1
|
Thompson GB, Barnhouse VR, Bierman SK, Harley BAC. Influence of Hypoxia on a Biomaterial Model of the Bone Marrow Perivascular Niche. Adv Healthc Mater 2025:e2500858. [PMID: 40285591 DOI: 10.1002/adhm.202500858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Hematopoietic stem cell (HSC) fate is shaped by distinct microenvironments termed niches within the bone marrow. Quiescence, expansion, and differentiation are directly and indirectly regulated by complex combinations of cell secretomes, cell-cell interactions, mechanical signals, and metabolic factors including oxygen tension. The perivascular environment in the bone marrow has been implicated in guiding HSC fate. However, bone marrow presents an environment which is hypoxic (≈1-4% O2) relative to traditional cell culture conditions, and the study of hypoxia in vitro is complicated by the speed with which normoxic conditions during HSC isolation induce differentiation. There is a unique opportunity to use engineered models of the bone marrow to investigate the impact of defined hypoxia on HSC fate. Here, the coordinated impact of oxygen tension and the perivascular secretome upon murine hematopoietic stem and progenitor cells (HSPCs) is examined in vitro. The findings highlight the importance of mitigating oxygen shock during cell isolation in engineered marrow models. We report a shift toward the Lineage- phenotype with hypoxic culture, expansion of HSPCs in response to perivascular niche conditioned medium, and enhanced HSPC maintenance in a hydrogel model of bone marrow in hypoxic culture when oxygen shock is mitigated during isolation using cyclosporin A.
Collapse
Affiliation(s)
- Gunnar B Thompson
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Victoria R Barnhouse
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sydney K Bierman
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
Zhou J, Sun Z, Wang X, Wang S, Jiang W, Tang D, Xia T, Xiao F. Low-temperature cold plasma promotes wound healing by inhibiting skin inflammation and improving skin microbiome. Front Bioeng Biotechnol 2025; 13:1511259. [PMID: 40051835 PMCID: PMC11882593 DOI: 10.3389/fbioe.2025.1511259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Wound healing includes four consecutive and overlapping stages of hemostasis, inflammation, proliferation, and remodeling. Factors such as aging, infection, and chronic diseases can lead to chronic wounds and delayed healing. Low-temperature cold plasma (LTCP) is an emerging physical therapy for wound healing, characterized by its safety, environmental friendliness, and ease of operation. This study utilized a self-developed LTCP device to investigate its biological effects and mechanisms on wound healing in adult and elderly mice. Histopathological studies found that LTCP significantly accelerated the healing rate of skin wounds in mice, with particularly pronounced effects in elderly mice. LTCP can markedly inhibit the expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and senescence-associated secretory phenotype factors (MMP-3, MMP-9), while significantly increasing the expression of tissue repair-related factors, such as VEGF, bFGF, TGF-β, COL-I, and α-SMA. It also regulated the expression of genes related to cell proliferation and migration (Aqp5, Spint1), inflammation response (Nlrp3, Icam1), and angiogenesis (Ptx3, Thbs1), promoting cell proliferation and inhibit apoptosis. Furthermore, LTCP treatment reduced the relative abundance of harmful bacteria such as Delftia, Stenotrophomonas, Enterococcus, and Enterobacter in skin wounds, while increasing the relative abundance of beneficial bacteria such as Muribaculaceae, Acinetobacter, Lachnospiraceae NK4A136_group, and un_f__Lachnospiraceae, thereby improving the microbial community structure of skin wounds. These research findings are of significant implications for understanding the mechanism of skin wound healing, as well as for the treatment and clinical applications of skin wounds, especially aging skin.
Collapse
Affiliation(s)
- Jie Zhou
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Zengkun Sun
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Xiaoru Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Shouguo Wang
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Wen Jiang
- Beijing Zhongsu Titanium Alloy Vacuum Plasma Technology Research Institute, Beijing, China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Xia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Fang Xiao
- Department of Gerontology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Tu Y, Li Y, Qu G, Ning Y, Li B, Li G, Wu M, Li S, Huang Y. A Review of Basic Fibroblast Growth Factor Delivery Strategies and Applications in Regenerative Medicine. J Biomed Mater Res A 2025; 113:e37834. [PMID: 39740125 DOI: 10.1002/jbm.a.37834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 01/02/2025]
Abstract
Basic fibroblast growth factor (bFGF) is a significant member of the fibroblast growth factor (FGF) family. The bFGF has a three-dimensional structure comprising 12 reverse parallel β-folds. This structure facilitates tissue wound repair, angiogenesis, bone formation, cartilage repair, and nerve regeneration. Consequently, it has garnered significant attention from scholars both domestically and internationally. However, the instability and degradation properties of bFGF in vivo have limited its clinical application. Significant interest has arisen in the development of novel bFGF delivery systems that can address the shortcomings of bFGF and enhance its bioavailability by controlling the release amount, timing, and location. This article offers a comprehensive overview of the research and recent advances in various bFGF delivery systems, including hydrogels, liposomes, microspheres, and nanoparticles. Subsequently, the applications of bFGF pharmaceutical preparations in various fields are described. Finally, the current clinical applications of bFGF drug formulations and those in clinical trials are discussed, along with their clinical translation and future trends.
Collapse
Affiliation(s)
- Yuhan Tu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yang Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Gaoer Qu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| | - Yangyang Ning
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Bin Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Guoben Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Min Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yangge Huang
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| |
Collapse
|
4
|
Di Lorenzo B, Zoroddu S, Mangoni AA, Sotgia S, Paliogiannis P, Erre GL, Carru C, Zinellu A. Association between blood Pentraxin-3 concentrations and rheumatic diseases: A systematic review and meta-analysis. Eur J Clin Invest 2024; 54:e14257. [PMID: 38808454 DOI: 10.1111/eci.14257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Among the Pentraxins, the long Pentraxin-3 (PTX-3) is associated with several processes, particularly in the earliest phases of the innate humoral response. Increased blood PTX-3 concentrations have been observed in a wide range of conditions, from infectious to cardiovascular disorders. Since its increase is more rapid than C-reactive protein (CRP), PTX-3 can be useful to detect and monitor early inflammation. To dissect its pathophysiological role in rheumatic diseases (RD), we conducted a systematic review and meta-analysis comparing blood PTX-3 concentrations in RD patients and healthy individuals and investigating possible associations with clinical, demographic, and study characteristics. METHODS We performed a search of published evidence until April 2024 in PubMed, Web of Science and Scopus, which led to the selection of 60 relevant manuscripts from a total of 1072 records. RESULTS Our synthesis revealed a statistically significant difference in PTX-3 concentrations between RD patients and controls (standard mean difference, SMD = 1.02, 95% CI 0.77-1.26, p < .001), that correlated with CRP concentrations. The effect size was associated with geographical region of study conduction, RD type, with a reduction of the observed heterogeneity in patients with low LDL-cholesterol and triglycerides concentrations. CONCLUSIONS Our study has shown a significant increase in blood PTX-3 concentrations in RD patients, which was associated with specific patient characteristics. Nevertheless, additional studies are needed to better define the utility of measuring PTX-3 in the early phase of RD. Our study was conducted in compliance with the PRISMA 2020 statement (study protocol available at PROSPERO CRD42024516600).
Collapse
Affiliation(s)
- Biagio Di Lorenzo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, South Australia, Australia
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Anatomic Pathology and Histology Unit, University Hospital (AOU) of Sassari, Sassari, Italy
| | - Gian Luca Erre
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Rheumatology Unit, University Hospital (AOU) of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Medical Oncology Unit, University Hospital (AOU) of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Marrero AD, Cárdenas C, Castilla L, Ortega-Vidal J, Quesada AR, Martínez-Poveda B, Medina MÁ. Antiangiogenic Potential of an Olive Oil Extract: Insights from a Proteomic Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13023-13038. [PMID: 38809962 PMCID: PMC11181319 DOI: 10.1021/acs.jafc.3c08851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Extra virgin olive oil (EVOO), a staple of the Mediterranean diet, is rich in phenolic compounds recognized for their potent bioactive effects, including anticancer and anti-inflammatory properties. However, its effects on vascular health remain relatively unexplored. In this study, we examined the impact of a "picual" EVOO extract from Jaén, Spain, on endothelial cells. Proteomic analysis revealed the modulation of angiogenesis-related processes. In subsequent in vitro experiments, the EVOO extract inhibited endothelial cell migration, adhesion, invasion, ECM degradation, and tube formation while inducing apoptosis. These results provide robust evidence of the extract's antiangiogenic potential. Our findings highlight the potential of EVOO extracts in mitigating angiogenesis-related pathologies, such as cancer, macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| | - Casimiro Cárdenas
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Servicios
Centrales de Apoyo a la Investigación (SCAI), Universidad de Málaga, E-29071 Málaga, Spain
| | - Laura Castilla
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Juan Ortega-Vidal
- Departamento
de Química Inorgánica y Orgánica, Campus de Excelencia
Internacional Agroalimentaria ceiA3, Universidad
de Jaén, Jaén E- 23071, Spain
| | - Ana R. Quesada
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de
Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
6
|
Fujita T, Yuki T, Honda M. The construction of a microenvironment with the vascular network by co-culturing fibroblasts and endothelial cells. Regen Ther 2024; 25:138-146. [PMID: 38486822 PMCID: PMC10937109 DOI: 10.1016/j.reth.2023.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 03/17/2024] Open
Abstract
Introduction Extracellular matrix (ECM) synthesis and deposition in fibroblasts, and vascularization via endothelial cells are essential for successful tissue regeneration. Fibroblasts can produce both ECM, physical support for maintaining homeostasis, and bioactive molecules, such as growth factors and cytokines. Endothelial cells can secrete growth factors and form vascular networks that enable the supply of nutrients and oxygen and remove metabolic products. Methods In this study, we focused on combining Human Periodontal Ligament Fibroblasts (HPLF) and Human Umbilical Vein Endothelial Cells (HUVEC) for tissue regeneration in clinical applications. Results The fibroblastic and angiogenic phenotypes were promoted in co-culture with HPLF and HUVEC at a ratio of 1:1 compared to HPLF or HUVEC mono-culture. The gene expression of ECM components and angiogenesis-related factors was also enhanced by HPLF/HUVEC co-culture. Despite an apparent increase in the expression of angiogenic factors, the levels of secreted growth factors decreased under co-culture conditions. These data suggest that ECM constructed by HPLF and HUVEC would act as a storage site for growth factors, which can later be released. Our results showed that cell-to-cell interactions between HPLF and HUVEC enhanced collagen synthesis and endothelial network formation, leading to the creation of highly vascularized constructs for periodontal tissue regeneration. Conclusion Successful periodontal tissue regeneration requires microenvironmental reconstruction and vascularization, which can be achieved using a co-culture system. In the present study, we found that fibroblastic and angiogenic phenotypes were enhanced by the co-culture of HPLF and HUVEC. The optimal culture conditions (1:1) could potentially accelerate tissue engineering, including ECM synthesis and EC tube formation, and these approaches can improve therapeutic efficacy after transplantation.
Collapse
Affiliation(s)
- Tatsuwo Fujita
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Taigo Yuki
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Michiyo Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
7
|
Panebianco M, Ciccarese C, Strusi A, Beccia V, Carbone C, Agostini A, Piro G, Tortora G, Iacovelli R. The Role of the Complement in Clear Cell Renal Carcinoma (ccRCC)-What Future Prospects Are There for Its Use in Clinical Practice? Cancers (Basel) 2024; 16:490. [PMID: 38339243 PMCID: PMC10854780 DOI: 10.3390/cancers16030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, the first-line available therapeutic options for metastatic renal cell carcinoma (mRCC) have radically changed with the introduction into clinical practice of new immune checkpoint inhibitor (ICI)-based combinations. Many efforts are focusing on identifying novel prognostic and predictive markers in this setting. The complement system (CS) plays a central role in promoting the growth and progression of mRCC. In particular, mRCC has been defined as an "aggressive complement tumor", which encompasses a group of malignancies with poor prognosie and highly expressed complement components. Several preclinical and retrospective studies have demonstrated the negative prognostic role of the complement in mRCC; however, there is little evidence on its possible role as a predictor of the response to ICIs. The purpose of this review is to explore more deeply the physio-pathological role of the complement in the development of RCC and its possible future use in clinical practice as a prognostic and predictive factor.
Collapse
Affiliation(s)
- Martina Panebianco
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Chiara Ciccarese
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Alessandro Strusi
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Viria Beccia
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Roberto Iacovelli
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| |
Collapse
|
8
|
Ye X, Wang Z, Lei W, Shen M, Tang J, Xu X, Yang Y, Zhang H. Pentraxin 3: A promising therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 93:102163. [PMID: 38092307 DOI: 10.1016/j.arr.2023.102163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Cardiovascular disease (CVD) is the primary global cause of death, and inflammation is a crucial factor in the development of CVDs. The acute phase inflammatory protein pentraxin 3 (PTX3) is a biomarker reflecting the immune response. Recent research indicates that PTX3 plays a vital role in CVDs and has been investigated as a possible biomarker for CVD in clinical trials. PTX3 is implicated in the progression of CVDs through mechanisms such as exacerbating vascular endothelial dysfunction, affecting angiogenesis, and regulating inflammation and oxidative stress. This review summarized the structure and function of PTX3, focusing on its multifaceted effects on CVDs, such as atherosclerosis, myocardial infarction, and hypertension. This may help in explaining the varying PTX3 functions and usage, as well as in utilizing target organs to manage diseases. Moreover, elucidating the opposite role of PTX3 in the cardiovascular system will demonstrate the therapeutic and predictive potential in human diseases.
Collapse
Affiliation(s)
- Xingyan Ye
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, China
| | - Wangrui Lei
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, 80 Jianglin Road, Hainan, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| |
Collapse
|
9
|
Zajkowska M, Mroczko B. The Role of Pentraxin 3 in Gastrointestinal Cancers. Cancers (Basel) 2023; 15:5832. [PMID: 38136377 PMCID: PMC10741769 DOI: 10.3390/cancers15245832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrointestinal cancers have become a huge problem worldwide as the number of new cases continues to increase. Due to the growing need to explore new biomarkers and therapeutic targets for the detection and treatment of cancerous lesions, we sought to elucidate the role of Pentraxin-3 in the progression of cancerous lesions, as it is involved in the process of angiogenesis and inflammation. Statistically significant changes in the concentration of this parameter have emerged in many gastrointestinal cancer patients. Moreover, it is related to the advancement of cancer, as well as processes leading to the development of those changes. In the case of studies concerning tissue material, both increased and decreased tissue expression of the tested parameter were observed and were dependent on the type of cancer. In the case of cell lines, both human and animal, a significant increase in Pentraxin 3 gene expression was observed, which confirmed the changes observed at the protein level. In conclusion, it can be assumed that PTX3, both at the level of gene expression and protein concentrations, is highly useful in the detection of gastrointestinal cancers, and its use as a biomarker and/or therapeutic target may be useful in the future.
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
10
|
Li D, Hao Z, Nan Y, Chen Y. Role of long pentraxin PTX3 in cancer. Clin Exp Med 2023; 23:4401-4411. [PMID: 37438568 DOI: 10.1007/s10238-023-01137-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Cancer has become a leading cause of death and disease burden worldwide, closely related to rapid socioeconomic development. However, the fundamental reason is the lack of comprehensive understanding of the mechanism of cancer, accurate identification of preclinical cancer, and effective treatment of the disease. Therefore, it is particularly urgent to study specific mechanisms of cancer and develop effective prediction and treatment methods. Long Pentraxin PTX3 is a soluble pattern recognition molecule produced by various cells in inflammatory sites, which plays a role as a promoter or suppressor of cancer in multiple tumors through participating in innate immune response, neovascularization, energy metabolism, invasion, and metastasis mechanisms. Based on this, this article mainly reviews the role of PTX3 in various cancers.
Collapse
Affiliation(s)
- Duo Li
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Zhaozhao Hao
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Yandong Nan
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China.
| | - Yanwei Chen
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an 710038, China
| |
Collapse
|
11
|
Tang B, Ma W, Lin Y. Emerging applications of anti-angiogenic nanomaterials in oncotherapy. J Control Release 2023; 364:61-78. [PMID: 37871753 DOI: 10.1016/j.jconrel.2023.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Angiogenesis is the process of generating new blood vessels from pre-existing vasculature. Under normal conditions, this process is delicately controlled by pro-angiogenic and anti-angiogenic factors. Tumor cells can produce plentiful pro-angiogenic molecules promoting pathological angiogenesis for uncontrollable growth. Therefore, anti-angiogenic therapy, which aims to inhibit tumor angiogenesis, has become an attractive approach for oncotherapy. However, classic anti-angiogenic agents have several limitations in clinical use, such as lack of specific targeting, low bioavailability, and poor therapeutic outcomes. Hence, alternative angiogenic inhibitors are highly desired. With the emergence of nanotechnology, various nanomaterials have been designed for anti-angiogenesis purposes, offering promising features like excellent targeting capabilities, reduced side effects, and enhanced therapeutic efficacy. In this review, we describe tumor vascular features, discuss current dilemma of traditional anti-angiogenic medicines in oncotherapy, and underline the potential of nanomaterials in tumor anti-angiogenic therapy. Moreover, we discuss the current challenges of anti-angiogenic cancer treatment. We expect that this summary of anti-angiogenic nanomaterials in oncotherapy will offer valuable insights, facilitating their extensive applications in the future.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
12
|
d'Amati A, Ronca R, Maccarinelli F, Turati M, Lorusso L, De Giorgis M, Tamma R, Ribatti D, Annese T. PTX3 shapes profibrotic immune cells and epithelial/fibroblast repair and regeneration in a murine model of pulmonary fibrosis. Pathol Res Pract 2023; 251:154901. [PMID: 37922722 DOI: 10.1016/j.prp.2023.154901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
The long pentraxin 3 (PTX3) is protective in different pathologies but was not analyzed in-depth in Idiopathic Pulmonary Fibrosis (IPF). Here, we have explored the influence of PTX3 in the bleomycin (BLM)-induced murine model of IPF by looking at immune cells (macrophages, mast cells, T cells) and stemness/regenerative markers of lung epithelium (SOX2) and fibro-blasts/myofibroblasts (CD44) at different time points that retrace the progression of the disease from onset at day 14, to full-blown disease at day 21, to incomplete regression at day 28. We took advantage of transgenic PTX3 overexpressing mice (Tie2-PTX3) and Ptx3 null ones (PTX3-KO) in which pulmonary fibrosis was induced. Our data have shown that PTX3 overexpression in Tie2-PTX3 compared to WT or PTX3-KO: reduced CD68+ and CD163+ macrophages and the Tryptase+ mast cells during the whole experimental time; on the contrary, CD4+ T cells are consistently present on day 14 and dramatically decreased on day 21; CD8+ T cells do not show significant differences on day 14, but are significantly reduced on day 21; SOX2 is reduced on days 14 and 21; CD44 is reduced on day 21. Therefore, PTX3 could act on the proimmune and fibrogenic microenvironment to prevent fibrosis in BLM-treated mice.
Collapse
Affiliation(s)
- Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Turati
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy.
| |
Collapse
|
13
|
Giacomini A, Turati M, Grillo E, Rezzola S, Ghedini GC, Schuind AC, Foglio E, Maccarinelli F, Faletti J, Filiberti S, Chambery A, Valletta M, Melocchi L, Gofflot S, Chiavarina B, Turtoi A, Presta M, Ronca R. The PTX3/TLR4 autocrine loop as a novel therapeutic target in triple negative breast cancer. Exp Hematol Oncol 2023; 12:82. [PMID: 37749607 PMCID: PMC10519006 DOI: 10.1186/s40164-023-00441-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The pattern recognition receptor long pentraxin-3 (PTX3) plays conflicting roles in cancer by acting as an oncosuppressor or as a pro-tumor mediator depending on tumor context. Triple negative breast cancer (TNBC) represents the most aggressive histotype of breast cancer, characterized by the lack of efficacious therapeutic targets/approaches and poor prognosis. Thus, the characterization of new molecular pathways and/or alternative druggable targets is of great interest in TNBC. METHODS The expression of PTX3 in BC tumor samples and in BC cell lines has been analyzed using the Gene Expression-Based Outcome for Breast Cancer Online (GOBO), qPCR, Western blot and ELISA assay. The contribution of tumor and stromal cells to PTX3 production in TNBC was assessed by analyzing single cell RNA sequencing data and RNAscope performed on TNBC tumor samples. In order to investigate the effects of PTX3 in TNBC, different cell lines were engineered to knock-down (MDA-MB-231 and BT549 cells) or overexpress (MDA-MB-468 and E0771 cells) PTX3. Finally, using these engineered cells, in vitro (including gene expression profiling and gene set enrichment analyses) and in vivo (orthotopic tumor models in immune-compromised and immune competent mice) analyses were performed to assess the role and the molecular mechanism(s) exerted by PTX3 in TNBC. RESULTS In silico and experimental data indicate that PTX3 is mainly produced by tumor cells in TNBC and that its expression levels correlate with tumor stage. Accordingly, gene expression and in vitro results demonstrate that PTX3 overexpression confers a high aggressive/proliferative phenotype and fosters stem-like features in TNBC cells. Also, PTX3 expression induces a more tumorigenic potential when TNBC cells are grafted orthotopically in vivo. Conversely, PTX3 downregulation results in a less aggressive behavior of TNBC cells. Mechanistically, our data reveal that PTX3 drives the activation of the pro-tumorigenic Toll-like receptor 4 (TLR4) signaling pathway in TNBC, demonstrating for the first time that the PTX3/TLR4 autocrine stimulation loop contributes to TNBC aggressiveness and that TLR4 inhibition significantly impacts the growth of PTX3-producing TNBC cells. CONCLUSION Altogether, these data shed light on the role of tumor-produced PTX3 in TNBC and uncover the importance of the PTX3/TLR4 axis for therapeutic and prognostic exploitation in TNBC.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Marta Turati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Cristina Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ander Churruca Schuind
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Foglio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jessica Faletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Serena Filiberti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Laura Melocchi
- Pathology Unit, Fondazione Poliambulanza Hospital Institute, Brescia, 25121, Italy
| | | | - Barbara Chiavarina
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
| | - Andrei Turtoi
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, University of Montpellier, Montpellier, France
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
14
|
Motta CS, Torices S, da Rosa BG, Marcos AC, Alvarez-Rosa L, Siqueira M, Moreno-Rodriguez T, Matos ADR, Caetano BC, Martins JSCDC, Gladulich L, Loiola E, Bagshaw ORM, Stuart JA, Siqueira MM, Stipursky J, Toborek M, Adesse D. Human Brain Microvascular Endothelial Cells Exposure to SARS-CoV-2 Leads to Inflammatory Activation through NF-κB Non-Canonical Pathway and Mitochondrial Remodeling. Viruses 2023; 15:745. [PMID: 36992454 PMCID: PMC10056985 DOI: 10.3390/v15030745] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
Neurological effects of COVID-19 and long-COVID-19, as well as neuroinvasion by SARS-CoV-2, still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro exposure by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the blood-brain barrier. Despite the low to non-productive viral replication, SARS-CoV-2-exposed cultures displayed increased immunoreactivity for cleaved caspase-3, an indicator of apoptotic cell death, tight junction protein expression, and immunolocalization. Transcriptomic profiling of SARS-CoV-2-challenged cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.
Collapse
Affiliation(s)
- Carolline Soares Motta
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Barbara Gomes da Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Anne Caroline Marcos
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liandra Alvarez-Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro 05508-000, Brazil
| | - Michele Siqueira
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro 05508-000, Brazil
| | - Thaidy Moreno-Rodriguez
- Urology Department, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aline da Rocha Matos
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais (LVRE), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Braulia Costa Caetano
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais (LVRE), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Jessica Santa Cruz de Carvalho Martins
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais (LVRE), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Luis Gladulich
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Erick Loiola
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Olivia R. M. Bagshaw
- Faculty of Mathematics & Science, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jeffrey A. Stuart
- Faculty of Mathematics & Science, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Marilda M. Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais (LVRE), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Joice Stipursky
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro 05508-000, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
15
|
Kim SW, Seo I, Hyun J, Eom J, Um SH, Bhang SH. Fibronectin-Enriched Interface Using a Spheroid-Converged Cell Sheet for Effective Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11536-11548. [PMID: 36811454 DOI: 10.1021/acsami.2c20597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cell sheets and spheroids are cell aggregates with excellent tissue-healing effects. However, their therapeutic outcomes are limited by low cell-loading efficacy and low extracellular matrix (ECM). Preconditioning cells with light illumination has been widely accepted to enhance reactive oxygen species (ROS)-mediated ECM expression and angiogenic factor secretion. However, there are difficulties in controlling the amount of ROS required to induce therapeutic cell signaling. Here, we develop a microstructure (MS) patch that can culture a unique human mesenchymal stem cell complex (hMSCcx), spheroid-attached cell sheets. The spheroid-converged cell sheet structure of hMSCcx shows high ROS tolerance compared to hMSC cell sheets owing to its high antioxidant capacity. The therapeutic angiogenic efficacy of hMSCcx is reinforced by regulating ROS levels without cytotoxicity using light (610 nm wavelength) illumination. The reinforced angiogenic efficacy of illuminated hMSCcx is based on the increased gap junctional interaction by enhanced fibronectin. hMSCcx engraftment is significantly improved in our novel MS patch by means of ROS tolerative structure of hMSCcx, leading to robust wound-healing outcomes in a mouse wound model. This study provides a new method to overcome the limitations of conventional cell sheets and spheroid therapy.
Collapse
Affiliation(s)
- Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiin Eom
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
PARP Inhibitor Inhibits the Vasculogenic Mimicry through a NF-κB-PTX3 Axis Signaling in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232416171. [PMID: 36555812 PMCID: PMC9785325 DOI: 10.3390/ijms232416171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) are targeted therapies that inhibit PARP proteins which are involved in a variety of cell functions. PARPi may act as modulators of angiogenesis; however, the relationship between PARPi and the vasculogenic mimicry (VM) in breast cancer remains unclear. To determine whether PARPi regulate the vascular channel formation, we assessed whether the treatment with olaparib, talazoparib and veliparib inhibits the vascular channel formation by breast cancer cell lines. Here, we found that PARPi act as potent inhibitors of the VM formation in triple negative breast cancer cells, independently of the BRCA status. Mechanistically, we find that PARPi trigger and inhibit the NF-κB signaling, leading to the inhibition of the VM. We further show that PARPi decrease the expression of the angiogenic factor PTX3. Moreover, PTX3 rescued the PARPi-inhibited VM inhibition. In conclusion, our results indicate that PARPi, by targeting the VM, may provide a new therapeutic approach for triple negative breast cancer.
Collapse
|
17
|
The natural FGF-trap long pentraxin 3 inhibits lymphangiogenesis and lymphatic dissemination. Exp Hematol Oncol 2022; 11:84. [PMID: 36320051 PMCID: PMC9623950 DOI: 10.1186/s40164-022-00330-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
The lymphatic vascular system represents a major route for dissemination of several solid tumors, including melanoma. Even though the members of the Vascular Endothelial Growth Factor family VEGF-C and VEGF-A have been shown to drive tumor lymphangiogenesis, experimental evidence indicates that also the pro-angiogenic factor Fibroblast Growth Factor-2 (FGF2) may play a role in the lymphangiogenic switch by triggering the activation of lymphatic endothelial cells (LECs) in cooperation with VEGFs.The soluble pattern recognition receptor Long Pentraxin 3 (PTX3) acts as a natural FGF trap, thus exerting an oncosuppressive role in FGF-dependent tumors. Here, the capacity of PTX3 to modulate lymphangiogenesis was assessed in vitro and in vivo. The results demonstrate that recombinant human PTX3 inhibits the lymphangiogenic activity exerted by the VEGF-A/FGF2/sphingosine-1-phosphate (VFS) cocktail on human and murine LECs. In keeping with in vitro data, a reduced lymphangiogenic response was observed in a lymphangiogenic Matrigel plug assay following the subcutaneous injection of the VFS cocktail in PTX3-overexpressing transgenic TgN(Tie2-hPTX3) mice when compared to wild-type or Ptx3 null animals. Accordingly, the capacity of B16F10-VEGFC-luc melanoma cells to colonize the primary tumor-draining lymph node after grafting into the foot pad was dramatically impaired in PTX3-overexpressing mice.Together with the observation that both the VFS cocktail and melanoma cell conditioned media caused a significant downregulation of PTX3 expression in LECs, these data indicate that the FGF trap activity of PTX3 may exert a key effect in the modulation of lymphangiogenesis and tumor metastatic dissemination.
Collapse
|
18
|
Kozłowski M, Michalczyk K, Witczak G, Kwiatkowski S, Mirecka A, Nowak K, Pius-Sadowska E, Machaliński B, Cymbaluk-Płoska A. Evaluation of Paraoxonase-1 and Pentraxin-3 in the Diagnosis and Prognosis of Endometrial Cancer. Antioxidants (Basel) 2022; 11:2024. [PMID: 36290747 PMCID: PMC9598697 DOI: 10.3390/antiox11102024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 01/06/2024] Open
Abstract
It is relevant to find new prognostic and diagnostic biomarkers for endometrial cancer. The study group consisted of 94 cases of endometrial cancer, the control group of 65 cases of normal endometrium. We evaluated PON1 and PTX3 serum levels. The ROC curve was plotted. The area under the curve was calculated to characterize the sensitivity and specificity of the studied parameters. Univariate and multivariate analyses were performed simultaneously using the Cox regression model. The Kaplan-Meier curve was used to assess survival. The cut-off level of PON1 was 142.6 ng/mL, with a sensitivity and specificity of 79 and 84% (p = 0.0321). The cut-off level of PTX3 was 4.2 ng/mL, with a sensitivity and specificity of 63 and 57% (p = 0.028). The favorable prognostic factor determined in serum was PON1 (for PFS: HR 0.93, 95% CI 0.86-1.03, p = 0.046; for OS: HR 0.96, 95% CI 0.89-1.08, p = 0.009). PON1 may be considered a potential biomarker in the diagnosis of endometrial cancer. Considering multivariate analysis, the PON1 serum level above the median is an independent favourable prognostic factor affecting PFS and OS. Considering Kaplan-Meier curves, longer recurrence-free survival and overall survival were found in patients with PON1 levels below the median. In view of the inconclusive results, we suggest that further studies should be conducted.
Collapse
Affiliation(s)
- Mateusz Kozłowski
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Kaja Michalczyk
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Grzegorz Witczak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Mirecka
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Katarzyna Nowak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
19
|
Margiana R, Sharma SK, Khan BI, Alameri AA, Opulencia MJC, Hammid AT, Hamza TA, Babakulov SK, Abdelbasset WK, Jawhar ZH. RETRACTED: The pathogenicity of COVID-19 and the role of pentraxin-3: An updated review study. Pathol Res Pract 2022; 238:154128. [PMID: 36137396 PMCID: PMC9476367 DOI: 10.1016/j.prp.2022.154128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. In investigating concerns regarding the contributions of the authors to this article, the editors reached out to the authors for an explanation. In addition to the concerns regarding the contribution of each author, the editors discovered suspicious changes in authorship between the original submission and the revised version of this paper. The names of the authors Ameer A Alameri and Zanko Hassan Jawhar were added to the revised version of the article without explanation and without the exceptional approval by the handling Editor, which is contrary to the journal policy on changes to authorship. The authors were unable to provide a reasonable explanation for either of the issues raised. The editor therefore feels that the findings of the manuscript cannot be relied upon and that the article needs to be retracted.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India.
| | | | | | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Thulfeqar Ahmed Hamza
- Medical laboratory techniques department, Al-Mustaqbal University College, Babylon, Iraq
| | - Sharaf Khamrakulovich Babakulov
- Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| |
Collapse
|
20
|
PTX3 structure determination using a hybrid cryoelectron microscopy and AlphaFold approach offers insights into ligand binding and complement activation. Proc Natl Acad Sci U S A 2022; 119:e2208144119. [PMID: 35939690 PMCID: PMC9388099 DOI: 10.1073/pnas.2208144119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pattern recognition molecules (PRMs) form an important part of innate immunity, where they facilitate the response to infections and damage by triggering processes such as inflammation. The pentraxin family of soluble PRMs comprises long and short pentraxins, with the former containing unique N-terminal regions unrelated to other proteins or each other. No complete high-resolution structural information exists about long pentraxins, unlike the short pentraxins, where there is an abundance of both X-ray and cryoelectron microscopy (cryo-EM)-derived structures. This study presents a high-resolution structure of the prototypical long pentraxin, PTX3. Cryo-EM yielded a 2.5-Å map of the C-terminal pentraxin domains that revealed a radically different quaternary structure compared to other pentraxins, comprising a glycosylated D4 symmetrical octameric complex stabilized by an extensive disulfide network. The cryo-EM map indicated α-helices that extended N terminal of the pentraxin domains that were not fully resolved. AlphaFold was used to predict the remaining N-terminal structure of the octameric PTX3 complex, revealing two long tetrameric coiled coils with two hinge regions, which was validated using classification of cryo-EM two-dimensional averages. The resulting hybrid cryo-EM/AlphaFold structure allowed mapping of ligand binding sites, such as C1q and fibroblast growth factor-2, as well as rationalization of previous biochemical data. Given the relevance of PTX3 in conditions ranging from COVID-19 prognosis, cancer progression, and female infertility, this structure could be used to inform the understanding and rational design of therapies for these disorders and processes.
Collapse
|
21
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
22
|
Azzarito G, Visentin M, Leeners B, Dubey RK. Transcriptomic and Functional Evidence for Differential Effects of MCF-7 Breast Cancer Cell-Secretome on Vascular and Lymphatic Endothelial Cell Growth. Int J Mol Sci 2022; 23:ijms23137192. [PMID: 35806196 PMCID: PMC9266834 DOI: 10.3390/ijms23137192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
Vascular and lymphatic vessels drive breast cancer (BC) growth and metastasis. We assessed the cell growth (proliferation, migration, and capillary formation), gene-, and protein-expression profiles of Vascular Endothelial Cells (VECs) and Lymphatic Endothelial Cells (LECs) exposed to a conditioned medium (CM) from estrogen receptor-positive BC cells (MCF-7) in the presence or absence of Estradiol. We demonstrated that MCF-7-CM stimulated growth and capillary formation in VECs but inhibited LEC growth. Consistently, MCF-7-CM induced ERK1/2 and Akt phosphorylation in VECs and inhibited them in LECs. Gene expression analysis revealed that the LECs were overall (≈10-fold) more sensitive to MCF-7-CM exposure than VECs. Growth/angiogenesis and cell cycle pathways were upregulated in VECs but downregulated in LECs. An angiogenesis proteome array confirmed the upregulation of 23 pro-angiogenesis proteins in VECs. In LECs, the expression of genes related to ATP synthesis and the ATP content were reduced by MCF-7-CM, whereas MTHFD2 gene, involved in folate metabolism and immune evasion, was upregulated. The contrasting effect of MCF-7-CM on the growth of VECs and LECs was reversed by inhibiting the TGF-β signaling pathway. The effect of MCF-7-CM on VEC growth was also reversed by inhibiting the VEGF signaling pathway. In conclusion, BC secretome may facilitate cancer cell survival and tumor growth by simultaneously promoting vascular angiogenesis and inhibiting lymphatic growth. The differential effects of BC secretome on LECs and VECs may be of pathophysiological relevance in BC.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (G.A.); (B.L.)
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (G.A.); (B.L.)
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (G.A.); (B.L.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
23
|
Torices S, Motta CS, da Rosa BG, Marcos AC, Alvarez-Rosa L, Siqueira M, Moreno-Rodriguez T, Matos A, Caetano B, Martins J, Gladulich L, Loiola E, Bagshaw ORM, Stuart JA, Siqueira MM, Stipursky J, Toborek M, Adesse D. SARS-CoV-2 infection of human brain microvascular endothelial cells leads to inflammatory activation through NF-κB non-canonical pathway and mitochondrial remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.16.496324. [PMID: 35734080 PMCID: PMC9216721 DOI: 10.1101/2022.06.16.496324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Neurological effects of COVID-19 and long-COVID-19 as well as neuroinvasion by SARS-CoV-2 still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro infection by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the Blood-Brain Barrier. Despite the low to non-productive viral replication, SARS-CoV-2-infected cultures displayed increased apoptotic cell death and tight junction protein expression and immunolocalization. Transcriptomic profiling of infected cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression, and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolline Soares Motta
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Barbara Gomes da Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Anne Caroline Marcos
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Liandra Alvarez-Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro, Brazil
| | - Michele Siqueira
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro, Brazil
| | - Thaidy Moreno-Rodriguez
- Urology Department, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Aline Matos
- Laboratório de Virus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Braulia Caetano
- Laboratório de Virus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Jessica Martins
- Laboratório de Virus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Luis Gladulich
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Erick Loiola
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Olivia RM Bagshaw
- Faculty of Mathematics & Science, Brock University, St. Catharines, Ontario, Canada
| | - Jeffrey A. Stuart
- Faculty of Mathematics & Science, Brock University, St. Catharines, Ontario, Canada
| | - Marilda M. Siqueira
- Laboratório de Virus Respiratórios e Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Joice Stipursky
- Laboratório Compartilhado, Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Torices S, Motta C, da Rosa B, Marcos A, Alvarez-Rosa L, Siqueira M, Moreno-Rodriguez T, Matos A, Caetano B, Martins J, Gladulich L, Loiola E, Bagshaw O, Stuart J, Siqueira M, Stipursky J, Toborek M, Adesse D. SARS-CoV-2 infection of human brain microvascular endothelial cells leads to inflammatory activation through NF-κB non-canonical pathway and mitochondrial remodeling. RESEARCH SQUARE 2022:rs.3.rs-1762855. [PMID: 35734086 PMCID: PMC9216729 DOI: 10.21203/rs.3.rs-1762855/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neurological effects of COVID-19 and long-COVID-19 as well as neuroinvasion by SARS-CoV-2 still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro infection by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the Blood-Brain Barrier. Despite the low to non- productive viral replication, SARS-CoV-2-infected cultures displayed increased apoptotic cell death and tight junction protein expression and immunolocalization. Transcriptomic profiling of infected cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression, and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aline Matos
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Horst B, Pradhan S, Chaudhary R, Listik E, Quintero-Macias L, Choi AS, Southard M, Liu Y, Whitaker R, Hempel N, Berchuck A, Nixon AB, Lee NY, Henis YI, Mythreye K. Hypoxia-induced inhibin promotes tumor growth and vascular permeability in ovarian cancers. Commun Biol 2022; 5:536. [PMID: 35654828 PMCID: PMC9163327 DOI: 10.1038/s42003-022-03495-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
Hypoxia, a driver of tumor growth and metastasis, regulates angiogenic pathways that are targets for vessel normalization and ovarian cancer management. However, toxicities and resistance to anti-angiogenics can limit their use making identification of new targets vital. Inhibin, a heteromeric TGFβ ligand, is a contextual regulator of tumor progression acting as an early tumor suppressor, yet also an established biomarker for ovarian cancers. Here, we find that hypoxia increases inhibin levels in ovarian cancer cell lines, xenograft tumors, and patients. Inhibin is regulated primarily through HIF-1, shifting the balance under hypoxia from activins to inhibins. Hypoxia regulated inhibin promotes tumor growth, endothelial cell invasion and permeability. Targeting inhibin in vivo through knockdown and anti-inhibin strategies robustly reduces permeability in vivo and alters the balance of pro and anti-angiogenic mechanisms resulting in vascular normalization. Mechanistically, inhibin regulates permeability by increasing VE-cadherin internalization via ACVRL1 and CD105, a receptor complex that we find to be stabilized directly by inhibin. Our findings demonstrate direct roles for inhibins in vascular normalization via TGF-β receptors providing new insights into the therapeutic significance of inhibins as a strategy to normalize the tumor vasculature in ovarian cancer. Hypoxia increases levels of the heteromeric TGFβ ligand inhibin in ovarian cancer and inhibin promotes tumor growth, endothelial cell invasion and permeability.
Collapse
|
26
|
Protective effect of pentraxin 3 on pathological retinal angiogenesis in an in vitro model of diabetic retinopathy. Arch Biochem Biophys 2022; 725:109283. [DOI: 10.1016/j.abb.2022.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
|
27
|
Maldonado F, Morales D, Díaz-Papapietro C, Valdés C, Fernandez C, Valls N, Lazo M, Espinoza C, González R, Gutiérrez R, Jara Á, Romero C, Cerda O, Cáceres M. Relationship Between Endothelial and Angiogenesis Biomarkers Envisage Mortality in a Prospective Cohort of COVID-19 Patients Requiring Respiratory Support. Front Med (Lausanne) 2022; 9:826218. [PMID: 35372407 PMCID: PMC8966493 DOI: 10.3389/fmed.2022.826218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose Endothelial damage and angiogenesis are fundamental elements of neovascularisation and fibrosis observed in patients with coronavirus disease 2019 (COVID-19). Here, we aimed to evaluate whether early endothelial and angiogenic biomarkers detection predicts mortality and major cardiovascular events in patients with COVID-19 requiring respiratory support. Methods Changes in serum syndecan-1, thrombomodulin, and angiogenic factor concentrations were analysed during the first 24 h and 10 days after COVID-19 hospitalisation in patients with high-flow nasal oxygen or mechanical ventilation. Also, we performed an exploratory evaluation of the endothelial migration process induced by COVID-19 in the patients' serum using an endothelial cell culture model. Results In 43 patients, mean syndecan-1 concentration was 40.96 ± 106.9 ng/mL with a 33.9% increase (49.96 ± 58.1 ng/mL) at day 10. Both increases were significant compared to healthy controls (Kruskal–Wallis p < 0.0001). We observed an increase in thrombomodulin, Angiopoietin-2, human vascular endothelial growth factor (VEGF), and human hepatocyte growth factor (HGF) concentrations during the first 24 h, with a decrease in human tissue inhibitor of metalloproteinases-2 (TIMP-2) that remained after 10 days. An increase in human Interleukin-8 (IL-8) on the 10th day accompanied by high HGF was also noted. The incidence of myocardial injury and pulmonary thromboembolism was 55.8 and 20%, respectively. The incidence of in-hospital deaths was 16.3%. Biomarkers showed differences in severity of COVID-19. Syndecan-1, human platelet-derived growth factor (PDGF), VEGF, and Ang-2 predicted mortality. A multiple logistic regression model with TIMP-2 and PDGF had positive and negative predictive powers of 80.9 and 70%, respectively, for mortality. None of the biomarkers predicted myocardial injury or pulmonary thromboembolism. A proteome profiler array found changes in concentration in a large number of biomarkers of angiogenesis and chemoattractants. Finally, the serum samples from COVID-19 patients increased cell migration compared to that from healthy individuals. Conclusion We observed that early endothelial and angiogenic biomarkers predicted mortality in patients with COVID-19. Chemoattractants from patients with COVID-19 increase the migration of endothelial cells. Trials are needed for confirmation, as this poses a therapeutic target for SARS-CoV-2.
Collapse
Affiliation(s)
- Felipe Maldonado
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Díaz-Papapietro
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Valdés
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Christian Fernandez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Nicolas Valls
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Marioli Lazo
- Critical Care Unit, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Espinoza
- Emergency Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Roberto González
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Rodrigo Gutiérrez
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Centro de Investigación Clínica Avanzada, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Álvaro Jara
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Carlos Romero
- Critical Care Unit, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
28
|
Mu J, Li L, Wu J, Huang T, Zhang Y, Cao J, Ma T, Chen J, Zhang C, Zhang X, Lu T, Kong X, Sun J, Gao J. Hypoxia-stimulated mesenchymal stem cell-derived exosomes loaded by adhesive hydrogel for effective angiogenic treatment of spinal cord injury. Biomater Sci 2022; 10:1803-1811. [PMID: 35234220 DOI: 10.1039/d1bm01722e] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the limited efficacy of current clinical treatment strategies, functional recovery after traumatic spinal cord injury (SCI) remains a knotty problem to be solved. Apart from anti-inflammation and cell replenishing treatments, accumulating evidence implies that promoting angiogenesis would also potentially benefit tissue regeneration after SCI. In this research, inspired by the role of exosomes in cell-cell communication and exosomal alteration resulting from cells under stress, exosomes were engineered through hypoxia stimulation to mesenchymal stem cells and were proposed as an alternative for promoting angiogenesis in SCI therapy. Hypoxia-stimulated exosomes (hypo-Exo) were transplanted into the injured spinal cord via encapsulation in a peptide-modified adhesive hydrogel for pro-angiogenic therapy of SCI. The adhesive peptide PPFLMLLKGSTR-modified hyaluronic acid hydrogel replenished the spinal cavity caused by SCI and achieved the local delivery of exosomes. The hypoxia-inducible factor 1-alpha content in hypo-Exo was significantly increased, resulting in the overexpression of vascular endothelial growth factor in the endothelial cells surrounding the transplant system. Ultimately, prominent angiogenesis and functional recovery after injury were demonstrated both in vitro and in vivo, indicating the immense potential of hydrogel-encapsulated hypo-Exo in treating central nervous system trauma and other ischemia diseases.
Collapse
Affiliation(s)
- Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Liming Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. .,Pilot National Laboratory for Marine Science and Technology, Qingdao 266137, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. .,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jian Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Teng Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jiachen Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chenyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xunqi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Tinghao Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xianglei Kong
- Department of Radiology Sir Run Run Shaw Hospital, School of Medicine Zhejiang University, Hangzhou 310016, China
| | - Jihong Sun
- Department of Radiology Sir Run Run Shaw Hospital, School of Medicine Zhejiang University, Hangzhou 310016, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. .,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Stravalaci M, Ferrara M, Pathak V, Davi F, Bottazzi B, Mantovani A, Medina RJ, Romano MR, Inforzato A. The Long Pentraxin PTX3 as a New Biomarker and Pharmacological Target in Age-Related Macular Degeneration and Diabetic Retinopathy. Front Pharmacol 2022; 12:811344. [PMID: 35069222 PMCID: PMC8776640 DOI: 10.3389/fphar.2021.811344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Age related macular degeneration (AMD) and diabetic retinopathy (DR) are multifactorial, neurodegenerative and inflammatory diseases of the eye primarily involving cellular and molecular components of the outer and inner blood-retina barriers (BRB), respectively. Largely contributed by genetic factors, particularly polymorphisms in complement genes, AMD is a paradigm of retinal immune dysregulation. DR, a major complication of diabetes mellitus, typically presents with increased vascular permeability and occlusion of the retinal vasculature that leads, in the proliferative form of the disease, to neovascularization, a pathogenic trait shared with advanced AMD. In spite of distinct etiology and clinical manifestations, both pathologies share common drivers, such as chronic inflammation, either of immune (in AMD) or metabolic (in DR) origin, which initiates and propagates degeneration of the neural retina, yet the underlying mechanisms are still unclear. As a soluble pattern recognition molecule with complement regulatory functions and a marker of vascular damage, long pentraxin 3 (PTX3) is emerging as a novel player in ocular homeostasis and a potential pharmacological target in neurodegenerative disorders of the retina. Physiologically present in the human eye and induced in inflammatory conditions, this protein is strategically positioned at the BRB interface, where it acts as a “molecular trap” for complement, and modulates inflammation both in homeostatic and pathological conditions. Here, we discuss current viewpoints on PTX3 and retinal diseases, with a focus on AMD and DR, the roles therein proposed for this pentraxin, and their implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Varun Pathak
- School of Medicine, Dentistry, and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | | | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Reinhold J Medina
- School of Medicine, Dentistry, and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Mario R Romano
- Eye Center, Humanitas Gavazzeni-Castelli, Bergamo, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
30
|
Zhu H, Zhuang Y, Li D, Dong N, Ma H, Liu L, Shi Q, Ju X. Cryo-Temperature Pretreatment Increases the Pro-Angiogenic Capacity of Three-Dimensional Mesenchymal Stem Cells via the PI3K-AKT Pathway. Cell Transplant 2022; 31:9636897221106996. [PMID: 35727010 PMCID: PMC9218451 DOI: 10.1177/09636897221106996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To increase the potential and effectiveness of three-dimensional (3D) mesenchymal stem cells (MSCs) for clinical applications, this study explored the effects of short cryo-temperature pretreatment on MSC function. Adipose-derived MSCs (A-MSCs) were cultured via the ordinary monolayer method and 3D hanging drop spheroid method. When the cells adhered to the wall or formed a spheroid, they were subjected to hypothermic stress at 4°C for 1 h and then divided into three recovery periods at 37°C, specifically 0, 12, and 24 h. The control group was not subjected to any treatment throughout the study. Monolayer and 3D spheroid A-MSCs were analyzed via RNA sequencing after hypothermic stress at 4°C for 1 h. Subsequently, each group of cells was collected and subjected to phenotype identification via flow cytometry, and mRNA expression was detected via reverse transcription-quantitative polymerase chain reaction analysis. Western blot analysis was performed to analyze the PI3K-AKT signaling pathway in A-MSCs. The effects of A-MSCs on angiogenesis in vivo were examined using a chick chorioallantoic membrane assay. Transwell assays were performed to determine whether the culture supernatant from each group could induce the chemotaxis of human umbilical vein endothelial cells (HUVECs). Three-dimensional spheroid culture did not change the phenotype of A-MSCs. The expression of fibroblast growth factors, hepatocyte growth factors, and other angiogenesis-related factors in A-MSCs was upregulated. A-MSCs subjected to hypothermic stress promoted angiogenesis under both monolayer and 3D spheroid cultures. Moreover, the chemotaxis of HUVECs to the 3D spheroid culture supernatant increased substantially. Short cryo-temperature pretreatment could stimulate 3D spheroid A-MSCs and activate the PI3K-AKT pathway. This approach has the advantages of promoting angiogenesis and maintaining cell viability.
Collapse
Affiliation(s)
- Huasu Zhu
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yong Zhuang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Li
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Na Dong
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Huixian Ma
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Linghong Liu
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Shi
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuli Ju
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
- Xiuli Ju, Department of Pediatrics, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan 250012, Shandong, China.
| |
Collapse
|
31
|
Chang X, Hao J, Wang X, Liu J, Ni J, Hao L. The Role of AIF-1 in the Aldosterone-Induced Vascular Calcification Related to Chronic Kidney Disease: Evidence From Mice Model and Cell Co-Culture Model. Front Endocrinol (Lausanne) 2022; 13:917356. [PMID: 35937793 PMCID: PMC9347268 DOI: 10.3389/fendo.2022.917356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence suggests that aldosterone (Aldo) plays an essential role in vascular calcification which is a serious threat to cardiovascular disease (CVD) developed from chronic kidney disease (CKD). However, the exact pathogenesis of vascular calcification is still unclear. First, we established CKD-associated vascular calcification mice model and knockout mice model to investigate the causal relationship between allograft inflammatory factor 1 (AIF-1) and vascular calcification. Then, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) co-culture experiments were performed to further explore the mechanisms of calcification. The results of the Aldo intervention mice model and transgenic mice model showed that Aldo could cause calcification by increasing the AIF-1 level. The results of in vitro co-culture model of ECs and VSMCs showed that AIF-1 silence in ECs may alleviate Aldo-induced calcification of VSMCs. In conclusion, our study indicated that Aldo may induce vascular calcification related to chronic renal failure via the AIF-1 pathway which may provide a potential therapeutic target.
Collapse
Affiliation(s)
- Xueying Chang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianbing Hao
- Department of Nephropathy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Xingzhi Wang
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingwei Liu
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Ni
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lirong Hao, ; Jie Ni,
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lirong Hao, ; Jie Ni,
| |
Collapse
|
32
|
Tsai YJ, Ma MC, Wu PH, Wu WB. Novel involvement of PLD-PKCδ-CREB axis in regulating FGF-2-mediated pentraxin 3 production in human nasal fibroblast cells. J Cell Physiol 2021; 237:1871-1887. [PMID: 34897684 DOI: 10.1002/jcp.30657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/27/2023]
Abstract
A higher expression level of mitogenic fibroblast growth factor-2 (FGF-2) has been reported in human nasal mucus of both chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP). Meanwhile, we have shown that long pentraxin 3 (PTX3), an essential component of humoral innate immunity that is produced at sites of infection and inflammation, was overproduced in human nasal mucosae and secretions of CRSsNP. Therefore, this study was aimed to investigate how FGF-2 regulates PTX3 expression in human CRSsNP nasal mucosa-derived fibroblast cells (hNMDFs). The FGF-2 treatment caused ptx3 mRNA expression and PTX3 protein induction and secretion. In parallel, a differential expression of FGF receptor (FGFR)-1 to FGFR-4 was observed in hNMDFs and human nasal tissues. While conventionally known PI3K/Akt/mTOR and AP-1 pathways following FGFR activation were shown to be involved, the protein kinase Cδ (PKCδ) and cAMP response element-binding protein (CREB) were also found to be as critical signaling molecules in FGF-2-induced PTX3 induction. The PKCδ and CREB activation could be detected in total cells and in the cell nucleus. Accordingly, a novel CREB binding sequence was detected in the human ptx3 promoter region and could interact with activated CREB in cells challenged with FGF-2. Surprisingly, the phospholipase D (PLD), but not phosphoinositide- and phosphatidylcholine-phospholipase C, was necessarily required for PKCδ and CREB activation. Therefore, we demonstrated here for the first time that FGF-2 mediates PTX3 production not only through PI-3K/Akt/mTOR and AP-1 activation, but also through a novel FGFR-PLD-PKCδ-CREB cellular signaling pathway.
Collapse
Affiliation(s)
- Yih-Jeng Tsai
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Otolaryngology Head and Neck Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pi-Hui Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
33
|
Rijal G. Understanding the Role of Fibroblasts following a 3D Tumoroid Implantation for Breast Tumor Formation. Bioengineering (Basel) 2021; 8:bioengineering8110163. [PMID: 34821729 PMCID: PMC8615023 DOI: 10.3390/bioengineering8110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
An understanding of the participation and modulation of fibroblasts during tumor formation and growth is still unclear. Among many speculates, one might be the technical challenge to reveal the versatile function of fibroblasts in tissue complexity, and another is the dynamics in tissue physiology and cell activity. The histology of most solid tumors shows a predominant presence of fibroblasts, suggesting that tumor cells recruit fibroblasts for breast tumor growth. In this review paper, therefore, the migration, activation, differentiation, secretion, and signaling systems that are associated with fibroblasts and cancer-associated fibroblasts (CAFs) after implantation of a breast tumoroid, i.e., a lab-generated tumor tissue into an animal, are discussed.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Medical Laboratory Sciences and Public Health, Tarleton State University, a Member of Texas A & M University System, Fort Worth, TX 76104, USA
| |
Collapse
|
34
|
Netti GS, Franzin R, Stasi A, Spadaccino F, Dello Strologo A, Infante B, Gesualdo L, Castellano G, Ranieri E, Stallone G. Role of Complement in Regulating Inflammation Processes in Renal and Prostate Cancers. Cells 2021; 10:cells10092426. [PMID: 34572075 PMCID: PMC8471315 DOI: 10.3390/cells10092426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
For decades, the complement system, the central pillar of innate immune response, was recognized as a protective mechanism against cancer cells and the manipulation of complement effector functions in cancer setting offered a great opportunity to improve monoclonal antibody-based cancer immunotherapies. Similarly, cellular senescence, the process of cell cycle arrest that allow DNA and tissue repair has been traditionally thought to be able to suppress tumor progression. However, in recent years, extensive research has identified the complement system and cellular senescence as two main inducers of tumour growth in the context of chronic, persistent inflammation named inflammaging. Here, we discuss the data describing the ambivalent role of senescence in cancer with a particular focus on tumors that are strongly dependent on complement activation and can be understood by a new, senescence-related point of view: prostate cancer and renal cell carcinoma.
Collapse
Affiliation(s)
- Giuseppe Stefano Netti
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
| | - Rossana Franzin
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Federica Spadaccino
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
| | - Andrea Dello Strologo
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Barbara Infante
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy; (R.F.); (A.S.); (L.G.)
| | - Giuseppe Castellano
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
| | - Elena Ranieri
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.S.N.); (F.S.)
- Correspondence: (E.R.); (G.S.); Tel.: +39-0881-732611 (E.R.); +39-0881-736002 (G.S.)
| | - Giovanni Stallone
- Department of Medical and Surgical Sciences-Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, 71122 Foggia, Italy; (A.D.S.); (B.I.); (G.C.)
- Correspondence: (E.R.); (G.S.); Tel.: +39-0881-732611 (E.R.); +39-0881-736002 (G.S.)
| |
Collapse
|
35
|
Ding T, Kang W, Li J, Yu L, Ge S. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J Nanobiotechnology 2021; 19:247. [PMID: 34404409 PMCID: PMC8371786 DOI: 10.1186/s12951-021-00992-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/08/2021] [Indexed: 01/15/2023] Open
Abstract
Background The regeneration of periodontal bone defect remains a vital clinical challenge. To date, numerous biomaterials have been applied in this field. However, the immune response and vascularity in defect areas may be key factors that are overlooked when assessing the bone regeneration outcomes of biomaterials. Among various regenerative therapies, the up-to-date strategy of in situ tissue engineering stands out, which combined scaffold with specific growth factors that could mimic endogenous regenerative processes. Results Herein, we fabricated a core/shell fibrous scaffold releasing basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) in a sequential manner and investigated its immunomodulatory and angiogenic properties during periodontal bone defect restoration. The in situ tissue engineering scaffold (iTE-scaffold) effectively promoted the angiogenesis of periodontal ligament stem cells (PDLSCs) and induced macrophage polarization into pro-healing M2 phenotype to modulate inflammation. The immunomodulatory effect of macrophages could further promote osteogenic differentiation of PDLSCs in vitro. After being implanted into the periodontal bone defect model, the iTE-scaffold presented an anti-inflammatory response, provided adequate blood supply, and eventually facilitated satisfactory periodontal bone regeneration. Conclusions Our results suggested that the iTE-scaffold exerted admirable effects on periodontal bone repair by modulating osteoimmune environment and angiogenic activity. This multifunctional scaffold holds considerable promise for periodontal regenerative medicine and offers guidance on designing functional biomaterials. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00992-4.
Collapse
Affiliation(s)
- Tian Ding
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Wenyan Kang
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Jianhua Li
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Lu Yu
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Shaohua Ge
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China.
| |
Collapse
|
36
|
Tan CMJ, Lewandowski AJ, Williamson W, Huckstep OJ, Yu GZ, Fischer R, Simon JN, Alsharqi M, Mohamed A, Leeson P, Bertagnolli M. Proteomic Signature of Dysfunctional Circulating Endothelial Colony-Forming Cells of Young Adults. J Am Heart Assoc 2021; 10:e021119. [PMID: 34275329 PMCID: PMC8475699 DOI: 10.1161/jaha.121.021119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Background A subpopulation of endothelial progenitor cells called endothelial colony-forming cells (ECFCs) may offer a platform for cellular assessment in clinical studies because of their remarkable angiogenic and expansion potentials in vitro. Despite endothelial cell function being influenced by cardiovascular risk factors, no studies have yet provided a comprehensive proteomic profile to distinguish functional (ie, more angiogenic and expansive cells) versus dysfunctional circulating ECFCs of young adults. The aim of this study was to provide a detailed proteomic comparison between functional and dysfunctional ECFCs. Methods and Results Peripheral blood ECFCs were isolated from 11 subjects (45% men, aged 27±5 years) using Ficoll density gradient centrifugation. ECFCs expressed endothelial and progenitor surface markers and displayed cobblestone-patterned morphology with clonal and angiogenic capacities in vitro. ECFCs were deemed dysfunctional if <1 closed tube formed during the in vitro tube formation assay and proliferation rate was <20%. Hierarchical functional clustering revealed distinct ECFC proteomic signatures between functional and dysfunctional ECFCs with changes in cellular mechanisms involved in exocytosis, vesicle transport, extracellular matrix organization, cell metabolism, and apoptosis. Targeted antiangiogenic proteins in dysfunctional ECFCs included SPARC (secreted protein acidic and rich in cysteine), CD36 (cluster of differentiation 36), LUM (lumican), and PTX3 (pentraxin-related protein PYX3). Conclusions Circulating ECFCs with impaired angiogenesis and expansion capacities have a distinct proteomic profile and significant phenotype changes compared with highly angiogenic endothelial cells. Impaired angiogenesis in dysfunctional ECFCs may underlie the link between endothelial dysfunction and cardiovascular disease risks in young adults.
Collapse
Affiliation(s)
- Cheryl M. J. Tan
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Adam J. Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Wilby Williamson
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Odaro J. Huckstep
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of BiologyUnited States Air Force AcademyColorado SpringsCOUSA
| | - Grace Z. Yu
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Roman Fischer
- Target Discovery Institute (TDI) Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Jillian N. Simon
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Maryam Alsharqi
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Cardiac TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Afifah Mohamed
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Diagnostic Imaging & Applied Health Sciences, Faculty of Health SciencesUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Mariane Bertagnolli
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Montreal Hospital Sacré‐Cœur Research CentreCentre Intégré Universitaire de Santé et de Services Sociaux du Nord‐de‐l'Île‐de‐MontréalMontréalQCCanada
- School of Physical and Occupational Therapy, Faculty of MedicineMcGill UniversityMontréalQCCanada
| |
Collapse
|
37
|
Napolitano A, Ostler AE, Jones RL, Huang PH. Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells 2021; 10:cells10061533. [PMID: 34204560 PMCID: PMC8235236 DOI: 10.3390/cells10061533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sarcomas are a heterogeneous group of rare malignancies originating from mesenchymal tissues with limited therapeutic options. Recently, alterations in components of the fibroblast growth factor receptor (FGFR) signaling pathway have been identified in a range of different sarcoma subtypes, most notably gastrointestinal stromal tumors, rhabdomyosarcomas, and liposarcomas. These alterations include genetic events such as translocations, mutations, and amplifications as well as transcriptional overexpression. Targeting FGFR has therefore been proposed as a novel potential therapeutic approach, also in light of the clinical activity shown by multi-target tyrosine kinase inhibitors in specific subtypes of sarcomas. Despite promising preclinical evidence, thus far, clinical trials have enrolled very few sarcoma patients and the efficacy of selective FGFR inhibitors appears relatively low. Here, we review the known alterations of the FGFR pathway in sarcoma patients as well as the preclinical and clinical evidence for the use of FGFR inhibitors in these diseases. Finally, we discuss the possible reasons behind the current clinical data and highlight the need for biomarker stratification to select patients more likely to benefit from FGFR targeted therapies.
Collapse
Affiliation(s)
- Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- Department of Medical Oncology, University Campus Bio-Medico, 00128 Rome, Italy
| | - Alexandra E. Ostler
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Paul H. Huang
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Correspondence: ; Tel.: +44-207-153-5554
| |
Collapse
|
38
|
Li J, Wang H, Dong C, Huang J, Ma W. The underlying mechanisms of FGF2 in carotid atherosclerotic plaque development revealed by bioinformatics analysis. Arch Med Sci 2021; 20:1209-1219. [PMID: 39439688 PMCID: PMC11493040 DOI: 10.5114/aoms/128387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 10/12/2020] [Indexed: 10/25/2024] Open
Abstract
Introduction The purpose of this study was to explore the regulatory mechanisms of FGF2 in carotid atherosclerotic plaque development using bioinformatics analysis. Material and methods Expression profiles of 32 atheroma plaque (AP) and 32 paired distant macroscopically intact (DMI) tissues samples in the GSE43292 dataset were downloaded from the Gene Expression Omnibus database. Following identification of differential expression genes (DEGs), correlation analysis of fibroblast growth factor 2 (FGF2) and DEGs was conducted. Subsequently, functional enrichment analysis and the protein-protein interaction network for FGF2 significantly correlated DEGs were constructed. Then, microRNAs (miRNAs) that regulated FGF2 and regulatory pairs of long noncoding RNA (lncRNA)-miRNA were predicted to construct the lncRNA-miRNA-FGF2 network. Results A total of 101 DEGs between AP and DMI samples were identified, and 31 DEGs were analyzed to have coexpression relationships with FGF2, including 23 positively correlated and 8 negatively correlated DEGs. VAV3 had the lowest r value among all FGF2 negatively correlated DEGs. FGF2 positively correlated DEGs were closely related to "regulation of smooth muscle contraction" (e.g., calponin 1 (CNN1)), while FGF2 negatively correlated DEGs were significantly associated with "platelet activation" (e.g., Vav guanine nucleotide exchange factor 3 (VAV3)). In addition, a total of 12 miRNAs that regulated FGF2 were predicted, and hsa-miR-15a-5p and hsa-miR-16-5p were highlighted in the lncRNA-miRNA-FGF2 regulatory network. Conclusions CNN1 might cooperate with FGF2 to regulate smooth muscle contractility during CAP formation. VAV3 might cooperate with FGF2 to be responsible for the development of CAP through participating in platelet activation. Hsa-miR-15a-5p and hsa-miR-16-5p might participate in the development of CAP via regulating FGF2.
Collapse
Affiliation(s)
- Jian Li
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, China
| | - Haifeng Wang
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, China
| | - Chenjie Dong
- Jiading District Nanxiang Town Community Health Service Center, Affiliated to Tongji University Medical School, Shanghai, China
| | - Junling Huang
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, China
| | - Wenlin Ma
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, China
| |
Collapse
|
39
|
Ronca R, Taranto S, Corsini M, Tobia C, Ravelli C, Rezzola S, Belleri M, De Cillis F, Cattaneo A, Presta M, Giacomini A. Pentraxin 3 Inhibits the Angiogenic Potential of Multiple Myeloma Cells. Cancers (Basel) 2021; 13:cancers13092255. [PMID: 34066669 PMCID: PMC8125855 DOI: 10.3390/cancers13092255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Bone marrow (BM) angiogenesis represents a key aspect in the progression of multiple myeloma (MM) and is strictly linked to the balance between pro-angiogenic and anti-angiogenic players produced by both neoplastic and stromal components. It has been shown that Fibroblast Growth Factors (FGFs) play a pivotal role in the angiogenic switch occurring during MM progression. Accordingly, the natural FGF antagonist Long Pentraxin 3 (PTX3) is able to reduce the activation of BM stromal components induced by FGFs. This work explores, for the first time, the anti-angiogenic role of PTX3 produced by MM cells demonstrating that the inducible expression of PTX3 is able to impair MM neovascularization, the onset of a proficient BM vascular niche and, ultimately, to impair tumor growth and dissemination. Abstract During multiple myeloma (MM) progression the activation of the angiogenic process represents a key step for the formation of the vascular niche, where different stromal components and neoplastic cells collaborate and foster tumor growth. Among the different pro-angiogenic players, Fibroblast Growth Factor 2 (FGF2) plays a pivotal role in BM vascularization occurring during MM progression. Long Pentraxin 3 (PTX3), a natural FGF antagonist, is able to reduce the activation of stromal components promoted by FGF2 in various in vitro models. An increased FGF/PTX3 ratio has also been found to occur during MM evolution, suggesting that restoring the “physiological” FGF/PTX3 ratio in plasma cells and BM stromal cells (BMSCs) might impact MM. In this work, taking advantage of PTX3-inducible human MM models, we show that PTX3 produced by tumor cells is able to restore a balanced FGF/PTX3 ratio sufficient to prevent the activation of the FGF/FGFR system in endothelial cells and to reduce the angiogenic capacity of MM cells in different in vivo models. As a result of this anti-angiogenic activity, PTX3 overexpression causes a significant reduction of the tumor burden in both subcutaneously grafted and systemic MM models. These data pave the way for the exploitation of PTX3-derived anti-angiogenic approaches in MM.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.T.); (M.C.); (C.T.); (C.R.); (S.R.); (M.B.); (M.P.)
- Correspondence: (R.R.); (A.G.)
| | - Sara Taranto
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.T.); (M.C.); (C.T.); (C.R.); (S.R.); (M.B.); (M.P.)
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.T.); (M.C.); (C.T.); (C.R.); (S.R.); (M.B.); (M.P.)
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.T.); (M.C.); (C.T.); (C.R.); (S.R.); (M.B.); (M.P.)
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.T.); (M.C.); (C.T.); (C.R.); (S.R.); (M.B.); (M.P.)
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.T.); (M.C.); (C.T.); (C.R.); (S.R.); (M.B.); (M.P.)
| | - Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.T.); (M.C.); (C.T.); (C.R.); (S.R.); (M.B.); (M.P.)
| | - Floriana De Cillis
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (F.D.C.); (A.C.)
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (F.D.C.); (A.C.)
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.T.); (M.C.); (C.T.); (C.R.); (S.R.); (M.B.); (M.P.)
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.T.); (M.C.); (C.T.); (C.R.); (S.R.); (M.B.); (M.P.)
- Correspondence: (R.R.); (A.G.)
| |
Collapse
|
40
|
Maccarinelli F, Bugatti M, Churruca Schuind A, Ganzerla S, Vermi W, Presta M, Ronca R. Endogenous Long Pentraxin 3 Exerts a Protective Role in a Murine Model of Pulmonary Fibrosis. Front Immunol 2021; 12:617671. [PMID: 33679758 PMCID: PMC7930377 DOI: 10.3389/fimmu.2021.617671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis is a progressive scarring disease of the lungs, characterized by inflammation, fibroblast activation, and deposition of extracellular matrix. The long pentraxin 3 (PTX3) is a member of the pentraxin family with non-redundant functions in innate immune responses, tissue repair, and haemostasis. The role played in the lungs by PTX3 during the fibrotic process has not been elucidated. In this study, the impact of PTX3 expression on lung fibrosis was assessed in an intratracheal bleomycin (BLM)-induced murine model of the disease applied to wild type animals, transgenic mice characterized by endothelial overexpression and stromal accumulation of PTX3 (Tie2-PTX3 mice), and genetically deficient Ptx3−/− animals. Our data demonstrate that PTX3 is produced during BLM-induced fibrosis in wild type mice, and that PTX3 accumulation in the stroma compartment of Tie2-PTX3 mice limits the formation of fibrotic tissue in the lungs, with reduced fibroblast activation and collagen deposition, and a decrease in the recruitment of the immune infiltrate. Conversely, Ptx3-null mice showed an exacerbated fibrotic response and decreased survival in response to BLM treatment. These results underline the protective role of endogenous PTX3 during lung fibrosis and pave the way for the study of novel PTX3-derived therapeutic approaches to the disease.
Collapse
Affiliation(s)
- Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,ASST Spedali Civili di Brescia, Brescia, Italy
| | - Ander Churruca Schuind
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
41
|
Mohammadipour HS, Forouzanfar F, Forouzanfar A. The Role of Type 2 Fibroblast Growth Factor in Periodontal Therapy. Curr Drug Targets 2021; 22:310-317. [PMID: 33153420 DOI: 10.2174/1389450121999201105152639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
The prevalence of periodontitis is around 20-50% in the global population. If it is not treated, it can cause tooth loss. Periodontal treatment aims at preserving the patient's teeth from various damages, including infection control and restoring lost periodontal tissue. The periodontium has great biological regenerative potential, and several biomaterials can be used to improve the outcome of periodontal treatment. To achieve the goal of periodontal tissue regeneration, numerous studies have used fibroblast growth factor 2 (FGF2) to stimulate the regeneration of both the soft tissue and bone. FGF2 induced a significant increment in the percentage of bone fill, bone mineral levels of the defect sites, length of the regenerated periodontal ligament, angiogenesis, connective tissue formation on the root surface, formation of dense fibers bound to the alveolar bone and newly synthesized cementum in teeth. This review will open further avenues to better understand the FGF2 therapy for periodontal regeneration.
Collapse
Affiliation(s)
| | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Forouzanfar
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Wen X, Hou R, Xu K, Han Y, Hu J, Zhang Y, Su Y, Gao J, Zhang G, Zhang L. Pentraxin 3 is more accurate than C-reactive protein for Takayasu arteritis activity assessment: A systematic review and meta-analysis. PLoS One 2021; 16:e0245612. [PMID: 33529185 PMCID: PMC7853471 DOI: 10.1371/journal.pone.0245612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Aims Whether the circulating levels of pentraxin 3 (PTX3), an acute phase reactant (APR), are higher in active Takayasu arteritis (TAK), and if so, whether PTX3 is more accurate than C-reactive protein (CRP) in TAK activity assessment has been investigated in this study. Study design Research works such as PubMed, Embase, ScienceDirect, Cochrane Library, and two Chinese literature databases (CNKI and WanFang) were searched for studies conducted till August 30th, 2019. Two investigators searched the studies independently, who evaluated the quality of the study using the Newcastle–Ottawa scale (NOS) and extracted data. Pooled standard mean difference (SMD) and diagnostic indexes, with a 95% confidence interval (CI), were calculated using a random-effect model. Results Totally, 8 studies involving 473 TAK (208 active and 265 inactive TAK) patients and 252 healthy controls were eventually included in the meta-analysis. PTX3 level in the blood in active TAK patients were found to be higher than that in dormant TAK with pooled SMD of 0.761 (95% CI = 0.38–1.14, p<0.0001; I2 = 68%, p of Q test = 0.003). And there was no publication bias. Among the 8 studies, 5 studies identified active TAK with both PTX3 and CRP. The pooled sensitivity, specificity, and AUC values of PTX3 in active TAK diagnosis were higher than those of CRP (0.78 [95% CI = 0.65–0.87] vs. 0.66 [95% CI = 0.53–0.77], p = 0.012; 0.85 [95% CI = 0.77–0.90] vs. 0.77 [95% CI = 0.56–0.90], p = 0.033; 0.88 [95% CI = 0.85–0.90] vs. 0.75 [95% CI = 0.71–0.79], p < 0.0001). It showed potential publication bias using Egger’s test (p of PTX3 = 0.031 and p of CRP = 0.047). Conclusions PTX3 might be better than CRP in the assessment of TAK activity. Yet, it should be cautious before clinical use for moderate heterogeneity and potential publication bias of the meta-analysis.
Collapse
Affiliation(s)
- Xiaoting Wen
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Ruihong Hou
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Ke Xu
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Yunxia Han
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junping Hu
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Zhang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Yazhen Su
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Gailian Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- * E-mail:
| |
Collapse
|
43
|
Hilliard BA, Amin M, Popoff SN, Barbe MF. Force dependent effects of chronic overuse on fibrosis-related genes and proteins in skeletal muscles. Connect Tissue Res 2021; 62:133-149. [PMID: 33030055 PMCID: PMC7718395 DOI: 10.1080/03008207.2020.1828379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM To examine the chronic effect of force on mRNA and protein expression levels of fibrosis-related genes in flexor digitorum muscles in a rat model of repetitive overuse injury that induces muscle fibrosis at high force levels. MATERIALS AND METHODS Two groups of rats were trained to perform a voluntary repetitive lever-pulling task at either a high (HFHR) or a low force (LFHR) for 18 weeks, while a control group (FRC) performed no task. RNA and protein were prepared from forelimb flexor digitorum muscles. Fibrosis-related gene RNA transcripts were evaluated using quantitative PCR (qPCR) and analyzed using the geometric mean of three housekeeping genes or the mean of each individually as reference. Protein levels were quantified using ELISA, western blot, or immunohistofluorescence. RESULTS Of eight fibrosis-related mRNAs examined, only FGF2 demonstrated a consistent significant increase in the HFHR group, compared to the FRC group. However, protein amounts of collagen type 1, collagen type 3, and TGFβ1 were significantly higher in the HFHR, compared to the FRC and LFHR groups, while CCN2 and FGF2 were higher in both HFHR and LFHR, compared to the FRC group. CONCLUSIONS Our results suggest that there is steady-state transcription of fibrogenic genes in muscles with established fibrosis, implying that post-transcriptional processes are responsible for the increased protein levels of fibrotic factors during muscle overuse conditions. We hypothesize that targeting such pathways represents a valid approach to treat overuse injury. Alternatively, FGF2 gene expression may represent a valid target for therapy.
Collapse
Affiliation(s)
| | - Mamta Amin
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA
| | - Steven N. Popoff
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA
| | - Mary F. Barbe
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
44
|
Forma A, Tyczyńska M, Kędzierawski P, Gietka K, Sitarz M. Gastric carcinogenesis: a comprehensive review of the angiogenic pathways. Clin J Gastroenterol 2020; 14:14-25. [PMID: 33206367 PMCID: PMC7886717 DOI: 10.1007/s12328-020-01295-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is undoubtedly one of the most prevalent malignancies worldwide. Since GC is the second leading cause of cancer-related deaths with nearly one million new diagnoses reported every year, there is a need for the development of new, effective treatment strategies of GC. Gastric carcinogenesis is a complex process that is induced by numerous factors and further stimulated by many pro-oncogenic pathways. Angiogenesis is the process of the new blood vessels formation from the already existing ones and it significantly contributes to the progression of gastric tumorigenesis and the growth of the cancerous tissues. The newly formed vessels provide cancer cells with proper nutrition, growth factors, and oxygen supply that are crucial for tumor growth and progression. Tumor-associated vessels differ from the physiological ones both morphologically and functionally. They are usually inefficient and unevenly distributed due to structural transformations. Thus, the development of the angiogenesis inhibitors that possess therapeutic effects has been the main focus of recent studies. Angiogenesis inhibitors mostly affect the vascular endothelial growth factor (VEGF) pathway since it is a major factor that stimulates the pro-angiogenic pathways. The aim of this review was to describe and summarize other promising molecular pathways that might be crucial in further improvements in GC therapies. This article provides an overview of how a meaningful role in tumor progression the angiogenetic process has. Furthermore, this review includes a description of the most important angiogenic factors as well as pathways and their involvement in gastric carcinogenesis.
Collapse
Affiliation(s)
- Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090, Lublin, Poland.
| | - Magdalena Tyczyńska
- Department of Human Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| | - Paweł Kędzierawski
- Department of Forensic Medicine, Medical University of Lublin, 20-090, Lublin, Poland
| | - Klaudyna Gietka
- Department of Forensic Medicine, Medical University of Lublin, 20-090, Lublin, Poland
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
45
|
Pentraxin 3 inhibits fibroblast growth factor 2 induced osteoclastogenesis in rheumatoid arthritis. Biomed Pharmacother 2020; 131:110628. [PMID: 32890968 DOI: 10.1016/j.biopha.2020.110628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Synovial fibroblasts (SFs) act as key effector cells mediating synovial inflammation and joint destruction in rheumatoid arthritis (RA). Fibroblast growth factor 2 (FGF2) and its receptors (FGFRs) play important roles in RASF-mediated osteoclastogenesis. Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with nonredundant roles in inflammation and innate immunity. PTX3 is produced by various cell types, including SFs and is highly expressed in RA. However, the role of PTX3 in FGF2-induced osteoclastogenesis in RA and the underlying mechanism have been poorly elucidated. METHODS We first determined the expression of FGF2 and RANKL in synovial tissue and synovial fluid of RA patients. We then examined the effect of PTX3 on RASF osteoclastogenesis induced by endogenous and exogenous FGF2 in isolated RASF cells treated with FGF2 and/or recombinant PTX3 (rPTX3). Thirdly, we analyzed the effect of PTX3 on FGF2 binding to FGFR-1 and HSPG receptors on RASFs. Lastly, we evaluated joint morphology after injection of rPTX3 into collagen-induced arthritis (CIA) mice. RESULTS FGF2 was confirmed to be highly expressed in both synovial tissue and synovial fluid of RA patients. FGF2 promoted cell proliferation and increased the expressions of RANKL and ICAM-1 and RANKL/OPG to induce osteoclastogenesis in RASF, while anti-FGF2 neutralized this effect. PTX3 significantly inhibited FGF2-induced RASF cell growth and osteoclastogenesis by preventing the interaction of 125I-FGF2 and FGFRs on the same cells. In addition, administration of rPTX3 significantly ameliorated cartilage and bone destruction in mice with CIA. CONCLUSIONS PTX3 exhibited an inhibitory effect on the autocrine and paracrine stimulation of FGF2 on SFs, and ameliorated bone destruction in CIA mice. PTX3 may be implicated in bone destruction in RA, which may provide theoretical evidence and potential therapeutic targets for RA treatment.
Collapse
|
46
|
Wang Z, Wang X, Zou H, Dai Z, Feng S, Zhang M, Xiao G, Liu Z, Cheng Q. The Basic Characteristics of the Pentraxin Family and Their Functions in Tumor Progression. Front Immunol 2020; 11:1757. [PMID: 33013829 PMCID: PMC7461825 DOI: 10.3389/fimmu.2020.01757] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 02/05/2023] Open
Abstract
The pentraxin is a superfamily of proteins with the same domain known as the pentraxin domain at C-terminal. This family has two subgroups, namely; short pentraxins (C-reactive protein and serum amyloid P component) and long pentraxins (neuronal pentraxin 1, neuronal pentraxin 2, neuronal pentraxin receptor, pentraxin 3 and pentraxin 4). Each group shares a similar structure with the pentameric complexes arranged in a discoid shape. Previous studies revealed the functions of different pentraxin family members. Most of them are associated with human innate immunity. Inflammation has commonly been associated with tumor progression, implying that the pentraxin family might also participate in tumor progression. Therefore, we reviewed the basic characteristics and functions of the pentraxin family and their role in tumor progression.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Guerra J, Chiodelli P, Tobia C, Gerri C, Presta M. Long-Pentraxin 3 Affects Primary Cilium in Zebrafish Embryo and Cancer Cells via the FGF System. Cancers (Basel) 2020; 12:cancers12071756. [PMID: 32630309 PMCID: PMC7409334 DOI: 10.3390/cancers12071756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Primary cilium drives the left-right asymmetry process during embryonic development. Moreover, its dysregulation contributes to cancer progression by affecting various signaling pathways. The fibroblast growth factor (FGF)/FGF receptor (FGFR) system modulates primary cilium length and plays a pivotal role in embryogenesis and tumor growth. Here, we investigated the impact of the natural FGF trap long-pentraxin 3 (PTX3) on the determination of primary cilium extension in zebrafish embryo and cancer cells. The results demonstrate that down modulation of the PTX3 orthologue ptx3b causes the shortening of primary cilium in zebrafish embryo in a FGF-dependent manner, leading to defects in the left-right asymmetry determination. Conversely, PTX3 upregulation causes the elongation of primary cilium in FGF-dependent cancer cells. Previous observations have identified the PTX3-derived small molecule NSC12 as an orally available FGF trap with anticancer effects on FGF-dependent tumors. In keeping with the non-redundant role of the FGF/FGR system in primary cilium length determination, NSC12 induces the elongation of primary cilium in FGF-dependent tumor cells, thus acting as a ciliogenic anticancer molecule in vitro and in vivo. Together, these findings demonstrate the ability of the natural FGF trap PTX3 to exert a modulatory effect on primary cilium in embryonic development and cancer. Moreover, they set the basis for the design of novel ciliogenic drugs with potential implications for the therapy of FGF-dependent tumors.
Collapse
Affiliation(s)
- Jessica Guerra
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
| | - Claudia Gerri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
- Francis Crick Institute, London NW1 1AT, UK
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (J.G.); (P.C.); (C.T.); (C.G.)
- Italian Consortium for Biotechnology (CIB), 25123 Brescia, Italy
- Correspondence:
| |
Collapse
|
48
|
Tan Y, Qiao Y, Chen Z, Liu J, Guo Y, Tran T, Tan KS, Wang DY, Yan Y. FGF2, an Immunomodulatory Factor in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Front Cell Dev Biol 2020; 8:223. [PMID: 32300593 PMCID: PMC7142218 DOI: 10.3389/fcell.2020.00223] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a potent mitogenic factor belonging to the FGF family. It plays a role in airway remodeling associated with chronic inflammatory airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Recently, research interest has been raised in the immunomodulatory function of FGF2 in asthma and COPD, through its involvement in not only the regulation of inflammatory cells but also its participation as a mediator between immune cells and airway structural cells. Herein, this review provides the current knowledge on the biology of FGF2, its expression pattern in asthma and COPD patients, and its role as an immunomodulatory factor. The potential that FGF2 is involved in regulating inflammation indicates that FGF2 could be a therapeutic target for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yuanyang Tan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | | | - Zhuanggui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- Department of Respiratory Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yanrong Guo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
49
|
Chen M, Bao L, Zhao M, Cao J, Zheng H. Progress in Research on the Role of FGF in the Formation and Treatment of Corneal Neovascularization. Front Pharmacol 2020; 11:111. [PMID: 32158390 PMCID: PMC7052042 DOI: 10.3389/fphar.2020.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022] Open
Abstract
Corneal neovascularization (CNV) is a sight-threatening disease usually associated with inflammatory, infectious, degenerative, and traumatic disorders of the ocular surface. Fibroblast growth factor (FGF) family members play an important role in angiogenesis to induce corneal neovascularization, which significantly affects the differentiation, proliferation, metastasis, and chemotaxis of vascular endothelial cells. Both acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) demonstrate positive staining in capillaries and induce corneal stromal cells. The anabolism of endothelial cells is induced by bFGF in corneal neovascularization. FGFs exert their effects via specific binding to cell surface-expressed specific receptors. We believe that both anti-FGF antibodies and anti-FGF receptor antibodies represent new directions for the treatment of CNV. Similar to anti-vascular endothelial growth factor antibodies, subconjunctival injection and eye drops can be considered effective forms of drug delivery.
Collapse
Affiliation(s)
- Mengji Chen
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Licheng Bao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengying Zhao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiarong Cao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haihua Zheng
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Ching LL, Nerurkar VR, Lim E, Shohet RV, Melish ME, Bratincsak A. Elevated Levels of Pentraxin 3 Correlate With Neutrophilia and Coronary Artery Dilation During Acute Kawasaki Disease. Front Pediatr 2020; 8:295. [PMID: 32670996 PMCID: PMC7330095 DOI: 10.3389/fped.2020.00295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Kawasaki disease (KD) is the leading cause of acquired pediatric heart disease in the developed world as 25-30% of untreated patients and at least 5% of treated patients will develop irreversible coronary artery lesions (CAL). Pentraxin-3 (PTX-3) has been well-studied in inflammatory diseases, particularly in cardiovascular diseases associated with vascular endothelial dysfunction. We hypothesized that PTX-3 plays an important role in the development of KD-associated CAL and investigated the circulating levels of PTX-3 in the serum of KD patients. Children with acute KD were followed from diagnosis through normalization of the clinical parameters of inflammation (convalescent phase). Serum samples were obtained and echocardiograms were conducted at several phases of the illness: acute [prior to intravenous immunoglobulin (IVIG) treatment], sub-acute (5-10 days after IVIG treatment), and convalescent (1-4 months after KD diagnosis). Seventy children were included in the final cohort of the study, of whom 26 (37%) presented with CAL and 18 (26%) developed IVIG resistance. The patients included in this study came from diverse ethnic backgrounds, mostly with mixed ancestry/ ethnicity. Significantly increased PTX-3 levels were observed during the acute phase of KD compared to the sub-acute and the convalescent phases. The PTX-3 levels during acute KD were significantly higher among KD patients with CAL compared to patients with normal coronary arteries (NCA). Also, the PTX-3 levels were significantly higher in patients with IVIG resistance. Furthermore, the PTX-3 levels were significantly higher in IVIG-resistant KD patients with CAL as compared to the NCA group. Moreover, the PTX-3 levels were significantly correlated to coronary artery z-score during acute KD and to neutrophil counts throughout KD progression regardless of coronary artery z-score. Elevated PTX-3 levels correlated to elevated neutrophil counts, a known source of PTX-3 in acute inflammation and an important player in the development of KD vasculitis. We, therefore, suggest PTX-3 as a novel factor in the development of KD-associated CAL and propose neutrophil-derived PTX-3 as contributing to KD vascular dysfunction.
Collapse
Affiliation(s)
- Lauren L Ching
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States.,Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States.,Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Eunjung Lim
- Biostatistics Core Facility, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Ralph V Shohet
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Marian E Melish
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States.,Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States.,Department of Pediatrics, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Andras Bratincsak
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States.,Kapi'olani Medical Specialists, Hawai'i Pacific Health, Honolulu, HI, United States
| |
Collapse
|