1
|
Jakobsson T, Comstedt P, Bergström S, Normark J. Survival of Borrelia burgdorferi Strain B31 in Human Serum Is Not Dependent on C4BP Binding to the Bacterial Surface. Pathogens 2024; 13:976. [PMID: 39599529 PMCID: PMC11597344 DOI: 10.3390/pathogens13110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Lyme disease is a vector-borne illness caused by spirochetes belonging to the Borrelia burgdorferi species group. These bacteria employ several mechanisms to survive within the vertebrate host, including evasion of the complement system. In this study, we examine the protection against human serum killing by the binding of host complement regulators C4b-binding protein (C4BP) and factor H (FH) to the bacterial surface of B. burgdorferi. Via serum depletion of isolated complement regulators, we found that the absence of C4BP did not alter the survival of B. burgdorferi strain B31; however, the removal of FH increased the sensitivity of this strain to human serum as previously described. The B. garinii seabird-isolated strain Far04, on the other hand, did not bind any complement regulators of human origin and was serum-sensitive, indicating its special host species specificity.
Collapse
Affiliation(s)
- Tobias Jakobsson
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- UCMR, Umeå Centre for Microbial Research, 901 87 Umeå, Sweden;
| | - Pär Comstedt
- Evaxion Biotech, Dr. Neergaards vej 5F, 2970 Hørsholm, Denmark;
| | - Sven Bergström
- UCMR, Umeå Centre for Microbial Research, 901 87 Umeå, Sweden;
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- UCMR, Umeå Centre for Microbial Research, 901 87 Umeå, Sweden;
| |
Collapse
|
2
|
Bourgeois JS, You SS, Clendenen LH, Shrestha M, Petnicki-Ocwieja T, Telford SR, Hu LT. Comparative reservoir competence of Peromyscus leucopus, C57BL/6J, and C3H/HeN for Borrelia burgdorferi B31. Appl Environ Microbiol 2024; 90:e0082224. [PMID: 38899883 PMCID: PMC11267898 DOI: 10.1128/aem.00822-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Borrelia burgdorferi, a Lyme disease spirochete, causes a range of acute and chronic maladies in humans. However, a primary vertebrate reservoir in the United States, the white-footed deermouse Peromyscus leucopus, is reported not to have reduced fitness following infection. Although laboratory strains of Mus musculus mice have successfully been leveraged to model acute human Lyme disease, the ability of these rodents to model B. burgdorferi-P. leucopus interactions remains understudied. Here, we compared infection of P. leucopus with B. burgdorferi B31 with infection of the traditional B. burgdorferi murine models-C57BL/6J and C3H/HeN Mus musculus, which develop signs of inflammation akin to human disease. We find that B. burgdorferi was able to reach much higher burdens (10- to 30-times higher) in multiple M. musculus skin sites and that the overall dynamics of infection differed between the two rodent species. We also found that P. leucopus remained transmissive to larval Ixodes scapularis for a far shorter period than either M. musculus strain. In line with these observations, we found that P. leucopus does launch a modest but sustained inflammatory response against B. burgdorferi in the skin, which we hypothesize leads to reduced bacterial viability and rodent-to-tick transmission in these hosts. Similarly, we also observe evidence of inflammation in infected P. leucopus hearts. These observations provide new insight into reservoir species and the B. burgdorferi enzootic cycle.IMPORTANCEA Lyme disease-causing bacteria, Borrelia burgdorferi, must alternate between infecting a vertebrate host-usually rodents or birds-and ticks. In order to be successful in that endeavor, the bacteria must avoid being killed by the vertebrate host before it can infect a new larval tick. In this work, we examine how B. burgdorferi and one of its primary vertebrate reservoirs, Peromyscus leucopus, interact during an experimental infection. We find that B. burgdorferi appears to colonize its natural host less successfully than conventional laboratory mouse models, which aligns with a sustained seemingly anti-bacterial response by P. leucopus against the microbe. These data enhance our understanding of P. leucopus host-pathogen interactions and could potentially serve as a foundation to uncover ways to disrupt the spread of B. burgdorferi in nature.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Stephanie S. You
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Luke H. Clendenen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Muskan Shrestha
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Tanja Petnicki-Ocwieja
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| | - Sam R. Telford
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Tufts University, Tufts Lyme Disease Initiative, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Koloski CW, Hurry G, Foley-Eby A, Adam H, Goldstein S, Zvionow P, Detmer SE, Voordouw MJ. Male C57BL/6J mice have higher presence and abundance of Borrelia burgdorferi in their ventral skin compared to female mice. Ticks Tick Borne Dis 2024; 15:102308. [PMID: 38215632 DOI: 10.1016/j.ttbdis.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Borrelia burgdorferi is a tick-borne spirochete that causes Lyme disease in humans. The host immune system controls the abundance of the spirochete in the host tissues. Recent work with immunocompetent Mus musculus mice strain C3H/HeJ found that males had a higher tissue infection prevalence and spirochete load compared to females. The purpose of this study was to determine whether host sex and acquired immunity interact to influence the prevalence and abundance of spirochetes in the tissues of the commonly used mouse strain C57BL/6. Wildtype (WT) mice and their SCID counterparts (C57BL/6) were experimentally infected with B. burgdorferi via tick bite. Ear biopsies were sampled at weeks 4, 8, and 12 post-infection (PI) and five tissues (left ear, ventral skin, heart, tibiotarsal joint of left hind leg, and liver) were collected at necropsy (16 weeks PI). The mean spirochete load in the tissues of the SCID mice was 260.4x higher compared to the WT mice. In WT mice, the infection prevalence in the ventral skin was significantly higher in males (40.0 %) compared to females (0.0 %), and the spirochete load in the rear tibiotarsal joint was significantly higher (4.3x) in males compared to females. In SCID mice, the spirochete load in the ventral skin was 200.0x higher in males compared to females, but there were no significant sex-specific difference in spirochete load in the other tissues (left ear, heart, tibiotarsal joint, or liver). Thus, the absence of acquired immunity greatly amplified the spirochete load in the ventral skin of male mice. It is important to note that the observed sex-specific differences in laboratory mice cannot be extrapolated to humans. Future studies should investigate the mechanisms underlying the male bias in the abundance of B. burgdorferi in the mouse skin.
Collapse
Affiliation(s)
- Cody W Koloski
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Alexandra Foley-Eby
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Savannah Goldstein
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Pini Zvionow
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Susan E Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
4
|
Haslund-Gourley BS, Hou J, Woloszczuk K, Horn EJ, Dempsey G, Haddad EK, Wigdahl B, Comunale MA. Host glycosylation of immunoglobulins impairs the immune response to acute Lyme disease. EBioMedicine 2024; 100:104979. [PMID: 38266555 PMCID: PMC10818078 DOI: 10.1016/j.ebiom.2024.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Lyme disease is caused by the bacteria Borreliella burgdorferi sensu lato (Bb) transmitted to humans from the bite of an infected Ixodes tick. Current diagnostics for Lyme disease are insensitive at the early disease stage and they cannot differentiate between active infections and people with a recent history of antibiotic-treated Lyme disease. METHODS Machine learning technology was utilized to improve the prediction of acute Lyme disease and identify sialic acid and galactose sugar structures (N-glycans) on immunoglobulins associated specifically at time points during acute Lyme disease time. A plate-based approach was developed to analyze sialylated N-glycans associated with anti-Bb immunoglobulins. This multiplexed approach quantitates the abundance of Bb-specific IgG and the associated sialic acid, yielding an accuracy of 90% in a powered study. FINDINGS It was demonstrated that immunoglobulin sialic acid levels increase during acute Lyme disease and following antibiotic therapy and a 3-month convalescence, the sialic acid level returned to that found in healthy control subjects (p < 0.001). Furthermore, the abundance of sialic acid on Bb-specific IgG during acute Lyme disease impaired the host's ability to combat Lyme disease via lymphocytic receptor FcγRIIIa signaling. After enzymatically removing the sialic acid present on Bb-specific antibodies, the induction of cytotoxicity from acute Lyme disease patient antigen-specific IgG was significantly improved. INTERPRETATION Taken together, Bb-specific immunoglobulins contain increased sialylation which impairs the host immune response during acute Lyme disease. Furthermore, this Bb-specific immunoglobulin sialyation found in acute Lyme disease begins to resolve following antibiotic therapy and convalescence. FUNDING Funding for this study was provided by the Coulter-Drexel Translational Research Partnership Program as well as from a Faculty Development Award from the Drexel University College of Medicine Institute for Molecular Medicine and Infectious Disease and the Department of Microbiology and Immunology.
Collapse
Affiliation(s)
- Benjamin S Haslund-Gourley
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jintong Hou
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyra Woloszczuk
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - George Dempsey
- East Hampton Family Medicine, East Hampton North, New York, USA
| | - Elias K Haddad
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Rios S, Bhattachan B, Vavilikolanu K, Kitsou C, Pal U, Schnell MJ. The Development of a Rabies Virus-Vectored Vaccine against Borrelia burgdorferi, Targeting BBI39. Vaccines (Basel) 2024; 12:78. [PMID: 38250891 PMCID: PMC10820992 DOI: 10.3390/vaccines12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Lyme disease (LD) is the most common tick-borne illness in the United States (U.S.), Europe, and Asia. Borrelia burgdorferi, a spirochete bacterium transmitted by the tick vector Ixodes scapularis, causes LD in the U.S. If untreated, Lyme arthritis, heart block, and meningitis can occur. Given the absence of a human Lyme disease vaccine, we developed a vaccine using the rabies virus (RABV) vaccine vector BNSP333 and an outer surface borrelial protein, BBI39. BBI39 was previously utilized as a recombinant protein vaccine and was protective in challenge experiments; therefore, we decided to utilize this protective antigen in a rabies virus-vectored vaccine against Borrelia burgdorferi. To incorporate BBI39 into the RABV virion, we generated a chimeric BBI39 antigen, BBI39RVG, by fusing BBI39 with the final amino acids of the RABV glycoprotein by molecular cloning and viral recovery with reverse transcription genetics. Here, we have demonstrated that the BBI39RVG antigen was incorporated into the RABV virion via immunofluorescence and Western blot analysis. Mice vaccinated with our BPL inactivated RABV-BBI39RVG (BNSP333-BBI39RVG) vaccine induced high amounts of BBI39-specific antibodies, which were maintained long-term, up to eight months post-vaccination. The BBI39 antibodies neutralized Borrelia in vaccinated mice when challenged with Borrelia burgdorferi by either syringe injection or infected ticks and they reduced the Lyme disease pathology of arthritis in infected mouse joints. Overall, the RABV-based LD vaccine induced more and longer-term antibodies compared to the recombinant protein vaccine. This resulted in lower borrelial RNA in RABV-based vaccinated mice compared to recombinant protein vaccinated mice. The results of this study indicate the successful use of BBI39 as a vaccine antigen and RABV as a vaccine vector for LD.
Collapse
Affiliation(s)
- Shantel Rios
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bibek Bhattachan
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA; (B.B.); (K.V.); (C.K.)
| | - Kruthi Vavilikolanu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA; (B.B.); (K.V.); (C.K.)
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA; (B.B.); (K.V.); (C.K.)
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA; (B.B.); (K.V.); (C.K.)
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Kumaresan V, Ingle TM, Kilgore N, Zhang G, Hermann BP, Seshu J. Cellular and transcriptome signatures unveiled by single-cell RNA-Seq following ex vivo infection of murine splenocytes with Borrelia burgdorferi. Front Immunol 2023; 14:1296580. [PMID: 38149246 PMCID: PMC10749944 DOI: 10.3389/fimmu.2023.1296580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen Borrelia burgdorferi (Bb). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with Bb reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease. Methods In this study, we used single-cell RNA-Seq analysis in conjunction with mouse genomics exploiting GFP-expressing Bb to sort GFP+ splenocytes and GFP- bystander cells to uncover novel molecular and cellular signatures that contribute to early stages of immune responses against Bb. Results These data decoded the heterogeneity of splenic neutrophils, macrophages, NK cells, B cells, and T cells in C3H/HeN mice in response to Bb infection. Increased mRNA abundance of apoptosis-related genes was observed in neutrophils and macrophages clustered from GFP+ splenocytes. Moreover, complement-mediated phagocytosis-related genes such as C1q and Ficolin were elevated in an inflammatory macrophage subset, suggesting upregulation of these genes during the interaction of macrophages with Bb-infected neutrophils. In addition, the role of DUSP1 in regulating the expression of Casp3 and pro-inflammatory cytokines Cxcl1, Cxcl2, Il1b, and Ccl5 in Bb-infected neutrophils were identified. Discussion These findings serve as a growing catalog of cell phenotypes/biomarkers among murine splenocytes that can be exploited for limiting spirochetal burden to limit the transmission of the agent of Lyme disease to humans via reservoir hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Taylor MacMackin Ingle
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathan Kilgore
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Janakiram Seshu
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
7
|
Combs M, Marcinkiewicz AL, Dupuis AP, Davis AD, Lederman P, Nowak TA, Stout JL, Strle K, Fingerle V, Margos G, Ciota AT, Diuk-Wasser MA, Kolokotronis SO, Lin YP. Phylogenomic Diversity Elucidates Mechanistic Insights into Lyme Borreliae-Host Association. mSystems 2022; 7:e0048822. [PMID: 35938719 PMCID: PMC9426539 DOI: 10.1128/msystems.00488-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Host association-the selective adaptation of pathogens to specific host species-evolves through constant interactions between host and pathogens, leaving a lot yet to be discovered on immunological mechanisms and genomic determinants. The causative agents of Lyme disease (LD) are spirochete bacteria composed of multiple species of the Borrelia burgdorferi sensu lato complex, including B. burgdorferi (Bb), the main LD pathogen in North America-a useful model for the study of mechanisms underlying host-pathogen association. Host adaptation requires pathogens' ability to evade host immune responses, such as complement, the first-line innate immune defense mechanism. We tested the hypothesis that different host-adapted phenotypes among Bb strains are linked to polymorphic loci that confer complement evasion traits in a host-specific manner. We first examined the survivability of 20 Bb strains in sera in vitro and/or bloodstream and tissues in vivo from rodent and avian LD models. Three groups of complement-dependent host-association phenotypes emerged. We analyzed complement-evasion genes, identified a priori among all strains and sequenced and compared genomes for individual strains representing each phenotype. The evolutionary history of ospC loci is correlated with host-specific complement-evasion phenotypes, while comparative genomics suggests that several gene families and loci are potentially involved in host association. This multidisciplinary work provides novel insights into the functional evolution of host-adapted phenotypes, building a foundation for further investigation of the immunological and genomic determinants of host association. IMPORTANCE Host association is the phenotype that is commonly found in many pathogens that preferential survive in particular hosts. The Lyme disease (LD)-causing agent, B. burgdorferi (Bb), is an ideal model to study host association, as Bb is mainly maintained in nature through rodent and avian hosts. A widespread yet untested concept posits that host association in Bb strains is linked to Bb functional genetic variation conferring evasion to complement, an innate defense mechanism in vertebrate sera. Here, we tested this concept by grouping 20 Bb strains into three complement-dependent host-association phenotypes based on their survivability in sera and/or bloodstream and distal tissues in rodent and avian LD models. Phylogenomic analysis of these strains further correlated several gene families and loci, including ospC, with host-specific complement-evasion phenotypes. Such multifaceted studies thus pave the road to further identify the determinants of host association, providing mechanistic insights into host-pathogen interaction.
Collapse
Affiliation(s)
- Matthew Combs
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Ashley L. Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Alan P. Dupuis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - April D. Davis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Patricia Lederman
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Tristan A. Nowak
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA
| | - Jessica L. Stout
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Gabriele Margos
- German National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Alexander T. Ciota
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA
| | - Maria A. Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA
| |
Collapse
|
8
|
Schulz K, Trendelenburg M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front Immunol 2022; 13:958273. [PMID: 35990646 PMCID: PMC9385197 DOI: 10.3389/fimmu.2022.958273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.
Collapse
Affiliation(s)
- Kristina Schulz
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- *Correspondence: Kristina Schulz,
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Serological Analysis Identifies Consequential B Cell Epitopes on the Flexible Linker and C-Terminus of Decorin Binding Protein A (DbpA) from Borrelia burgdorferi. mSphere 2022; 7:e0025222. [PMID: 35876530 PMCID: PMC9429923 DOI: 10.1128/msphere.00252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Decorin binding protein A (DbpA) is a surface adhesin of Borrelia burgdorferi, the causative agent of Lyme disease. While DbpA is one of the most immunogenic of B. burgdorferi’s nearly 100 lipoproteins, the B cell epitopes on DbpA recognized by humans following B. burgdorferi infection have not been fully elucidated. In this report we profiled ~270 B. burgdorferi-seropositive human serum samples for IgM and IgG reactivity with a tiled DbpA 18-mer peptide array derived from B. burgdorferisensu stricto strains B31 and 297. Using enzyme-linked immunosorbent assays (ELISA) and multiplex immunoassays (MIA), we identified 12 DbpA-derived peptides whose antibody reactivities were significantly elevated (generally <10-fold) in B. burgdorferi-seropositive sera, compared to those measured in a healthy cohort. The most reactive peptide (>80-fold IgG, 10-fold IgM) corresponded to residues 64 to 81, which map to an exposed flexible loop between DbpA’s α-helix 1 and α-helix 2. This loop, whose sequence is identical between strains B31 and 297, overhangs DbpA’s substrate binding pocket. A second strongly reactive antibody target (>80-fold IgG, 3 to 5-fold IgM) mapped to DbpA’s C-terminus, a lysine rich tail implicated in attachment to glycosaminoglycans. We postulate that antibody responses against these two targets on DbpA could limit B.burgdorferi’s ability to attach to and colonize distal tissues during the early stages of infection. IMPORTANCE The bacterium, Borrelia burgdorferi, is the causative agent of Lyme disease, the most reported tick-borne illness in the United States. In humans, clinical manifestations of Lyme disease are complex and can persist for months, even in the face of a robust antibody response directed against numerous B. burgdorferi surface proteins, including decorin binding protein A (DbpA), which is involved in the early stages of infection. In this study we employed ~270 serum samples from B. burgdorferi-seropositive individuals to better understand human antibody reactivity to specific regions (called epitopes) of DbpA and how such antibodies may function in limiting B. burgdorferi dissemination and tissue colonization.
Collapse
|
10
|
Dahmani M, Cook JH, Zhu JC, Riley SP. Contribution of classical complement activation and IgM to the control of Rickettsia infection. Mol Microbiol 2021; 116:1476-1488. [PMID: 34725868 PMCID: PMC8955150 DOI: 10.1111/mmi.14839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Pathogenic Rickettsia are obligate intracellular bacteria and the etiologic agents of many life‐threatening infectious diseases. Due to the serious nature of these infections, it is imperative to both identify the responsive immune sensory pathways and understand the associated immune mechanisms that restrict Rickettsia proliferation. Previous studies have demonstrated that the mammalian complement system is both activated during Rickettsia infection and contributes to the immune response to infection. To further define this component of the mammalian anti‐Rickettsia immune response, we sought to identify the mechanism(s) of complement activation during Rickettsia infection. We have employed a series of in vitro and in vivo models of infection to investigate the role of the classical complement activation pathway during Rickettsia infection. Depletion or elimination of complement activity demonstrates that both C1q and pre‐existing IgM contribute to complement activation; thus implicating the classical complement system in Rickettsia‐mediated complement activation. Elimination of the classical complement pathway from mice increases susceptibility to R. australis infection with both increased bacterial loads in multiple tissues and decreased immune activation markers. This study highlights the role of the classical complement pathway in immunity against Rickettsia and implicates resident Rickettsia‐responsive IgM in the response to infection.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Jack H Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Jinyi C Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| | - Sean P Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
11
|
Kim TK, Tirloni L, Bencosme-Cuevas E, Kim TH, Diedrich JK, Yates JR, Mulenga A. Borrelia burgdorferi infection modifies protein content in saliva of Ixodes scapularis nymphs. BMC Genomics 2021; 22:152. [PMID: 33663385 PMCID: PMC7930271 DOI: 10.1186/s12864-021-07429-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lyme disease (LD) caused by Borrelia burgdorferi is the most prevalent tick-borne disease. There is evidence that vaccines based on tick proteins that promote tick transmission of B. burgdorferi could prevent LD. As Ixodes scapularis nymph tick bites are responsible for most LD cases, this study sought to identify nymph tick saliva proteins associated with B. burgdorferi transmission using LC-MS/MS. Tick saliva was collected using a non-invasive method of stimulating ticks (uninfected and infected: unfed, and every 12 h during feeding through 72 h, and fully-fed) to salivate into 2% pilocarpine-PBS for protein identification using LC-MS/MS. RESULTS We identified a combined 747 tick saliva proteins of uninfected and B. burgdorferi infected ticks that were classified into 25 functional categories: housekeeping-like (48%), unknown function (18%), protease inhibitors (9%), immune-related (6%), proteases (8%), extracellular matrix (7%), and small categories that account for <5% each. Notably, B. burgdorferi infected ticks secreted high number of saliva proteins (n=645) than uninfected ticks (n=376). Counter-intuitively, antimicrobial peptides, which function to block bacterial infection at tick feeding site were suppressed 23-85 folds in B. burgdorferi infected ticks. Similar to glycolysis enzymes being enhanced in mammalian cells exposed to B. burgdorferi : eight of the 10-glycolysis pathway enzymes were secreted at high abundance by B. burgdorferi infected ticks. Of significance, rabbits exposed to B. burgdorferi infected ticks acquired potent immunity that caused 40-60% mortality of B. burgdorferi infected ticks during the second infestation compared to 15-28% for the uninfected. This might be explained by ELISA data that show that high expression levels of immunogenic proteins in B. burgdorferi infected ticks. CONCLUSION Data here suggest that B. burgdorferi infection modified protein content in tick saliva to promote its survival at the tick feeding site. For instance, enzymes; copper/zinc superoxide dismutase that led to production of H2O2 that is toxic to B. burgdorferi were suppressed, while, catalase and thioredoxin that neutralize H2O2, and pyruvate kinase which yields pyruvate that protects Bb from H2O2 killing were enhanced. We conclude data here is an important resource for discovery of effective antigens for a vaccine to prevent LD.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Department of Diagnostic Medicine and Veterinary Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Emily Bencosme-Cuevas
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Tae Heung Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America.
| |
Collapse
|
12
|
Boyle WK, Richards CL, Dulebohn DP, Zalud AK, Shaw JA, Lovas S, Gherardini FC, Bourret TJ. DksA-dependent regulation of RpoS contributes to Borrelia burgdorferi tick-borne transmission and mammalian infectivity. PLoS Pathog 2021; 17:e1009072. [PMID: 33600418 PMCID: PMC7924775 DOI: 10.1371/journal.ppat.1009072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/02/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Throughout its enzootic cycle, the Lyme disease spirochete Borreliella (Borrelia) burgdorferi, senses and responds to changes in its environment using a small repertoire of transcription factors that coordinate the expression of genes required for infection of Ixodes ticks and various mammalian hosts. Among these transcription factors, the DnaK suppressor protein (DksA) plays a pivotal role in regulating gene expression in B. burgdorferi during periods of nutrient limitation and is required for mammalian infectivity. In many pathogenic bacteria, the gene regulatory activity of DksA, along with the alarmone guanosine penta- and tetra-phosphate ((p)ppGpp), coordinate the stringent response to various environmental stresses, including nutrient limitation. In this study, we sought to characterize the role of DksA in regulating the transcriptional activity of RNA polymerase and its role in the regulation of RpoS-dependent gene expression required for B. burgdorferi infectivity. Using in vitro transcription assays, we observed recombinant DksA inhibits RpoD-dependent transcription by B. burgdorferi RNA polymerase independent of ppGpp. Additionally, we determined the pH-inducible expression of RpoS-dependent genes relies on DksA, but this relationship is independent of (p)ppGpp produced by Relbbu. Subsequent transcriptomic and western blot assays indicate DksA regulates the expression of BBD18, a protein previously implicated in the post-transcriptional regulation of RpoS. Moreover, we observed DksA was required for infection of mice following intraperitoneal inoculation or for transmission of B. burgdorferi by Ixodes scapularis nymphs. Together, these data suggest DksA plays a central role in coordinating transcriptional responses in B. burgdorferi required for infectivity through DksA’s interactions with RNA polymerase and post-transcriptional control of RpoS. Lyme disease, caused by the spirochete bacteria Borreliella (Borrelia) burgdorferi, is the most common vector-borne illness in North America. The ability of B. burgdorferi to establish infection is predicated by its ability to coordinate the expression of virulence factors in response to diverse environmental stimuli encountered within Ixodes ticks and mammalian hosts. Previous studies have shown an essential role for the alternative sigma factor RpoS in regulating the expression of genes required for the successful transmission of B. burgdorferi by Ixodes ticks and infection of mammalian hosts. The DnaK suppressor protein (DksA) is a global gene regulator in B. burgdorferi that contributes to the expression of RpoS-dependent genes. In this study, using in vitro transcription assays, we determined DksA exerts its gene regulatory function through direct interactions with the B. burgdorferi RNA polymerase and controls the expression of RpoS-dependent genes required for mammalian infection by post-transcriptionally regulating cellular levels of RpoS. Our results demonstrate the utility of in vitro transcription assays to determine how gene regulatory proteins like DksA control gene expression in B. burgdorferi and reveal a novel role for DksA in the infectious cycle of B. burgdorferi.
Collapse
Affiliation(s)
- William K. Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Crystal L. Richards
- Laboratory of Bacteriology, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel P. Dulebohn
- Laboratory of Bacteriology, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Amanda K. Zalud
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Jeff A. Shaw
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Sándor Lovas
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Frank C. Gherardini
- Laboratory of Bacteriology, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Travis J. Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
13
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
14
|
Abstract
Lyme disease (Lyme borreliosis) is a tick-borne, zoonosis of adults and children caused by genospecies of the Borrelia burgdorferi sensu lato complex. The ailment, widespread throughout the Northern Hemisphere, continues to increase globally due to multiple environmental factors, coupled with increased incursion of humans into habitats that harbor the spirochete. B. burgdorferi sensu lato is transmitted by ticks from the Ixodes ricinus complex. In North America, B. burgdorferi causes nearly all infections; in Europe, B. afzelii and B. garinii are most associated with human disease. The spirochete's unusual fragmented genome encodes a plethora of differentially expressed outer surface lipoproteins that play a seminal role in the bacterium's ability to sustain itself within its enzootic cycle and cause disease when transmitted to its incidental human host. Tissue damage and symptomatology (i.e., clinical manifestations) result from the inflammatory response elicited by the bacterium and its constituents. The deposition of spirochetes into human dermal tissue generates a local inflammatory response that manifests as erythema migrans (EM), the hallmark skin lesion. If treated appropriately and early, the prognosis is excellent. However, in untreated patients, the disease may present with a wide range of clinical manifestations, most commonly involving the central nervous system, joints, or heart. A small percentage (~10%) of patients may go on to develop a poorly defined fibromyalgia-like illness, post-treatment Lyme disease (PTLD) unresponsive to prolonged antimicrobial therapy. Below we integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.
Collapse
Affiliation(s)
- Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT 06030, USA
- Department of Pediatrics, UConn Health, Farmington, CT 06030, USA
- Departments of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
- Departments of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, NY Department of Health, Albany NY, 12208, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Repurposing Disulfiram (Tetraethylthiuram Disulfide) as a Potential Drug Candidate against Borrelia burgdorferi In Vitro and In Vivo. Antibiotics (Basel) 2020; 9:antibiotics9090633. [PMID: 32971817 PMCID: PMC7557442 DOI: 10.3390/antibiotics9090633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Lyme disease caused by the Borrelia burgdorferi (Bb or B. burgdorferi) is the most common vector-borne, multi-systemic disease in the USA. Although most Lyme disease patients can be cured with a course of the first line of antibiotic treatment, some patients are intolerant to currently available antibiotics, necessitating the development of more effective therapeutics. We previously found several drugs, including disulfiram, that exhibited effective activity against B. burgdorferi. In the current study, we evaluated the potential of repurposing the FDA-approved drug, disulfiram for its borreliacidal activity. Our results indicate disulfiram has excellent borreliacidal activity against both the log and stationary phase B. burgdorferi sensu stricto B31 MI. Treatment of mice with disulfiram eliminated the B. burgdorferi sensu stricto B31 MI completely from the hearts and urinary bladder by day 28 post infection. Moreover, disulfiram-treated mice showed reduced expressions of inflammatory markers, and thus they were protected from histopathology and cardiac organ damage. Furthermore, disulfiram-treated mice showed significantly lower amounts of total antibody titers (IgM and IgG) at day 21 and total IgG2b at day 28 post infection. FACS analysis of lymph nodes revealed a decrease in the percentage of CD19+ B cells and an increase in total percentage of CD3+ T cells, CD3+ CD4+ T helpers, and naive and effector memory cells in disulfiram-treated mice. Together, our findings suggest that disulfiram has the potential to be repurposed as an effective antibiotic for treating Lyme disease.
Collapse
|
16
|
Skare JT, Garcia BL. Complement Evasion by Lyme Disease Spirochetes. Trends Microbiol 2020; 28:889-899. [PMID: 32482556 DOI: 10.1016/j.tim.2020.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 01/12/2023]
Abstract
The complement system is an ancient arm of the innate immune system that plays important roles in pathogen recognition and elimination. Upon activation by microbes, complement opsonizes bacterial surfaces, recruits professional phagocytes, and causes bacteriolysis. Borreliella species are spirochetal bacteria that are transmitted to vertebrate hosts via infected Ixodes ticks and are the etiologic agents of Lyme disease. Pathogens that traffic in blood and other body fluids, like Borreliella, have evolved means to evade complement. Lyme disease spirochetes interfere with complement by producing a small arsenal of outer-surface lipoproteins that bind host complement components and manipulate their native activities. Here we review the current landscape of complement evasion by Lyme disease spirochetes and provide an update on recent discoveries.
Collapse
Affiliation(s)
- Jon T Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan/College Station, TX, USA.
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
17
|
Lin YP, Diuk-Wasser MA, Stevenson B, Kraiczy P. Complement Evasion Contributes to Lyme Borreliae-Host Associations. Trends Parasitol 2020; 36:634-645. [PMID: 32456964 DOI: 10.1016/j.pt.2020.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/31/2023]
Abstract
Lyme disease is the most common vector-borne disease in the northern hemisphere and is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Lyme borreliae infect diverse vertebrate reservoirs without triggering apparent manifestations in these animals; however, Lyme borreliae strains differ in their reservoir hosts. The mechanisms that drive those differences are unknown. To survive in vertebrate hosts, Lyme borreliae require the ability to escape from host defense mechanisms, in particular complement. To facilitate the evasion of complement, Lyme borreliae produce diverse proteins at different stages of infection, allowing them to persistently survive without being recognized by hosts and potentially resulting in host-specific infection. This review discusses the current knowledge regarding the ecology and evolutionary mechanisms of Lyme borreliae-host associations driven by complement evasion.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Science, State University of New York at Albany, NY, USA.
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, D-60596 Frankfurt, Germany.
| |
Collapse
|
18
|
Goldberg BS, Ackerman ME. Antibody-mediated complement activation in pathology and protection. Immunol Cell Biol 2020; 98:305-317. [PMID: 32142167 DOI: 10.1111/imcb.12324] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023]
Abstract
Antibody-dependent complement activity is associated not only with autoimmune morbidity, but also with antitumor efficacy. In infectious disease, both recombinant monoclonal antibodies and polyclonal antibodies generated in natural adaptive responses can mediate complement activity to protective, therapeutic or disease-enhancing effect. Recent advances have contributed to the structural resolution of molecular complexes involved in antibody-mediated complement activation, defining the avid nature of participating interactions and pointing to how antibody isotype, subclass, hinge flexibility, glycosylation state, amino acid sequence and the contextual nature of the cognate antigen/epitope are all factors that can determine complement activity through impact on antibody multimerization and subsequent recruitment of complement component 1q. Beyond the efficiency of activation, complement activation products interact with various cell types that mediate immune adherence, trafficking, immune education and innate functions. Similarly, depending on the anatomical location and extent of activation, complement can support homeostatic restoration or be leveraged by pathogens or neoplasms to enhance infection or promote tumorigenic microenvironments, respectively. Advances in means to suppress complement activation by intravenous immunoglobulin (IVIG), IVIG mimetics and complement-intervening antibodies represent proven and promising exploratory therapeutic strategies, while antibody engineering has likewise offered frameworks to enhance, eliminate or isolate complement activation to interrogate in vivo mechanisms of action. Such strategies promise to support the optimization of antibody-based drugs that are able to tackle emerging and difficult-to-treat diseases by improving our understanding of the synergistic and antagonistic relationships between antibody mechanisms mediated by Fc receptors, direct binding and the products of complement activation.
Collapse
Affiliation(s)
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
19
|
Structural determination of the complement inhibitory domain of Borrelia burgdorferi BBK32 provides insight into classical pathway complement evasion by Lyme disease spirochetes. PLoS Pathog 2019; 15:e1007659. [PMID: 30897158 PMCID: PMC6445466 DOI: 10.1371/journal.ppat.1007659] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/02/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023] Open
Abstract
The carboxy-terminal domain of the BBK32 protein from Borrelia burgdorferi sensu stricto, termed BBK32-C, binds and inhibits the initiating serine protease of the human classical complement pathway, C1r. In this study we investigated the function of BBK32 orthologues of the Lyme-associated Borrelia burgdorferi sensu lato complex, designated BAD16 from B. afzelii strain PGau and BGD19 from B. garinii strain IP90. Our data show that B. afzelii BAD16-C exhibits BBK32-C-like activities in all assays tested, including high-affinity binding to purified C1r protease and C1 complex, and potent inhibition of the classical complement pathway. Recombinant B. garinii BGD19-C also bound C1 and C1r with high-affinity yet exhibited significantly reduced in vitro complement inhibitory activities relative to BBK32-C or BAD16-C. Interestingly, natively produced BGD19 weakly recognized C1r relative to BBK32 and BAD16 and, unlike these proteins, BGD19 did not confer significant protection from serum killing. Site-directed mutagenesis was performed to convert BBK32-C to resemble BGD19-C at three residue positions that are identical between BBK32 and BAD16 but different in BGD19. The resulting chimeric protein was designated BXK32-C and this BBK32-C variant mimicked the properties observed for BGD19-C. To query the disparate complement inhibitory activities of BBK32 orthologues, the crystal structure of BBK32-C was solved to 1.7Å limiting resolution. BBK32-C adopts an anti-parallel four-helix bundle fold with a fifth alpha-helix protruding from the helical core. The structure revealed that the three residues targeted in the BXK32-C chimera are surface-exposed, further supporting their potential relevance in C1r binding and inhibition. Additional binding assays showed that BBK32-C only recognized C1r fragments containing the serine protease domain. The structure-function studies reported here improve our understanding of how BBK32 recognizes and inhibits C1r and provide new insight into complement evasion mechanisms of Lyme-associated spirochetes of the B. burgdorferi sensu lato complex.
Collapse
|
20
|
Marcinkiewicz AL, Dupuis AP, Zamba-Campero M, Nowak N, Kraiczy P, Ram S, Kramer LD, Lin YP. Blood treatment of Lyme borreliae demonstrates the mechanism of CspZ-mediated complement evasion to promote systemic infection in vertebrate hosts. Cell Microbiol 2019; 21:e12998. [PMID: 30571845 DOI: 10.1111/cmi.12998] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. The spirochetes are transmitted from mammalian and avian reservoir hosts to humans via ticks. Following tick bites, spirochetes colonize the host skin and then disseminate haematogenously to various organs, a process that requires this pathogen to evade host complement, an innate immune defence system. CspZ, a spirochete surface protein, facilitates resistance to complement-mediated killing in vitro by binding to the complement regulator, factor H (FH). Low expression levels of CspZ in spirochetes cultivated in vitro or during initiation of infection in vivo have been a major hurdle in delineating the role of this protein in pathogenesis. Here, we show that treatment of B. burgdorferi with human blood induces CspZ production and enhances resistance to complement. By contrast, a cspZ-deficient mutant and a strain that expressed an FH-nonbinding CspZ variant were impaired in their ability to cause bacteraemia and colonize tissues of mice or quail; virulence of these mutants was however restored in complement C3-deficient mice. These novel findings suggest that FH binding to CspZ facilitates B. burgdorferi complement evasion in vivo and promotes systemic infection in vertebrate hosts.
Collapse
Affiliation(s)
- Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alan P Dupuis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Maxime Zamba-Campero
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Nancy Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura D Kramer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| |
Collapse
|