilitate regulatory T cell differentiation. Sci Rep 2023; 13:8903. [PMID: 37264064 DOI: 10.1038/s41598-023-35097-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Commensal bacteria-derived metabolites are critical in regulating the host immune system. Although the impact of gut microbiota-derived hydrophilic metabolites, such as short-chain fatty acids, on immune cell functions and development has been well documented, the immunomodulatory effects of gut microbiota-derived lipids are still of interest. Here, we report that lipid extracts from the feces of specific-pathogen-free (SPF), but not germ-free (GF), mice showed regulatory T (Treg)-cell-inducing activity. We conducted RP-HPLC-based fractionation and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidome profiling and identified two bioactive lipids, 9,10-dihydroxy-12Z-octadecenoic acid (9,10-DiHOME) and all-trans retinoic acid (atRA), with Treg-inducing activity in vitro. The luminal abundance of 9,10-DiHOME in the large intestine was significantly decreased by dextran sulfate sodium (DSS)-induced colitis, indicating that 9,10-DiHOME may be a potential biomarker of colitis. These observations implied that commensal bacteria-derived lipophilic metabolites might contribute to Treg development in the large intestine.
Collapse
Affiliation(s)
- Hiroaki Shiratori
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Hiroyuki Oguchi
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Yosuke Isobe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Akira Sen
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Kyosuke Yakebe
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan
| | - Michihiro Fukushima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan.
| | - Koji Hase
- Division of Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy, and Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, 105-8512, Japan.
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1296, Japan.
- International Research and Development Centre for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
40
|
Huang QQ, Hang Y, Doyle R, Mao Q, Fang D, Pope RM. Mechanisms regulating the loss of Tregs in HUPO mice that develop spontaneous inflammatory arthritis. iScience 2023; 26:106734. [PMID: 37216119 PMCID: PMC10193230 DOI: 10.1016/j.isci.2023.106734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
T regulatory cells (Tregs) are a potential therapeutic target in many autoimmune diseases including rheumatoid arthritis (RA). The mechanisms responsible for the maintenance of Tregs in chronic inflammatory conditions such as RA are poorly understood. We employed our mouse model of RA in which, the following deletion of Flice-like inhibitory protein in CD11c+ cells, CD11c-FLIP-KO (HUPO) mice develop spontaneous, progressive, erosive arthritis, with reduced Tregs, and the adoptive transfer of Tregs ameliorates the arthritis. HUPO thymic Treg development was normal, but peripheral of Treg Foxp3 was diminished mediated by reduction of dendritic cells and interleukin-2 (IL-2). During chronic inflammatory arthritis Tregs fail to maintain Foxp3, leading to non-apoptotic cell death and conversion to CD4+CD25+Foxp3- cells. Treatment with IL-2 increased Tregs and ameliorated the arthritis. In summary, reduced dendritic cells and IL-2 in the milieu of chronic inflammation, contribute to Treg instability, promoting HUPO arthritis progression, and suggesting a therapeutic approach in RA.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Yiwei Hang
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Renee Doyle
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Qinwen Mao
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Deyu Fang
- Departments of Pathology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Richard M. Pope
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| |
Collapse
|
41
|
Bashir H, Singh S, Singh RP, Agrewala JN, Kumar R. Age-mediated gut microbiota dysbiosis promotes the loss of dendritic cells tolerance. Aging Cell 2023:e13838. [PMID: 37161603 DOI: 10.1111/acel.13838] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/11/2023] Open
Abstract
The old age-related loss of immune tolerance inflicts a person with a wide range of autoimmune and inflammatory diseases. Dendritic cells (DCs) are the sentinels of the immune system that maintain immune tolerance through cytokines and regulatory T-cells generation. Aging disturbs the microbial composition of the gut, causing immune system dysregulation. However, the vis-à-vis role of gut dysbiosis on DCs tolerance remains highly elusive. Consequently, we studied the influence of aging on gut dysbiosis and its impact on the loss of DC tolerance. We show that DCs generated from either the aged (DCOld ) or gut-dysbiotic young (DCDysbiotic ) but not young (DCYoung ) mice exhibited loss of tolerance, as evidenced by their failure to optimally induce the generation of Tregs and control the overactivation of CD4+ T cells. The mechanism deciphered for the loss of DCOld and DCDysbiotic tolerance was chiefly through the overactivation of NF-κB, impaired frequency of Tregs, upregulation in the level of pro-inflammatory molecules (IL-6, IL-1β, TNF-α, IL-12, IFN-γ), and decline in the anti-inflammatory moieties (IL-10, TGF-β, IL-4, IDO, arginase, NO, IRF-4, IRF-8, PDL1, BTLA4, ALDH2). Importantly, a significant decline in the frequency of the Lactobacillus genus was noticed in the gut. Replenishing the gut of old mice with the Lactobacillus plantarum reinvigorated the tolerogenic function of DCs through the rewiring of inflammatory and metabolic pathways. Thus, for the first time, we demonstrate the impact of age-related gut dysbiosis on the loss of DC tolerance. This finding may open avenues for therapeutic intervention for treating age-associated disorders with the Lactobacillus plantarum.
Collapse
Affiliation(s)
- Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Raghwendra Pratap Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Rupnagar, 140001, Punjab, India
| | - Rashmi Kumar
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
42
|
Ma Y, Yang Y, Dai H, Yan C, Yu S, Zhang S, Lin Z, Chen J, Yu G, Zhang J, Yin P, Lu J, Shi C, Ye Z, Ruan Q, Qi Z, Zhuang G. TIPE2 deficiency prolongs mouse heart allograft survival by inhibiting immature DCs-induced Treg generation. Clin Immunol 2023; 252:109636. [PMID: 37150242 DOI: 10.1016/j.clim.2023.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
It has been reported that deletion of tumor necrosis factor-α-induced protein-8 like 2 (TNFAIP8L2, TIPE2) facilitates the activation of T-cell receptors. However, the role of TIPE2 in T-cell-mediated acute transplant rejection remains unclear. To illustrate the underlying cellular mechanisms, we transplanted BALB/c hearts into C57BL/6 wild-type C57BL/6 mice or mice deficient for TIPE2 (TIPE2-/-) and found that TIPE2-/- recipient mice showed significantly prolonged survival of heart allografts and suppressed maturation of CD11c+ dendritic cells (DCs), which largely abolished the activation and proliferation of alloreactive T cells and their cytotoxic activity. TIPE2-/- DCs increased CD4+Foxp3+CD127- Treg generation, likely by inhibiting DCs maturation and CD80 and CD86 expression. Administration of anti-CD25 abolished the allograft survival induced by TIPE2 deficiency. Moreover, TIPE2 deficiency increased IL-10 production in T cells and in recipient serum and allografts. Mechanistic studies revealed that TIPE2-/- restrained the maturation of DCs via inhibition of PI3K/AKT phosphorylation during alloantigen stimulation. Taken together, TIPE2 deficiency in recipient mice inhibited acute rejection by increasing Tregs generated by immature DCs. Thus, TIPE2 could be a therapeutic target for suppressing rejection in organ transplantation.
Collapse
Affiliation(s)
- Yunhan Ma
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China; School of Medicine, Jiangsu University, Zhenjiang 212000, China
| | - Yan Yang
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410000, China
| | - Changxiu Yan
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shengnan Yu
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shuaishuai Zhang
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zeyang Lin
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361001, China
| | - Jinfeng Chen
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Gaoyi Yu
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jing Zhang
- Department of medical clinical laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361001, China
| | - Ping Yin
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361001, China
| | - Jianhong Lu
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chunyan Shi
- The Department of Oncology, Jiujiang No.1 People's Hospital, Jiujiang 332000, China
| | - Zhijian Ye
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen 361000, China
| | - Qingguo Ruan
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao 266071, China..
| | - Zhongquan Qi
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China; Wuzhou Workers' Hospital, Wuzhou 543000, China.
| | - Guohong Zhuang
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
43
|
Khiewkamrop P, Kaewraemruaen C, Manipuntee C, Saengruengrit C, Insin N, Leelahavanichkul A, Kaewduangduen W, Sonpoung O, Ariya-Anandech K, Hirankarn N, Ritprajak P. Immunosuppressive Polymeric Nanoparticles Targeting Dendritic Cells Alleviate Lupus Disease in Fcgr2b-/- Mice by Mediating Antigen-Specific Immune Tolerance. Int J Mol Sci 2023; 24:ijms24098313. [PMID: 37176021 PMCID: PMC10179670 DOI: 10.3390/ijms24098313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells that have multifaceted functions in the control of immune activation and tolerance. Hyperresponsiveness and altered tolerogenicity of DCs contribute to the development and pathogenesis of system lupus erythematosus (SLE); therefore, DC-targeted therapies aimed at inducing specific immune tolerance have become of great importance for the treatment of SLE. This study developed a new nanoparticle (NP) containing a biodegradable PDMAEMA-PLGA copolymer for target-oriented delivery to DCs in situ. PDMAEMA-PLGA NPs provided sustained drug release and exhibited immunosuppressive activity in FLT3L and GM-CSF-derived bone marrow in conventional DCs (BM-cDCs). PDMAEMA-PLGA NPs improved dexamethasone capability to convert wild-type and Fcgr2b-/- BM-cDCs from an immunogenic to tolerogenic state, and BM-cDCs treated with dexamethasone-incorporated PDMAEMA-PLGA NPs (Dex-NPs) efficiently mediated regulatory T cell (Treg) expansion in vitro. Dex-NP therapy potentially alleviated lupus disease in Fcgr2b-/- mice by mediating Foxp3+ Treg expansion in an antigen-specific manner. Our findings substantiate the superior efficacy of DC-targeted therapy using the PDMAEMA-PLGA NP delivery system and provide further support for clinical development as a potential therapy for SLE. Furthermore, PDMAEMA-PLGA NP may be a versatile platform for DC-targeted therapy to induce antigen-specific immune tolerance to unwanted immune responses that occur in autoimmune disease, allergy, and transplant rejection.
Collapse
Affiliation(s)
- Phuriwat Khiewkamrop
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chamraj Kaewraemruaen
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73104, Thailand
| | - Chonnavee Manipuntee
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalathan Saengruengrit
- Bureau of Quality and Safety of Food, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Numpon Insin
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warerat Kaewduangduen
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opor Sonpoung
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kasirapat Ariya-Anandech
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
44
|
Piovani D, Brunetta E, Bonovas S. UV radiation and air pollution as drivers of major autoimmune conditions. ENVIRONMENTAL RESEARCH 2023; 224:115449. [PMID: 36764434 DOI: 10.1016/j.envres.2023.115449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Autoimmune diseases comprise a very heterogeneous group of disorders characterized by disruptive immune responses against self-antigens, chronic morbidity and increased mortality. The incidence and prevalence of major autoimmune conditions are particularly high in the western world, at northern latitudes, and in industrialized countries. This study will mainly focus on five major autoimmune conditions, namely type 1 diabetes, multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, and autoimmune thyroid disorders. Epidemiological and experimental evidence suggests a protective role of sunlight exposure on the etiology of major autoimmune conditions mediated by the endogenous production of vitamin D and nitric oxide. A historical perspective shows how the rise of anthropogenic air pollutants is temporally associated with dramatic increases in incidence of these conditions. The scattering caused by ambient particulate matter and the presence of tropospheric ozone can reduce the endogenous production of vitamin D and nitric oxide, which are implicated in maintaining the immune homeostasis. Air pollutants have direct detrimental effects on the human body and are deemed responsible of an increasingly higher portion of the annual burden of human morbidity and mortality. Air pollution contributes in systemic inflammation, activates oxidative pathways, induces epigenetic alterations, and modulates the function and phenotype of dendritic cells, Tregs, and T-cells. In this review, we provide epidemiological and mechanistic insights regarding the role of UV-mediated effects in immunity and how anthropic-derived air pollution may affect major autoimmune conditions through direct and indirect mechanisms.
Collapse
Affiliation(s)
- Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, 20089, Rozzano, Milan, Italy.
| | - Enrico Brunetta
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, 20089, Rozzano, Milan, Italy
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, 20089, Rozzano, Milan, Italy
| |
Collapse
|
45
|
Paul MB, Schlief M, Daher H, Braeuning A, Sieg H, Böhmert L. A human Caco-2-based co-culture model of the inflamed intestinal mucosa for particle toxicity studies. IN VITRO MODELS 2023; 2:43-64. [PMID: 39872873 PMCID: PMC11756451 DOI: 10.1007/s44164-023-00047-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 01/30/2025]
Abstract
The intestinal barrier is a complex interface of the human body, possessing the largest contact surface to nutrients and antigens and containing a major part of the immune system. It has to deal with continuous exposure to a broad mixture of essential, harmful, or useless substances and particles. In the context of plastic pollution and the ubiquitous occurrence of micro- and nanoplastics, oral exposure to such particles is of particular interest. Standard intestinal in vitro models, however, are unable to mimic the role of the immune system in the particle-exposed intestine. To allow for a closer look on the effect of particles on the intestinal immune system, we here developed a co-culture model to enable investigation of the epithelial brush border monolayer in a healthy and inflamed state. The model is based on well-established Caco-2 intestinal epithelial cells cultured in a Transwell™ system. Intraepithelial immune cells were mimicked by THP-1-derived M0-macrophages and MUTZ-3-derived dendritic cells. To fulfill the requirements needed for the investigation of particles, the co-culture system was developed without an additional matrix layer. Cell-cell contacts were established between interstitial and immune cells, and the Caco-2 standard cell culture medium was used, which is well-characterized for its role in defining the identity of particle dispersions. The model was characterized using confocal microscopy, membrane integrity measurements, and cytokine release assays from inflamed and healthy cells. Finally, the new co-culture model was used for investigation on polylactic acid, melamine formaldehyde resin, and polymethylmethacrylate plastic micro- and nanoparticles. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00047-y.
Collapse
Affiliation(s)
- Maxi B. Paul
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Marén Schlief
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Hannes Daher
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
46
|
Cruz FM, Chan A, Rock KL. Pathways of MHC I cross-presentation of exogenous antigens. Semin Immunol 2023; 66:101729. [PMID: 36804685 PMCID: PMC10023513 DOI: 10.1016/j.smim.2023.101729] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Phagocytes, particularly dendritic cells (DCs), generate peptide-major histocompatibility complex (MHC) I complexes from antigens they have collected from cells in tissues and report this information to CD8 T cells in a process called cross-presentation. This process allows CD8 T cells to detect, respond and eliminate abnormal cells, such as cancers or cells infected with viruses or intracellular microbes. In some settings, cross-presentation can help tolerize CD8 T cells to self-antigens. One of the principal ways that DCs acquire tissue antigens is by ingesting this material through phagocytosis. The resulting phagosomes are key hubs in the cross-presentation (XPT) process and in fact experimentally conferring the ability to phagocytize antigens can be sufficient to allow non-professional antigen presenting cells (APCs) to cross-present. Once in phagosomes, exogenous antigens can be cross-presented (XPTed) through three distinct pathways. There is a vacuolar pathway in which peptides are generated and then bind to MHC I molecules within the confines of the vacuole. Ingested exogenous antigens can also be exported from phagosomes to the cytosol upon vesicular rupture and/or possibly transport. Once in the cytosol, the antigen is degraded by the proteasome and the resulting oligopeptides can be transported to MHC I molecule in the endoplasmic reticulum (ER) (a phagosome-to-cytosol (P2C) pathway) or in phagosomes (a phagosome-to-cytosol-to-phagosome (P2C2P) pathway). Here we review how phagosomes acquire the necessary molecular components that support these three mechanisms and the contribution of these pathways. We describe what is known as well as the gaps in our understanding of these processes.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amanda Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
47
|
Wang Z, Zhang X, Lu S, Zhang C, Ma Z, Su R, Li Y, Sun T, Li Y, Hong M, Deng X, Monjezi MR, Hristov M, Steffens S, Santovito D, Dornmair K, Ley K, Weber C, Mohanta SK, Habenicht AJR, Yin C. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2023; 2:290-306. [PMID: 37621765 PMCID: PMC10448629 DOI: 10.1038/s44161-023-00218-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/18/2023] [Indexed: 08/26/2023]
Abstract
Atherosclerotic plaques form in the inner layer of arteries triggering heart attacks and strokes. Although T cells have been detected in atherosclerosis, tolerance dysfunction as a disease driver remains unexplored. Here we examine tolerance checkpoints in atherosclerotic plaques, artery tertiary lymphoid organs and lymph nodes in mice burdened by advanced atherosclerosis, via single-cell RNA sequencing paired with T cell antigen receptor sequencing. Complex patterns of deteriorating peripheral T cell tolerance were observed being most pronounced in plaques followed by artery tertiary lymphoid organs, lymph nodes and blood. Affected checkpoints included clonal expansion of CD4+, CD8+ and regulatory T cells; aberrant tolerance-regulating transcripts of clonally expanded T cells; T cell exhaustion; Treg-TH17 T cell conversion; and dysfunctional antigen presentation. Moreover, single-cell RNA-sequencing profiles of human plaques revealed that the CD8+ T cell tolerance dysfunction observed in mouse plaques was shared in human coronary and carotid artery plaques. Thus, our data support the concept of atherosclerosis as a bona fide T cell autoimmune disease targeting the arterial wall.
Collapse
Affiliation(s)
- Zhihua Wang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- These authors contributed equally: Zhihua Wang, Xi Zhang, Shu Lu, Andreas J. R. Habenicht, Changjun Yin
| | - Xi Zhang
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- These authors contributed equally: Zhihua Wang, Xi Zhang, Shu Lu, Andreas J. R. Habenicht, Changjun Yin
| | - Shu Lu
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- These authors contributed equally: Zhihua Wang, Xi Zhang, Shu Lu, Andreas J. R. Habenicht, Changjun Yin
| | - Chuankai Zhang
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Ma
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Rui Su
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Yuanfang Li
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Ting Sun
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Yutao Li
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Mingyang Hong
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Xinyi Deng
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Mohammad Rafiee Monjezi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy
| | - Klaus Dornmair
- Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University, Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Klaus Ley
- Immunology Center of Georgia (IMMCG), Augusta University, Augusta, GA, USA
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Sarajo K. Mohanta
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Zhihua Wang, Xi Zhang, Shu Lu, Andreas J. R. Habenicht, Changjun Yin
| | - Changjun Yin
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Zhihua Wang, Xi Zhang, Shu Lu, Andreas J. R. Habenicht, Changjun Yin
| |
Collapse
|
48
|
Mohammadi B, Saghafi M, Abdulsattar Faraj T, Kamal Kheder R, Sajid Abdulabbas H, Esmaeili SA. The role of tolerogenic dendritic cells in systematic lupus erythematosus progression and remission. Int Immunopharmacol 2023; 115:109601. [PMID: 36571919 DOI: 10.1016/j.intimp.2022.109601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022]
Abstract
Systematic lupus erythematosus (SLE) is an autoimmune disease reflecting an imbalance between effector and regulatory immune responses. Dendritic cells (DC) are a link between innate and adaptive immunity. Inflammatory DCs (inflDC) can initiate and trigger lymphocyte responses in SLE with over-expression of surface molecules and pro-inflammatory cytokine, including Interferon (IFN) α, Interleukin (IL) 1α, IL-1β, and IL-6, resulting in the overreaction of T helper cells (Th), and B cells immune responses. On the opposite side, tolerogenic DCs (tolDC) express inhibitory interacting surface molecules and repressive mediators, such as IL-10, Transforming growth factor beta (TGF-β), and Indoleamine 2, 3-dioxygenase (IDO), which can maintain self-tolerance in SLE by induction of regulatory T cells (Treg), T cells deletion and anergy. Hence, tolDCs can be a therapeutic candidate for patients with SLE to suppress their systematic inflammation. Recent pre-clinical and clinical studies showed the efficacy of tolDCs therapy in autoimmune diseases. In this review, we provide a wide perspective on the effect of inflDCs in promoting inflammation and the role of tolDC in the suppression of immune cells' overreaction in SLE. Furthermore, we reviewed the finding of clinical trials and experimental studies related to autoimmune diseases, particularly SLE.
Collapse
Affiliation(s)
- Bita Mohammadi
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammadreza Saghafi
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Tola Abdulsattar Faraj
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania 46012, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala 56001, Iraq
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Al-Hajj S, Lemoine R, Chadet S, Goumard A, Legay L, Roxburgh E, Heraud A, Deluce N, Lamendour L, Burlaud-Gaillard J, Gatault P, Büchler M, Roger S, Halimi JM, Baron C. High extracellular sodium chloride concentrations induce resistance to LPS signal in human dendritic cells. Cell Immunol 2023; 384:104658. [PMID: 36566700 DOI: 10.1016/j.cellimm.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Recent evidence showed that in response to elevated sodium dietary intakes, many body tissues retain Na+ ions for long periods of time and can reach concentrations up to 200 mM. This could modulate the immune system and be responsible for several diseases. However, studies brought contrasted results and the effects of external sodium on human dendritic cell (DC) responses to danger signals remain largely unknown. Considering their central role in triggering T cell response, we tested how NaCl-enriched medium influences human DCs properties. We found that DCs submitted to high extracellular Na+ concentrations up to 200 mM remain viable and maintain the expression of specific DC markers, however, their maturation, chemotaxis toward CCL19, production of pro-inflammatory cytokines and ROS in response to LPS were also partially inhibited. In line with these results, the T-cell allostimulatory capacity of DCs was also inhibited. Finally, our data indicate that high NaCl concentrations triggered the phosphorylation of SGK1 and ERK1/2 kinases. These results raised the possibility that the previously reported pro-inflammatory effects of high NaCl concentrations on T cells might be counterbalanced by a downregulation of DC activation.
Collapse
Affiliation(s)
- Sally Al-Hajj
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Annabelle Goumard
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Laura Legay
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Ellena Roxburgh
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Audrey Heraud
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Nora Deluce
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Lucille Lamendour
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Julien Burlaud-Gaillard
- U1259 Morphogenesis and Antigenicity of HIV and Hepatitis virus (MAVIVH), University of Tours, Tours, France; IBISA Facility of Electronic Microscopy, University Hospital of Tours, Tours, France
| | - Philippe Gatault
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Mathias Büchler
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France.
| | - Jean-Michel Halimi
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| |
Collapse
|
50
|
Gangadaran P, Madhyastha H, Madhyastha R, Rajendran RL, Nakajima Y, Watanabe N, Velikkakath AKG, Hong CM, Gopi RV, Muthukalianan GK, Valsala Gopalakrishnan A, Jeyaraman M, Ahn BC. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol 2023; 13:1085057. [PMID: 36726968 PMCID: PMC9885214 DOI: 10.3389/fimmu.2022.1085057] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Exosomes, which are nano-sized transport bio-vehicles, play a pivotal role in maintaining homeostasis by exchanging genetic or metabolic information between different cells. Exosomes can also play a vital role in transferring virulent factors between the host and parasite, thereby regulating host gene expression and the immune interphase. The association of inflammation with disease development and the potential of exosomes to enhance or mitigate inflammatory pathways support the notion that exosomes have the potential to alter the course of a disease. Clinical trials exploring the role of exosomes in cancer, osteoporosis, and renal, neurological, and pulmonary disorders are currently underway. Notably, the information available on the signatory efficacy of exosomes in immune-related disorders remains elusive and sporadic. In this review, we discuss immune cell-derived exosomes and their application in immunotherapy, including those against autoimmune connective tissue diseases. Further, we have elucidated our views on the major issues in immune-related pathophysiological processes. Therefore, the information presented in this review highlights the role of exosomes as promising strategies and clinical tools for immune regulation.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Radha Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yuichi Nakajima
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nozomi Watanabe
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Anoop Kumar G. Velikkakath
- Center for System Biology and Molecular Medicine, Yenepoya Research center, Yenepoya (Deemed to be University), Mangaluru, Karnataka, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Rahul Velikkakath Gopi
- Department of Tissue Engineering and Regeneration Technologies, Sree Chitra Thirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|