1
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
2
|
Riazati N, Engle-Stone R, Stephensen CB. Association of Vitamin D Status with Immune Markers in a Cohort of Healthy Adults. J Nutr 2025; 155:621-633. [PMID: 39716659 DOI: 10.1016/j.tjnut.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Immune function is affected by vitamin D status, but the optimal serum 25-hydroxy vitamin D [25(OH)D] concentration for immune function is not known. OBJECTIVES We hypothesized that 25(OH)D would be associated with markers of inflammation and immune activation. METHODS We identified associations between 25(OH)D and immune markers from 361 healthy adults using polynomial regression. Linear regression was used to define the slope (β) of significant linear associations, and piecewise regression identified inflection points (IPs) for curvilinear associations with P < 0.05. IPs with a slope difference (SD) P < 0.05 before and after were significant. RESULTS 25(OH)D had linear, negative associations with interleukin (IL)-6 (β: -0.126; P = 0.009) and macrophage-derived chemokine (MDC) (β: -0.108; P = 0.04) and a linear, positive association with matrix metalloproteinase (MMP)-1 (β: 0.108; P = 0.04). Among the significant curvilinear associations, 2 showed negative associations below but positive associations above an IP with nearly significant SD P values, including percentage of effector-memory CD8 T cells (IP: 56.2 nmol/L; SD P = 0.067) and platelet concentration (IP: 38.9 nmol/L; SD P = 0.058). The opposite associations, positive below and negative above an IP, were seen for eotaxin (IP: 49.5 nmol/L; SD P = 0.049); interferon (IFN)-γ-induced protein-10 (IP-10) (IP: 71.8 nmol/L; SD P = 0.02); percentage of CD4 T cells expressing programmed cell death protein (PD)-1 (IP: 71.2 nmol/L; SD P = 0.01); percentage of Tregs expressing human leukocyte antigen, DR isotype (HLA-DR) (IP: 67.5 nmol/L; SD P < 0.0001); percentage of memory Tregs (IP: 68.8 nmol/L; SD P = 0.002); and percentage of memory Tregs expressing HLA-DR (IP: 68.8 nmol/L; SD P = 0.0008). CONCLUSIONS These findings are consistent with low vitamin D status allowing and higher vitamin D status dampening inflammation and immune activation. IP analysis identified possible thresholds for vitamin D effects on immune function. Two of 3 IPs at ∼50 nmol/L show higher inflammation below this concentration, suggesting 50 nmol/L as a minimum target for dampening inflammation. IPs at ∼70 nmol/L identify a threshold for CD4 T-cell activity, including Treg activation and IFN-γ-driven production of the T-cell chemokine IP-10, suggesting an optimal concentration for regulating adaptive immunity. This study was registered at clinicaltrials.gov as NCT02367287.
Collapse
Affiliation(s)
- Niknaz Riazati
- Graduate Group of Molecular, Cellular, and Integrative Physiology, University of California, Davis, Davis, CA, United States; USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States
| | - Reina Engle-Stone
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
3
|
Perfilyeva YV, Aquino AD, Borodin MA, Kali A, Abdolla N, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Jainakbayev NT, Sharipov KO, Belyaev NN. Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations? Int Rev Immunol 2024:1-17. [PMID: 39707917 DOI: 10.1080/08830185.2024.2443423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arthur D Aquino
- Almazov National Medical Research Center, St. Petersburg, Russia
| | - Maxim A Borodin
- Almazov National Medical Research Center, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Al-Farabi, Kazakh National University, Almaty, Kazakhstan
| | | | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | |
Collapse
|
4
|
Mironov S, Borysova O, Morgunov I, Zhou Z, Moskalev A. A Framework for an Effective Healthy Longevity Clinic. Aging Dis 2024:AD.2024.0328-1. [PMID: 38607731 DOI: 10.14336/ad.2024.0328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 09/11/2024] Open
Abstract
In the context of an aging global population and the imperative for innovative healthcare solutions, the concept of longevity clinics emerges as a timely and vital area of exploration. Unlike traditional medical facilities, longevity clinics offer a unique approach to preclinical prevention, focusing on "prevention of prevention" through the utilization of aging clocks and biomarkers from healthy individuals. This article presents a comprehensive overview of longevity clinics, encompassing descriptions of existing models, the development of a proposed framework, and insights into biomarkers, wearable devices, and therapeutic interventions. Additionally, economic justifications for investing in longevity clinics are examined, highlighting the significant growth potential of the global biotechnology market and its alignment with the goals of achieving active longevity. Anchored by an Analytical Center, the proposed framework underscores the importance of data-driven decision-making and innovation in promoting prolonged and enhanced human life. At present, there is no universally accepted standard model for longevity clinics. This absence highlights the need for additional research and ongoing improvements in this field. Through a synthesis of scientific research and practical considerations, this article aims to stimulate further discussion and innovation in the field of longevity clinics, ultimately contributing to the advancement of healthcare practices aimed at extending and enhancing human life.
Collapse
Affiliation(s)
- Sergey Mironov
- Longaevus Technologies LTD, London, United Kingdom
- Human and health division, DEKRA Automobil GmbH, Chemnitz, Germany
| | | | | | - Zhongjun Zhou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Alexey Moskalev
- Longaevus Technologies LTD, London, United Kingdom
- Institute of biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Gerontological Research and Clinical Center, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Kobayashi T, Nagata M, Hachiya T, Wakita H, Ikehata Y, Takahashi K, China T, Shimizu F, Lu J, Jin Y, Lu Y, Ide H, Horie S. Increased circulating polymorphonuclear myeloid-derived suppressor cells are associated with prognosis of metastatic castration-resistant prostate cancer. Front Immunol 2024; 15:1372771. [PMID: 38887300 PMCID: PMC11180772 DOI: 10.3389/fimmu.2024.1372771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Myeloid-derived suppressor cell (MDSC) exhibits immunosuppressive functions and affects cancer progression, but its relationship with prostate cancer remains unclear. We elucidated the association of polymorphonuclear MDSC (PMN-MDSC) and monocytic MDSC (M-MDSC) levels of the total peripheral blood mononuclear cells (PBMCs) with prostate cancer progression and evaluated their roles as prognostic indicators. Methods We enrolled 115 patients with non-metastatic hormone-sensitive prostate cancer (nmHSPC, n = 62), metastatic hormone-sensitive prostate cancer (mHSPC, n = 23), and metastatic castration-resistant prostate cancer (mCRPC, n = 30). Subsequently, the proportions of MDSCs in each disease progression were compared. Log-rank tests and multivariate Cox regression analyses were performed to ascertain the associations of overall survival. Results The patients with mCRPC had significantly higher PMN-MDSC percentage than those with nmHSPC and mHSPC (P = 7.73 × 10-5 and 0.0014). Significantly elevated M-MDSC levels were observed in mCRPC patients aged <70 years (P = 0.016) and with a body mass index (BMI) <25 kg/m2 (P = 0.043). The high PMN-MDSC group had notably shorter median survival duration (159 days) than the low PMN-MDSC group (768 days, log-rank P = 0.018). In the multivariate analysis including age, BMI, and MDSC subset, PMN-MDSC was significantly associated with prognosis (hazard ratios, 3.48; 95% confidence interval: 1.05-11.56, P = 0.042). Discussion PMN-MDSC levels are significantly associated with mCRPC prognosis. Additionally, we highlight the remarkable associations of age and BMI with M-MDSC levels in mCRPC, offering novel insights into MDSC dynamics in prostate cancer progression.
Collapse
Affiliation(s)
- Takuro Kobayashi
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Advanced Informatics for Genetic Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masayoshi Nagata
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tsuyoshi Hachiya
- Department of Advanced Informatics for Genetic Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Haruhiko Wakita
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshihiro Ikehata
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Advanced Informatics for Genetic Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Keiji Takahashi
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshiyuki China
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Fumitaka Shimizu
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Jun Lu
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yiming Jin
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yan Lu
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hisamitsu Ide
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Advanced Informatics for Genetic Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
6
|
Ostrand-Rosenberg S, Lamb TJ, Pawelec G. Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1183-1197. [PMID: 37068300 PMCID: PMC10111205 DOI: 10.4049/jimmunol.2200914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 04/19/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) were initially identified in humans and mice with cancer where they profoundly suppress T cell- and NK cell-mediated antitumor immunity. Inflammation is a central feature of many pathologies and normal physiological conditions and is the dominant driving force for the accumulation and function of MDSCs. Therefore, MDSCs are present in conditions where inflammation is present. Although MDSCs are detrimental in cancer and conditions where cellular immunity is desirable, they are beneficial in settings where cellular immunity is hyperactive. Because MDSCs can be generated ex vivo, they are being exploited as therapeutic agents to reduce damaging cellular immunity. In this review, we discuss the detrimental and beneficial roles of MDSCs in disease settings such as bacterial, viral, and parasitic infections, sepsis, obesity, trauma, stress, autoimmunity, transplantation and graft-versus-host disease, and normal physiological settings, including pregnancy and neonates as well as aging. The impact of MDSCs on vaccination is also discussed.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Tracey J. Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany, and Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
7
|
Bleve A, Motta F, Durante B, Pandolfo C, Selmi C, Sica A. Immunosenescence, Inflammaging, and Frailty: Role of Myeloid Cells in Age-Related Diseases. Clin Rev Allergy Immunol 2023; 64:123-144. [PMID: 35031957 PMCID: PMC8760106 DOI: 10.1007/s12016-021-08909-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
The immune system is the central regulator of tissue homeostasis, ensuring tissue regeneration and protection against both pathogens and the neoformation of cancer cells. Its proper functioning requires homeostatic properties, which are maintained by an adequate balance of myeloid and lymphoid responses. Aging progressively undermines this ability and compromises the correct activation of immune responses, as well as the resolution of the inflammatory response. A subclinical syndrome of "homeostatic frailty" appears as a distinctive trait of the elderly, which predisposes to immune debilitation and chronic low-grade inflammation (inflammaging), causing the uncontrolled development of chronic and degenerative diseases. The innate immune compartment, in particular, undergoes to a sequela of age-dependent functional alterations, encompassing steps of myeloid progenitor differentiation and altered responses to endogenous and exogenous threats. Here, we will review the age-dependent evolution of myeloid populations, as well as their impact on frailty and diseases of the elderly.
Collapse
Affiliation(s)
- Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Barbara Durante
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Chiara Pandolfo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center- IRCCS, via Manzoni 56, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani, via Bovio 6, 2 - 28100, Novara, Italy.
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
8
|
Bueno V, Frasca D. Mini-review: Angiotensin- converting enzyme 1 (ACE1) and the impact for diseases such as Alzheimer's disease, sarcopenia, cancer, and COVID-19. FRONTIERS IN AGING 2023; 4:1117502. [PMID: 36756193 PMCID: PMC9899811 DOI: 10.3389/fragi.2023.1117502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Ageing has been associated with comorbidities, systemic low-grade of inflammation, and immunosenescence. Hypertension is the most common morbidity and anti-hypertensives are used for more than 50%. Angiotensin-converting enzyme 1 inhibitors (ACEi) and angiotensin II receptor blockers (ARB) control blood pressure but also seem to play a role in comorbidities such as Alzheimer's disease, sarcopenia and cancer. The impact of anti-hypertensives in comorbidities is due to the expression of renin-angiotensin system (RAS) in several tissues and body fluids. Angiotensin-converting enzyme 1 (ACE1) has been linked to oxidative stress, metabolism, and inflammation. The levels and activity of ACE1 are under genetic control and polymorphisms have been correlated with susceptibility to Alzheimer's disease. In addition, some results found that ACEi and ARB users present delayed cognitive decline and reduced risk of dementia. Regarding to sarcopenia, RAS has been linked to the catabolic and anabolic pathways for muscle mass maintenance. In some studies, older adults using ACEi were highly benefited by exercise training. In cancer, RAS and its products have been shown to play a role since their inhibition in animal models modulates tumor microenvironment and improves the delivery of chemotherapy drugs. Clinically, the incidence of colorectal cancer is reduced in patients using ACEi and ARB. During the pandemic COVID-19 it was found that ACE2 receptor plays a role in the entry of SARS-CoV-2 into the host cell. ACE1 genotypes have been linked to an increased risk for COVID-19 and severe disease. In some studies COVID-19 patients taking ARB or ACEi presented better outcome.
Collapse
Affiliation(s)
- Valquiria Bueno
- Department of Microbiology Immunology and Parasitology, UNIFESP Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Frasca
- Department of Immunology, University of Miami, Miami, FL, United States
| |
Collapse
|
9
|
Bueno V, Destro PH, Teixeira D, Frasca D. Angiotensin Converting Enzyme 1 Expression in the Leukocytes of Adults Aged 64 to 67 Years. JMIRX MED 2023; 4:e45220. [PMID: 37725526 PMCID: PMC10414256 DOI: 10.2196/45220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 09/21/2023]
Abstract
The renin angiotensin system is composed of several enzymes and substrates on which angiotensin converting enzyme (ACE) 1 and renin act to produce angiotensin II. ACE1 and its substrates control blood pressure, affect cardiovascular and renal function, hematopoiesis, reproduction, and immunity. The increased expression of ACE1 has been observed in human monocytes during congestive heart failure and abdominal aortic aneurysm. Moreover, T lymphocytes from individuals with hypertension presented increased expression of ACE1 after in vitro stimulation with angiotensin II (ATII) with the highest ACE1 expression observed in individuals with hypertension with low-grade inflammation. Our group and others have shown that aging is associated with comorbidities, chronic inflammation, and immunosenescence, but there is a lack of data about ACE1 expression on immune cells during the aging process. Therefore, our aim was to evaluate the levels of ACE1 expression in nonlymphoid cells compared to lymphoid that in cells in association with the immunosenescence profile in adults older than 60 years. Cryopreserved peripheral blood mononuclear cells obtained from blood samples were used. Cells were stained with monoclonal antibodies and evaluated via flow cytometry. We found that ACE1 was expressed in 56.9% of nonlymphocytes and in more than 90% of lymphocytes (all phenotypes). All donors exhibited characteristics of immunosenescence, as evaluated by low frequencies of naïve CD4+ and CD8+ T cells, high frequencies of effector memory re-expressing CD45RA CD8+ T cells, and double-negative memory B cells. These findings, in addition to the increased C-reactive protein levels, are intriguing questions for the study of ACE1, inflammaging, immunosenescence, and perspectives for drug development or repurposing (Reviewed by the Plan P #PeerRef Community).
Collapse
Affiliation(s)
- Valquiria Bueno
- Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Pedro Henrique Destro
- Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Teixeira
- Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Frasca
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
10
|
Lu X, Yang YM, Lu YQ. Immunosenescence: A Critical Factor Associated With Organ Injury After Sepsis. Front Immunol 2022; 13:917293. [PMID: 35924237 PMCID: PMC9339684 DOI: 10.3389/fimmu.2022.917293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Progressive immune dysfunction associated with aging is known as immunosenescence. The age-related deterioration of immune function is accompanied by chronic inflammation and microenvironment changes. Immunosenescence can affect both innate and acquired immunity. Sepsis is a systemic inflammatory response that affects parenchymal organs, such as the respiratory system, cardiovascular system, liver, urinary system, and central nervous system, according to the sequential organ failure assessment (SOFA). The initial immune response is characterized by an excess release of inflammatory factors, followed by persistent immune paralysis. Moreover, immunosenescence was found to complement the severity of the immune disorder following sepsis. Furthermore, the immune characteristics associated with sepsis include lymphocytopenia, thymus degeneration, and immunosuppressive cell proliferation, which are very similar to the characteristics of immunosenescence. Therefore, an in-depth understanding of immunosenescence after sepsis and its subsequent effects on the organs may contribute to the development of promising therapeutic strategies. This paper focuses on the characteristics of immunosenescence after sepsis and rigorously analyzes the possible underlying mechanism of action. Based on several recent studies, we summarized the relationship between immunosenescence and sepsis-related organs. We believe that the association between immunosenescence and parenchymal organs might be able to explain the delayed consequences associated with sepsis.
Collapse
Affiliation(s)
- Xuan Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yun-Mei Yang
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Yuan-Qiang Lu,
| |
Collapse
|
11
|
Schroeter A, Roesel MJ, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Aging Affects the Role of Myeloid-Derived Suppressor Cells in Alloimmunity. Front Immunol 2022; 13:917972. [PMID: 35874716 PMCID: PMC9296838 DOI: 10.3389/fimmu.2022.917972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are defined as a group of myeloid cells with potent immunoregulatory functions that have been shown to be involved in a variety of immune-related diseases including infections, autoimmune disorders, and cancer. In organ transplantation, MDSC promote tolerance by modifying adaptive immune responses. With aging, however, substantial changes occur that affect immune functions and impact alloimmunity. Since the vast majority of transplant patients are elderly, age-specific modifications of MDSC are of relevance. Furthermore, understanding age-associated changes in MDSC may lead to improved therapeutic strategies. Here, we provide a comprehensive update on the effects of aging on MDSC and discuss potential consequences on alloimmunity.
Collapse
Affiliation(s)
- Andreas Schroeter
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Maximilian J. Roesel
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Medical Immunology, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Tomohisa Matsunaga
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Yao Xiao
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Influences of Vitamin D and Iron Status on Skeletal Muscle Health: A Narrative Review. Nutrients 2022; 14:nu14132717. [PMID: 35807896 PMCID: PMC9268405 DOI: 10.3390/nu14132717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
There is conflicting evidence of the roles vitamin D and iron have in isolation and combined in relation to muscle health. The purpose of this narrative review was to examine the current literature on the roles that vitamin D and iron have on skeletal muscle mass, strength, and function and how these nutrients are associated with skeletal muscle health in specific populations. Secondary purposes include exploring if low vitamin D and iron status are interrelated with skeletal muscle health and chronic inflammation and reviewing the influence of animal-source foods rich in these nutrients on health and performance. PubMed, Scopus, SPORT Discus, EMBAE, MEDLINE, and Google Scholar databases were searched to determine eligible studies. There was a positive effect of vitamin D on muscle mass, particularly in older adults. There was a positive effect of iron on aerobic and anaerobic performance. Studies reported mixed results for both vitamin D and iron on muscle strength and function. While vitamin D and iron deficiency commonly occur in combination, few studies examined effects on skeletal muscle health and inflammation. Isolated nutrients such as iron and vitamin D may have positive outcomes; however, nutrients within food sources may be most effective in improving skeletal muscle health.
Collapse
|
13
|
Viana CEM, Matos DM, Oliveira MDF, da Costa AC, Filho TPDA, Filho PAM, Nunes FMM, Nogueira dos Santos T, Gonçalves RP, Queiroz JAN. Immunosuppressive CD14 +/HLA-DR low/‒ monocytes in patients with Chagas Disease. Acta Trop 2021; 224:106154. [PMID: 34599890 DOI: 10.1016/j.actatropica.2021.106154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
Chagas Disease (CD) is a neglected illness whose immunopathological mechanisms have not yet been plainly elucidated. The asymptomatic (indeterminate) form of CD is a long-term condition and approximately 20% to 35% of the individuals with this form evolve into one of the three chronic symptomatic clinical forms of CD, namely: cardiac, digestive or cardio-digestive (mixed). A variant of blood monocytes characterized by low expression of the HLA-DR antigen (CD14+/HLA-DRlow/‒) constitutes a subtype of myeloid-derived suppressor cells (MDSCs) whose main function is to regulate exacerbated inflammatory processes. The development of the symptomatic forms of CD can be related to the interaction between the host's immune system and the CD14+/HLA-DRlow/‒ immunosuppressive monocytes. Here, we evaluated, by flow cytometry, the absolute number and the HLA-DR antigenic density of this population of MDSCs in 57 patients with the diagnosis of CD: 34 with the symptomatic clinical forms (26 cardiac and 8 mixed) and 23 with the asymptomatic (indeterminate) form. The asymptomatic form exhibited a greater number of CD14+/HLA-DRlow/‒ monocytes and, accordingly, a low HLA-DR antigenic density, when compared to the symptomatic forms. It is possible to speculate that the predominance of CD14+/HLA-DRlow/- monocytes in the patients with the asymptomatic (indeterminate) form might have been a factor that could delay or even prevent the evolution of the asymptomatic form to the symptomatic forms of Chagas Disease.
Collapse
|
14
|
Hajhashemy Z, Foshati S, Saneei P. Relationship between abdominal obesity (based on waist circumference) and serum vitamin D levels: a systematic review and meta-analysis of epidemiologic studies. Nutr Rev 2021; 80:1105-1117. [PMID: 34537844 DOI: 10.1093/nutrit/nuab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CONTEXT Although previous observational studies have investigated the association between waist circumference (WC) values and serum vitamin D levels, findings have been inconsistent. OBJECTIVE A systematic review and meta-analysis was performed to evaluate the effect of abdominal obesity (based on WC) on vitamin D deficiency or insufficiency in adults. DATA SOURCES A systematic search of the published literature up to September 2020 was conducted in electronic databases, including MEDLINE (PubMed), EMBASE, Institute for Scientific Information (ISI) (Web of Science), Scopus, and Google Scholar, for observational studies that investigated the association between abdominal obesity (based on WC) or different categories of WC as the exposure and serum 25-hydroxy vitamin D levels as the outcome. DATA EXTRACTION Eighteen cross-sectional studies were included in the review. The relationship between WC values and combined serum vitamin D deficiency and insufficiency (<30 ng/mL) or vitamin D deficiency (<20 ng/mL) was evaluated. DATA ANALYSIS Combining 8 effect sizes from 5 investigations, including 7997 individuals, illustrated that the highest category of WC, compared with the lowest category of WC, was related to 82% increased odds of combined serum vitamin D deficiency and insufficiency (<30 ng/mL) (OR: 1.82; 95% CI: 1.34, 2.49). Moreover, in studies that investigated both genders together, the highest category of WC, compared with the lowest category of WC, was associated with 61% increased odds of serum vitamin D deficiency (<20 ng/mL) (OR: 1.61; 95% CI: 1.12, 2.31). The same results were obtained for almost all subgroups for several covariates. CONCLUSION This meta-analysis of cross-sectional studies confirmed that increased WC was related to the elevated risk of combined vitamin D deficiency and insufficiency in adults. More prospective studies are needed to confirm causality. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020190485.
Collapse
Affiliation(s)
- Zahra Hajhashemy
- Z. Hajhashemy is with the Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.,Z. Hajhashemy and P. Saneei are with the Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Foshati
- S. Foshati is with the Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvane Saneei
- Z. Hajhashemy and P. Saneei are with the Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Age-related expansion and increased osteoclastogenic potential of myeloid-derived suppressor cells. Mol Immunol 2021; 137:187-200. [PMID: 34274794 DOI: 10.1016/j.molimm.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Aging is associated with excessive bone loss that is not counteracted with the development of new bone. However, the mechanisms underlying age-related bone loss are not completely clear. Myeloid-derived suppressor cells (MDSCs) are a population of heterogenous immature myeloid cells with immunosuppressive functions that are known to stimulate tumor-induced bone lysis. In this study, we investigated the association of MDSCs and age-related bone loss in mice. Our results shown that aging increased the accumulation of MDSCs in the bone marrow and spleen, while in the meantime potentiated the osteoclastogenic activity of the CD11b+Ly6ChiLy6G+ monocytic subpopulation of MDSCs. In addition, CD11b+Ly6ChiLy6G+ MDSCs from old mice exhibited increased expression of c-fms compared to young mice, and were more sensitive to RANKL-induced osteoclast gene expression. On the other hand, old mice showed elevated production of IL-6 and receptor activator of nuclear factor kappa-B ligand (RANKL) in the circulation. Furthermore, IL-6 and RANKL were able to induce the proliferation of CD11b+Ly6ChiLy6G+ MDSCs and up-regulate c-fms expression. Moreover, CD11b+Ly6ChiLy6G+ MDSCs obtained from old mice showed increased antigen-specific T cell suppressive function, pStat3 expression, and cytokine production in response to inflammatory stimulation, compared to those cells obtained from young mice. Our findings suggest that CD11b+Ly6ChiLy6G+ MDSCs are a source of osteoclast precursors that together with the presence of persistent, low-grade inflammation, contribute to age-associated bone loss in mice.
Collapse
|
16
|
Achmus L, Ruhnau J, Grothe S, von Sarnowski B, Bröker BM, Dressel A, Schulze J, Vogelgesang A. Stroke-Induced Modulation of Myeloid-Derived Suppressor Cells (MDSCs) and IL-10-Producing Regulatory Monocytes. Front Neurol 2020; 11:577971. [PMID: 33329318 PMCID: PMC7732608 DOI: 10.3389/fneur.2020.577971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Stroke patients are at risk of acquiring secondary infections due to stroke-induced immune suppression (SIIS). Immunosuppressive cells comprise myeloid-derived suppressor cells (MDSCs) and immunosuppressive interleukin 10 (IL-10)-producing monocytes. MDSCs represent a small but heterogeneous population of monocytic, polymorphonuclear (or granulocytic), and early progenitor cells (“early” MDSC), which can expand extensively in pathophysiological conditions. MDSCs have been shown to exert strong immune-suppressive effects. The role of IL-10-producing immunosuppressive monocytes after stroke has not been investigated, but monocytes are impaired in oxidative burst and downregulate human leukocyte antigen—DR isotype (HLA-DR) on the cell surface. Objectives: The objective of this work was to investigate the regulation and function of MDSCs as well as the immunosuppressive IL-10-producing monocytes in experimental and human stroke. Methods: This longitudinal, monocentric, non-interventional prospective explorative study used multicolor flow cytometry to identify MDSC subpopulations and IL-10 expression in monocytes in the peripheral blood of 19 healthy controls and 27 patients on days 1, 3, and 5 post-stroke. Quantification of intracellular STAT3p and Arginase-1 by geometric mean fluorescence intensity was used to assess the functionality of MDSCs. In experimental stroke induced by electrocoagulation in middle-aged mice, monocytic (CD11b+Ly6G−Ly6Chigh) and polymorphonuclear (CD11b+Ly6G+Ly6Clow) MDSCs in the spleen were analyzed by flow cytometry. Results: Compared to the controls, stroke patients showed a relative increase in monocytic MDSCs (percentage of CD11b+ cells) in whole blood without evidence for an altered function. The other MDSC subgroups did not differ from the control. Also, in experimental stroke, monocytic, and in addition, polymorphonuclear MDSCs were increased. The numbers of IL-10-positive monocytes did not differ between the patients and controls. However, we provide a new insight into monocytic function post-stroke since we can report that a differential regulation of HLA-DR and PD-L1 was found depending on the IL-10 production of monocytes. IL-10-positive monocytes are more activated post-stroke, as indicated by their increased HLA-DR expression. Conclusions: MDSC and IL-10+ monocytes can induce immunosuppression within days after stroke.
Collapse
Affiliation(s)
- Lennart Achmus
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Johanna Ruhnau
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Grothe
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | | | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Dressel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,Department of Neurology, Carl-Thiem Klinikum, Cottbus, Germany
| | - Juliane Schulze
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Antje Vogelgesang
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Chiu YL, Tsai WC, Hung RW, Chen IY, Shu KH, Pan SY, Yang FJ, Ting TT, Jiang JY, Peng YS, Chuang YF. Emergence of T cell immunosenescence in diabetic chronic kidney disease. IMMUNITY & AGEING 2020; 17:31. [PMID: 33088331 PMCID: PMC7574244 DOI: 10.1186/s12979-020-00200-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Background Type 2 diabetes is an important challenge given the worldwide epidemic and is the most important cause of end-stage renal disease (ESRD) in developed countries. It is known that patients with ESRD and advanced renal failure suffer from immunosenescence and premature T cell aging, but whether such changes develop in patients with less severe chronic kidney disease (CKD) is unclear. Method 523 adult patients with type 2 diabetes were recruited for this study. Demographic data and clinical information were obtained from medical chart review. Immunosenescence, or aging of the immune system was assessed by staining freshly-obtained peripheral blood with immunophenotyping panels and analyzing cells using multicolor flow cytometry. Result Consistent with previously observed in the general population, both T and monocyte immunosenescence in diabetic patients positively correlate with age. When compared to diabetic patients with preserved renal function (estimated glomerular filtration rate > 60 ml/min), patients with impaired renal function exhibit a significant decrease of total CD3+ and CD4+ T cells, but not CD8+ T cell and monocyte numbers. Immunosenescence was observed in patients with CKD stage 3 and in patients with more severe renal failure, especially of CD8+ T cells. However, immunosenescence was not associated with level of proteinuria level or glucose control. In age, sex and glucose level-adjusted regression models, stage 3 CKD patients exhibited significantly elevated percentages of CD28-, CD127-, and CD57+ cells among CD8+ T cells when compared to patients with preserved renal function. In contrast, no change was detected in monocyte subpopulations as renal function declined. In addition, higher body mass index (BMI) is associated with enhanced immunosenescence irrespective of CKD status. Conclusion The extent of immunosenescence is not significantly associated with proteinuria or glucose control in type 2 diabetic patients. T cells, especially the CD8+ subsets, exhibit aggravated characteristics of immunosenescence during renal function decline as early as stage 3 CKD. In addition, inflammation increases since stage 3 CKD and higher BMI drives the accumulation of CD8+CD57+ T cells. Our study indicates that therapeutic approaches such as weight loss may be used to prevent the emergence of immunosenescence in diabetes before stage 3 CKD.
Collapse
Affiliation(s)
- Yen-Ling Chiu
- Graduate Program in Biomedical Informatics, Department of Computer Science and Engineering, College of Informatics, Yuan Ze University, Taoyuan, Taiwan.,Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wan-Chuan Tsai
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Center for General Education, Lee-Ming Institute of Technology, New Taipei City, Taiwan
| | - Ruo-Wei Hung
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - I-Yu Chen
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Kai-Hsiang Shu
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Szu-Yu Pan
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Feng-Jung Yang
- Department of Medicine, National Taiwan University Hospital Yun Lin Branch, Douliu, Taiwan
| | - Te-Tien Ting
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Ju-Ying Jiang
- Division of Endocrinology and Metabolism, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yu-Sen Peng
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Applied Cosmetology, Lee-Ming Institute of Technology, New Taipei City, Taiwan.,Department of Healthcare Administration, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 2020; 42:521-536. [PMID: 32930852 PMCID: PMC7490574 DOI: 10.1007/s00281-020-00818-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Alterations in the immune system with aging are considered to underlie many age-related diseases. However, many elderly individuals remain healthy until even a very advanced age. There is also an increase in numbers of centenarians and their apparent fitness. We should therefore change our unilaterally detrimental consideration of age-related immune changes. Recent data taking into consideration the immunobiography concept may allow for meaningful distinctions among various aging trajectories. This implies that the aging immune system has a homeodynamic characteristic balanced between adaptive and maladaptive aspects. The survival and health of an individual depends from the equilibrium of this balance. In this article, we highlight which parts of the aging of the immune system may be considered adaptive in contrast to those that may be maladaptive.
Collapse
Affiliation(s)
- T Fulop
- Department of Geriatrics, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - A Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - K Hirokawa
- Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Department of Pathology, Tokyo Med. Dent. University, Tokyo, Japan
| | - A A Cohen
- Department of Family Medicine, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - J M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
19
|
Magri S, Masetto E, Solito S, Francescato S, Belluzzi E, Pozzuoli A, Berizzi A, Ruggieri P, Mandruzzato S. Human MDSCs derived from the bone marrow maintain their functional ability but have a reduced frequency of induction in the elderly compared to pediatric donors. IMMUNITY & AGEING 2020; 17:27. [PMID: 32944054 PMCID: PMC7488050 DOI: 10.1186/s12979-020-00199-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immunosuppressive cells developing from myeloid progenitors, which are enriched in pathological conditions such as cancer, and are known to inhibit the functions of effector T cells. During aging, several changes occur both at the adaptive and innate immune system level, in a process defined as immunoscenescence. In particular, the low-grade inflammation state observed in the elderly appears to affect hematopoiesis. We previously demonstrated that the combination of GM-CSF and G-CSF drives the in vitro generation of bone marrow-derived MDSCs (BM-MDSCs) from precursors present in human bone marrow aspirates of healthy donors, and that these cells are endowed with a strong immune suppressive ability, resembling that of cancer-associated MDSCs. In the present work we investigated BM-MDSCs induction and functional ability in a cohort of pediatric versus elderly donors. To this aim, we analyzed the differences in maturation stages and ability to suppress T cell proliferation. We found that the ex vivo distribution of myeloid progenitors is similar between pediatric and elderly individuals, whereas after cytokine treatment a significant reduction in the more immature compartment is observed in the elderly. Despite the decreased frequency, BM-MDSCs maintain their suppressive capacity in aged donors. Taken together, these results indicate that in vitro induction of MDSCs from the BM is reduced with aging and opens new hypotheses on the role of age-related processes in myelopoiesis.
Collapse
Affiliation(s)
- Sara Magri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy
| | | | - Samantha Solito
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy.,Present address: University of Verona, Verona, Italy
| | - Samuela Francescato
- Pediatric Onco-Hematology Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy
| | - Assunta Pozzuoli
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy
| | - Antonio Berizzi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy.,Orthopedic and Traumatologic Clinic, Azienda Ospedaliera di Padova, Padova, Italy
| | - Pietro Ruggieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy.,Orthopedic and Traumatologic Clinic, Azienda Ospedaliera di Padova, Padova, Italy
| | - Susanna Mandruzzato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy.,IOV-IRCCS, Padova, Italy
| |
Collapse
|
20
|
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020; 12:9959-9981. [PMID: 32470948 PMCID: PMC7288963 DOI: 10.18632/aging.103344] [Citation(s) in RCA: 622] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The severity and outcome of coronavirus disease 2019 (COVID-19) largely depends on a patient's age. Adults over 65 years of age represent 80% of hospitalizations and have a 23-fold greater risk of death than those under 65. In the clinic, COVID-19 patients most commonly present with fever, cough and dyspnea, and from there the disease can progress to acute respiratory distress syndrome, lung consolidation, cytokine release syndrome, endotheliitis, coagulopathy, multiple organ failure and death. Comorbidities such as cardiovascular disease, diabetes and obesity increase the chances of fatal disease, but they alone do not explain why age is an independent risk factor. Here, we present the molecular differences between young, middle-aged and older people that may explain why COVID-19 is a mild illness in some but life-threatening in others. We also discuss several biological age clocks that could be used in conjunction with genetic tests to identify both the mechanisms of the disease and individuals most at risk. Finally, based on these mechanisms, we discuss treatments that could increase the survival of older people, not simply by inhibiting the virus, but by restoring patients' ability to clear the infection and effectively regulate immune responses.
Collapse
Affiliation(s)
- Amber L. Mueller
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - Maeve S. McNamara
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - David A. Sinclair
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| |
Collapse
|
21
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
22
|
Fleet JC, Burcham GN, Calvert RD, Elzey BD, Ratliff TL. 1α, 25 Dihydroxyvitamin D (1,25(OH) 2D) inhibits the T cell suppressive function of myeloid derived suppressor cells (MDSC). J Steroid Biochem Mol Biol 2020; 198:105557. [PMID: 31783150 PMCID: PMC8041088 DOI: 10.1016/j.jsbmb.2019.105557] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
Myeloid derived suppressor cells (MDSC) suppress the ability of cytotoxic T cells to attack and clear tumor cells from the body. The active form of vitamin D, 1,25 dihydroxyvitamin D (1,25(OH)2D), regulates myeloid cell biology and previous research showed that in mouse models 1,25(OH)2D reduced the tumor level of CD34+ cells, an MDSC precursor, and reduced metastasis. We tested whether MDSC are vitamin D target cells by examining granulocytic- (G-MDSC) and monocytic (M-MDSC) MDSC from tumors, spleen, and bone marrow. Vitamin D receptor (VDR) mRNA levels are low in MDSC from bone marrow and spleen but are 20-fold higher in tumor MDSC. At all sites, M-MDSC have 4-fold higher VDR mRNA expression than G-MDSC. Bone marrow MDSC were induced to differentiate in vitro into tumor MDSC-like cells by treating with IFN-γ, IL-13, and GM-CSF for 48 h. This treatment significantly elevated Arg1 and Nos2 levels, activated the T cell-suppressive function of MDSC, increased VDR expression 50-fold, and made the MDSC responsive to 1,25(OH)2D treatment. Importantly, 1,25(OH)2D treatment reduced the T cell suppressive capacity of cytokine-induced total MDSC and M-MDSC by ≥70 % and tumor-derived M-MDSC by 30-50 %. Consistent with this finding, VDR deletion (KO) increased T cell suppressive function of in vitro M-MDSC by 30 % and of tumor-derived M-MDSC by 50 % and G-MDSC by 400 %. VDR KO did not alter Nos2 mRNA levels but significantly increased Arg1 mRNA levels in tumor M-MDSC by 100 %. In contrast, 1,25(OH)2D treatment reduced nitric oxide production in both in vitro derived M- and G- MDSC. The major finding of this study is that 1,25(OH)2D signaling through the VDR decreases the immunosuppressive capability of MDSC. Collectively, our data suggest that activation of vitamin D signaling could be used to suppress MDSC function and release a constraint on T-cell mediated clearance of tumor cells.
Collapse
Affiliation(s)
- J C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| | - G N Burcham
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - R D Calvert
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - B D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - T L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
23
|
Wen J, Huang G, Liu S, Wan J, Wang X, Zhu Y, Kaliney W, Zhang C, Cheng L, Wen X, Lu X. Polymorphonuclear MDSCs are enriched in the stroma and expanded in metastases of prostate cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 6:171-177. [PMID: 32149481 PMCID: PMC7339199 DOI: 10.1002/cjp2.160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/30/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
Myeloid‐derived suppressor cells with polymorphonuclear morphology (PMN‐MDSCs) contribute to the progression and immune evasion of prostate cancer. However, the spatial distribution of tumor‐infiltrating PMN‐MDSCs in primary and metastatic prostate cancer, especially in the context of comparison between the epithelial and stromal compartments of the tumor, has not been characterized. Here, we describe a multicolor immunofluorescence staining study of 90 primary tumors, 37 lymph node metastases (all with matched primary tumors) and 35 bone metastases using archived samples. CD11b+ CD15+ cells were identified as PMN‐MDSCs and pan‐cytokeratin+ cells were identified as prostate epithelial cells. We found that, in both primary tumor and metastases, PMN‐MDSCs infiltrate much more readily in the stromal area compared with the epithelial area of the tumor regions. In comparison to the stromal area of primary tumors, the stromal area of either lymph node metastases or bone metastases was infiltrated with more PMN‐MDSCs. In primary tumors, stromal PMN‐MDSCs were associated with vascularization, segmented neutrophils, patient age and close juxtaposition to neoplastic epithelial cells. These results reveal the stroma rather than the epithelia of prostate cancer as the major hotbed for PMN‐MDSCs and support the role of PMN‐MDSCs in the metastatic progression of prostate cancer.
Collapse
Affiliation(s)
- Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China.,Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Gang Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China.,Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.,School of Informatics and Computing, Indiana University - Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Xuechun Wang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yini Zhu
- Integrated Biomedical Sciences PhD Program, University of Notre Dame, Notre Dame, IN, USA
| | - William Kaliney
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA.,Integrated Biomedical Sciences PhD Program, University of Notre Dame, Notre Dame, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.,Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
24
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
25
|
Salminen A, Kauppinen A, Kaarniranta K. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J Mol Med (Berl) 2019; 97:1049-1064. [PMID: 31129755 PMCID: PMC6647228 DOI: 10.1007/s00109-019-01795-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
AMP-activated protein kinase (AMPK) has a crucial role not only in the regulation of tissue energy metabolism but it can also control immune responses through its cooperation with immune signaling pathways, thus affecting immunometabolism and the functions of immune cells. It is known that AMPK signaling inhibits the activity of the NF-κB system and thus suppresses pro-inflammatory responses. Interestingly, AMPK activation can inhibit several major immune signaling pathways, e.g., the JAK-STAT, NF-κB, C/EBPβ, CHOP, and HIF-1α pathways, which induce the expansion and activation of myeloid-derived suppressor cells (MDSC). MDSCs induce an immunosuppressive microenvironment in tumors and thus allow the escape of tumor cells from immune surveillance. Chronic inflammation has a key role in the expansion and activation of MDSCs in both tumors and inflammatory disorders. The numbers of MDSCs also significantly increase during the aging process concurrently with the immunosenescence associated with chronic low-grade inflammation. Increased fatty acid oxidation and lactate produced by aerobic glycolysis are important immunometabolic enhancers of MDSC functions. However, it seems that AMPK signaling regulates the functions of MDSCs in a context-dependent manner. Currently, the activators of AMPK signaling are promising drug candidates for cancer therapy and possibly for the extension of healthspan and lifespan. We will describe in detail the AMPK-mediated regulation of the signaling pathways controlling the expansion and activation of immunosuppressive MDSCs. We will propose that the beneficial effects mediated by AMPK activation, e.g., in cancers and the aging process, could be induced by the inhibition of MDSC functions.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| |
Collapse
|
26
|
Pawelec G, Verschoor CP, Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Not Only in Tumor Immunity. Front Immunol 2019; 10:1099. [PMID: 31156644 PMCID: PMC6529572 DOI: 10.3389/fimmu.2019.01099] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Since the realization that immature myeloid cells are powerful modulators of the immune response, many studies on “myeloid-derived suppressor cells” (MDSCs) have documented their ability to promote tumor progression in melanoma and other cancers. Whether MDSCs are induced solely pathologically in tumorigenesis, or whether they also represent physiological immune control mechanisms, is not well-understood, but is particularly important in the light of ongoing attempts to block their activities in order to enhance anti-tumor immunity. Here, we briefly review studies which explore (1) how best to identify MDSCs in the context of cancer and how this compares to other conditions in humans; (2) what the suppressive mechanisms of MDSCs are and how to target them pharmacologically; (3) whether levels of MDSCs with various phenotypes are informative for clinical outcome not only in cancer but also other diseases, and (4) whether MDSCs are only found under pathological conditions or whether they also represent a physiological regulatory mechanism for the feedback control of immunity. Studies unequivocally document that MDSCs strongly influence cancer outcomes, but are less informative regarding their relevance to infection, autoimmunity, transplantation and aging, especially in humans. So far, the results of clinical interventions to reverse their negative effects in cancer have been disappointing; thus, developing differential approaches to modulate MSDCs in cancer and other diseases without unduly comprising any normal physiological function requires further exploration.
Collapse
Affiliation(s)
- Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Chris P Verschoor
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 2019; 76:1901-1918. [PMID: 30788516 PMCID: PMC6478639 DOI: 10.1007/s00018-019-03048-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflammaging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Correspondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell compartments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells (Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflammation with aging. We propose that MDSCs are potent inducers of immunosenescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
28
|
Functional capacity, renal function and vitamin D in community-dwelling oldest old. Int Urol Nephrol 2019; 51:713-721. [PMID: 30701398 DOI: 10.1007/s11255-019-02081-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE The aim of this study was to evaluate the association between the decline in estimated glomerular filtration rate (eGFR) and serum 25(OH)D with the physical and mental functional capacity of elderly individuals aged 80 years or older. METHODS We evaluated the functional capacity in its multidomain aspects: Geriatric Depression Scale (GDS), Instrumental Activities of Daily Living (IADL), Mental State Mini-Exam (MMSE), Verbal Fluency Test (VF), handgrip strength and time to sit and rise from a chair five times, combined creatinine and cystatin C-based eGFR and 25(OH)D levels in 205 independent asymptomatic and community-dwelling elderly subjects in a cross-sectional study. RESULTS Every 1 year of life, there was reduction of about 10% chance of adequate performance in functional capacity. Each 1 ml/min/m2 in eGFR was associated with 2% better chance of adequate performance in the IADL. We found no association between eGFR and cognition. Serum 25(OH)D between 15.00 and 22.29 ng/ml increased the chance of better performance in VF, IADL, handgrip strength and sit and rise from the chair compared to the lower level of serum vitamin D. CONCLUSIONS Decreased renal function associated with age compromises the ability to perform activities for independent life in the community, but we did not observe influence in specific domains of cognition and physical performance. Low serum level of 25(OH)D appears to be a marker of greater risk of functional decline than eGFR measurement in independent oldest old dwelling in the community.
Collapse
|