1
|
Lv X, Liu W, Zhou X, Yang Y, Zhao W, Meng L, Mu F, Zhang Z, Zhu S, Zhang S, Wang Y. Exosomes in Systemic Autoimmune Diseases: Recent Advances in Diagnostic Biomarkers and Therapeutic Applications. Int J Nanomedicine 2025; 20:5137-5160. [PMID: 40292402 PMCID: PMC12024484 DOI: 10.2147/ijn.s506221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Systemic autoimmune diseases (SADs) encompass a spectrum of organ involvement, clinical heterogeneity, and therapeutic challenges meriting significant research. These conditions involve the immune system mistakenly attacking and damaging multiple body tissues and organs, leading to chronic inflammation and damage. Exosomes are nanoscale extracellular vesicles secreted by cells that modulate intercellular communication and immunity. Accumulating evidence indicates that exosomes have multifaceted roles in the pathogenesis of SADs through processes like cellular signaling, immune modulation, antigen presentation, and inflammatory response. The cargo of exosomes, such as proteins, miRNAs, and lipids, are vital determinants of cellular and humoral immunity. This review examines key signaling pathways in four common SADs, rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, and Sjögren's syndrome, and explores exosome as non-invasive biomarkers for diagnosis, disease monitoring, and therapeutic response prediction. Additionally, the therapeutic potential of mesenchymal stromal cells (MSCs) or various type of mesenchymal stem cells derived exosomes as cell-free immunotherapies for SADs is highlighted. Engineered exosomes, with enhanced targeting, bioavailability, low toxicity, are emerging as promising drug delivery vehicles. However, challenges such as high production costs, technical complexity, and inefficiency, along with the lack of standardized protocols, limit clinical implementation in SADs. A deeper understanding of exosome roles in SADs pathogenesis and innovative immunotherapies may provide valuable theoretical support for the diagnosis and treatment of these challenging conditions.
Collapse
Affiliation(s)
- Xinchen Lv
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Wendong Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Xue Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Yu Yang
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Wangqian Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Linfeng Meng
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Fenghuoyi Mu
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhixiang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Shaohua Zhu
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Shuai Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
2
|
Riazuelo L, Planat-Bénard V, Vinel A, Laurencin S, Casteilla L, Kémoun P, Marty M, Monsarrat P. Acceptability of Allogeneic Mesenchymal Stromal Cell-Based Tissue Engineering for the Treatment of Periodontitis: A Qualitative Study in France. Int Dent J 2025; 75:840-848. [PMID: 39245621 PMCID: PMC11976543 DOI: 10.1016/j.identj.2024.07.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION AND AIMS Periodontitis, the main cause of tooth loss in adults, is a public health concern; its incidence increases with age, and its prevalence increases with increasing life expectancy of the population. Innovative therapies such as cell therapy represent promising future solutions for guided tissue regeneration. However, these therapies may be associated with fears and mistrust from the general public. The aim of this study was to estimate the acceptability of an advanced therapy medicinal product combining allogeneic mesenchymal stromal cells from adipose tissue with a natural fibrin hydrogel in the treatment of periodontitis. METHODS The methodology was based on a qualitative study conducted through semi-structured interviews with patients followed for periodontitis in the Oral Medicine Department of the Toulouse University Hospital, Toulouse, France. Qualitative studies are essential methodologies to understand the patterns of health behaviours, describe illness experiences, and design health interventions in a humanistic and person-centred way of discovering. RESULTS Eleven interviews (with 4 men and 7 women) were required to reach thematic saturation. Analysis allowed 4 main themes to emerge: (1) perception of new treatments, science, and caregivers; (2) conditions that the treatment must meet; (3) patient perception of the disease; and (4) factors related to the content of the treatment. CONCLUSIONS Patients find cell therapy for periodontitis to be acceptable. If they express a need to be informed about the benefit/risk ratio, they are not particularly worried about side effects of the treatment, for either allogeneic or blood-derived products. Periodontitis is a prototypical model of chronic inflammatory pathology and is multitissular, with hard- and soft-tissue lesions. In a patient-centred approach, the success of cell therapy will require a bilateral, informed decision, taking into account potential therapeutic effectiveness and patient expectations for regeneration.
Collapse
Affiliation(s)
- Lucas Riazuelo
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France
| | - Valérie Planat-Bénard
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Alexia Vinel
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; I2MC, INSERM UMR 1297, University of Toulouse III, Toulouse, France
| | - Sara Laurencin
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; Center for Epidemiology and Research in POPulation Health (CERPOP), UMR 1295, Paul Sabatier University, Toulouse, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Philippe Kémoun
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Mathieu Marty
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; LIRDEF, Faculty of Educational Sciences, Paul Valery University, Montpellier, France
| | - Paul Monsarrat
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France; Artificial and Natural Intelligence Toulouse Institute ANITI, Toulouse, France.
| |
Collapse
|
3
|
Xiao Y, Xiang Q, Wang Y, Huang Z, Yang J, Zhang X, Zhu X, Xue Y, Wan W, Zou H, Yang X. Exosomes carrying adipose mesenchymal stem cells function alleviate scleroderma skin fibrosis by inhibiting the TGF-β1/Smad3 axis. Sci Rep 2025; 15:7162. [PMID: 40021656 PMCID: PMC11871021 DOI: 10.1038/s41598-024-72630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/09/2024] [Indexed: 03/03/2025] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by progressive fibrosis of the skin and visceral organs, to date, skin fibrosis remains a clinical therapeutic challenge. Adipose-derived mesenchymal stem cells (AMSCs) have been considered extremely promising for the treatment of SSc, and the biological effects of MSCs are partly attributed to the secretion of exosomes (exos). Our aim was to determine whether exosomes derived from AMSCs have parental biological effects to AMSCs in the therapy of SSc skin fibrosis. In vitro cellular experiments, AMSCs and SSc skin fibroblasts were cocultured in direct contact and transwell indirect contact at a ratio of 1:5 and 1:10, respectively, then exosomes were extracted from the cell culture supernatant of AMSCs and identified, and the exosomes were cocultured with fibroblasts to investigate the effects of AMSCs and exosomes on fibroblast collagen synthesis. Repeated subcutaneous injections of bleomycin (BLM) to construct a model of SSc skin fibrosis in vivo experiments, then AMSCs and exosomes were injected subcutaneously to investigate their effects on skin fibrosis in the BLM mice. The results revealed that exosomes had similar biological functions to AMSCs, by inhibiting the TGF-β1/Smad3 axis, which alleviated collagen synthesis in skin fibroblasts from SSc patients and skin fibrosis in BLM models. In conclusion, AMSCs-derived exosomes may be "rising star candidates" for the treatment of SSc skin fibrosis.
Collapse
Affiliation(s)
- Yu Xiao
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
- Division of Rheumatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technologygy, Wuhan, Hubei, China
| | - Qingyong Xiang
- Department of Rheumatology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yingyu Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Zhongzhou Huang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
- Division of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ji Yang
- Division of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyun Zhang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- HuaShan Rare Disease Center, Fudan University, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
- HuaShan Rare Disease Center, Fudan University, Shanghai, China.
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
- HuaShan Rare Disease Center, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Chen L, Huang R, Huang C, Nong G, Mo Y, Ye L, Lin K, Chen A. Cell therapy for scleroderma: progress in mesenchymal stem cells and CAR-T treatment. Front Med (Lausanne) 2025; 11:1530887. [PMID: 39882532 PMCID: PMC11774712 DOI: 10.3389/fmed.2024.1530887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Cell therapy is an emerging strategy for precision treatment of scleroderma. This review systematically summarizes the research progress of mesenchymal stem cell (MSC) and chimeric antigen receptor T cell (CAR-T) therapies in scleroderma and discusses the challenges and future directions for development. MSCs possess multiple functions, including immunomodulation, anti-fibrosis, and promotion of vascular regeneration, all of which can improve multiple pathological processes associated with scleroderma. Studies have demonstrated that MSCs can alleviate skin fibrosis by inhibiting CCL2 production and reducing the recruitment of pathological macrophages; their paracrine effects can exert extensive regulatory functions. CAR-T cell therapy ca specifically target and eliminate autoreactive immune cells, exhibiting enhanced specificity and personalized potential. Different cell therapies may have complementary and synergistic effects in treating scleroderma, such as MSCs exerting their effects through paracrine mechanisms while CAR-T cells specifically eliminate pathological cells. Furthermore, cell-free therapies derived from MSCs, such as extracellular vesicles or exosomes, may help circumvent the limitations of MSC therapy. Although cell therapy has opened new avenues for the precision treatment of scleroderma, it still faces numerous challenges. In the future, it is essential to strengthen integration of basic and clinical research, establish standardized protocols for cell preparation and quality control, develop personalized treatment plans, and rationally combine cell therapy with existing treatment methods to maximize its advantages and improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Liting Chen
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Rongshan Huang
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Chaoshuo Huang
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Guiming Nong
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Yuanyuan Mo
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Lvyin Ye
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Kunhong Lin
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Anping Chen
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
- Minda Hospital of Hubei Minzu University, Enshi, China
| |
Collapse
|
5
|
Lescoat A, Ghosh M, Kadauke S, Khanna D. Innovative cell therapies for systemic sclerosis: available evidence and new perspectives. Expert Rev Clin Immunol 2025; 21:29-43. [PMID: 39279565 DOI: 10.1080/1744666x.2024.2402494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is the rheumatic disease with the highest individual mortality rate with a detrimental impact on quality of life. Cell-based therapies may offer new perspectives for this disease as recent phase I trials support the safety of IV infusion of allogeneic mesenchymal stromal cells in SSc and case reports highlight the potential use of Chimeric Antigen Receptor (CAR)-T cells targeting CD19 in active SSc patients who have not responded to conventional immunosuppressive therapies. AREAS COVERED This narrative review highlights the most recent evidence supporting the use of cellular therapies in SSc as well as their potential mechanisms of action and discusses future perspectives for cell-based therapies in SSc. Medline/PubMed was used to identify the articles of interest, using the keywords 'Cellular therapies,' 'Mesenchymal stromal cells,' 'Chimeric Antigen Receptor' AND 'systemic sclerosis.' Milestones articles reported by the authors were also used. EXPERT OPINION Cellular therapies may represent an opportunity for long-term remission/cure in patients with different autoimmune diseases, including SSc who have not responded to conventional therapies. Multiple ongoing phase I/II trials will provide greater insights into the efficacy and toxicity of cellular therapies.
Collapse
Affiliation(s)
- Alain Lescoat
- Inserm, EHESP, Irset -Institut de Recherche en Santé, Environnement et Travail-UMRS, University of Rennes CHU Rennes, Rennes, France
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, Rennes, France
| | - Monalisa Ghosh
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephan Kadauke
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Bingnan W, Jiao T, Ghorbani A, Baghei S. Enhancing regenerative potential: A comprehensive review of stem cell transplantation for sports-related neuronal injuries, with a focus on spinal cord injuries and peripheral nervous system damage. Tissue Cell 2024; 88:102429. [PMID: 38833939 DOI: 10.1016/j.tice.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Neuronal injuries, as one of the consequences of sports-related incidents, exert a profound influence on the athletes' future, potentially leading to complete immobility and impeding their athletic pursuits. In cases of severe damage inflicted upon the spinal cord (SC) and peripheral nervous systems (PNS), the regenerative process is notably compromised, rendering it essentially inefficient. Among the pivotal therapeutic approaches for the enhancement and prevention of secondary SC injuries (SCI), stem cell transplantation (SCT) stands out prominently. Stem cells, whether directly involved in replacement and reconstruction or indirectly through modification and secretion of crucial bioenvironmental factors, engage in the intricate process of tissue regeneration. Stem cells, through the secretion of neurotrophic factors (NTFs) (aiming to modulate the immune system), reduction of inflammation, axonal growth stimulation, and myelin formation, endeavor to facilitate the regeneration of damaged SC tissue. The fundamental challenges of this approach encompass the proper selection of suitable stem cell candidates for transplantation and the establishment of an appropriate microenvironment conducive to SC repair. In this article, an attempt has been made to explore sports-related injuries, particularly SCI, to comprehensively review innovative methods for treating SCI, and to address the existing challenges. Additionally, some of the stem cells used in neural injuries and the process of their utilization have been discussed.
Collapse
Affiliation(s)
- Wang Bingnan
- Department of P.E, Central South University, Changsha 410083, China
| | - Tong Jiao
- The High School Attached to Hunan Normal University Bocai Experimental Middle School,Changsha 410208, China.
| | - A Ghorbani
- Biotechnology Department, Islamic Azad University, Isfahan, Iran
| | - Sh Baghei
- Biotechnology Department, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
7
|
Alip M, Wang D, Zhao S, Li S, Zhang D, Duan X, Wang S, Hua B, Wang H, Zhang H, Feng X, Sun L. Umbilical cord mesenchymal stem cells transplantation in patients with systemic sclerosis: a 5-year follow-up study. Clin Rheumatol 2024; 43:1073-1082. [PMID: 38206544 DOI: 10.1007/s10067-024-06865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE To assess the long-term safety and efficacy of umbilical cord mesenchymal stem cells transplantation (UMSCT) in patients with systemic sclerosis (SSc). METHODS Forty-one patients with moderate to severe SSc underwent UMSCT at the Affiliated Drum Tower Hospital of Nanjing University Medical School from 2009 to 2017. In this study, we conducted a longitudinal and retrospective analysis and compared the clinical and laboratory manifestations before and after UMSCT. The main outcome of the study was overall survival. We evaluated changes in the modified Rodnan Skin Score (mRSS), as well as the changes in the pulmonary examination by using high-resolution computed tomography (HRCT) and ultrasound cardiogram (UCG). Additionally, we assessed the Health Assessment Questionnaire-Disability Index (HAQ-DI) and the severity of peripheral vascular involvement during the first year after treatment. RESULTS The overall 5-year survival rate was 92.7% (38 out of 41 patients). Following UMSCT, the mean mRSS significantly decreased from 18.68 (SD = 7.26, n = 41) at baseline to 13.95 (SD = 8.49, n = 41), 13.29 (SD = 7.67, n = 38), and 12.39 (SD = 8.49, n = 38) at 1, 3, and 5 years, respectively. Improvement or stability in HRCT images was observed in 72.0% of interstitial lung disease (ILD) patients. Pulmonary arterial hypertension (PAH) remained stable in 5 out of 8 patients at the 5-year follow-up. No adverse events related to UMSCT were observed in any of the patients during the follow-up period. CONCLUSION UMSCT may provide a safe and feasible treatment option for patients with moderate to severe SSc based on long-term follow-up data. The randomized controlled study will further confirm the clinical efficacy of UMSCT in SSc. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00962923. Key Point • UMSCT is safe and effective for SSc patients.
Collapse
Affiliation(s)
- Mihribangvl Alip
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Shengnan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Siqi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dongdong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoxiao Duan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Shiying Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bingzhu Hua
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hong Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huayong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
8
|
Wang W, Xu Z, Liu M, Cai M, Liu X. Prospective applications of extracellular vesicle-based therapies in regenerative medicine: implications for the use of dental stem cell-derived extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1278124. [PMID: 37936823 PMCID: PMC10627172 DOI: 10.3389/fbioe.2023.1278124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
In the 21st century, research on extracellular vesicles (EVs) has made remarkable advancements. Recently, researchers have uncovered the exceptional biological features of EVs, highlighting their prospective use as therapeutic targets, biomarkers, innovative drug delivery systems, and standalone therapeutic agents. Currently, mesenchymal stem cells stand out as the most potent source of EVs for clinical applications in tissue engineering and regenerative medicine. Owing to their accessibility and capability of undergoing numerous differentiation inductions, dental stem cell-derived EVs (DSC-EVs) offer distinct advantages in the field of tissue regeneration. Nonetheless, it is essential to note that unmodified EVs are currently unsuitable for use in the majority of clinical therapeutic scenarios. Considering the high feasibility of engineering EVs, it is imperative to modify these EVs to facilitate the swift translation of theoretical knowledge into clinical practice. The review succinctly presents the known biotherapeutic effects of odontogenic EVs and the underlying mechanisms. Subsequently, the current state of functional cargo loading for engineered EVs is critically discussed. For enhancing EV targeting and in vivo circulation time, the review highlights cutting-edge engineering solutions that may help overcome key obstacles in the clinical application of EV therapeutics. By presenting innovative concepts and strategies, this review aims to pave the way for the adaptation of DSC-EVs in regenerative medicine within clinical settings.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zinan Xu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minyi Liu
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| | - Mingxiang Cai
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Lescoat A, Roofeh D, Kuwana M, Lafyatis R, Allanore Y, Khanna D. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol 2023; 64:239-261. [PMID: 34468946 PMCID: PMC9034469 DOI: 10.1007/s12016-021-08891-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - David Roofeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Khanna D, Krieger N, Sullivan KM. Improving outcomes in scleroderma: recent progress of cell-based therapies. Rheumatology (Oxford) 2023; 62:2060-2069. [PMID: 36355455 PMCID: PMC10234204 DOI: 10.1093/rheumatology/keac628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/23/2022] [Indexed: 08/27/2023] Open
Abstract
Scleroderma is a rare, potentially fatal, clinically heterogeneous, systemic autoimmune connective tissue disorder that is characterized by progressive fibrosis of the skin and visceral organs, vasculopathy and immune dysregulation. The more severe form of the disease, diffuse cutaneous scleroderma (dcSSc), has no cure and limited treatment options. Haematopoietic stem cell transplantation has emerged as a potentially disease-modifying treatment but faces challenges such as toxicity associated with fully myeloablative conditioning and recurrence of autoimmunity. Novel cell therapies-such as mesenchymal stem cells, chimeric antigen receptor-based therapy, tolerogenic dendritic cells and facilitating cells-that may restore self-tolerance with more favourable safety and tolerability profiles are being explored for the treatment of dcSSc and other autoimmune diseases. This narrative review examines these evolving cell therapies.
Collapse
Affiliation(s)
- Dinesh Khanna
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nancy Krieger
- Talaris Therapeutics, Boston, MA and Louisville, KY, USA
| | | |
Collapse
|
11
|
Laranjeira P, dos Santos F, Salvador MJ, Simões IN, Cardoso CMP, Silva BM, Henriques-Antunes H, Corte-Real L, Couceiro S, Monteiro F, Santos C, Santiago T, da Silva JAP, Paiva A. Umbilical-Cord-Derived Mesenchymal Stromal Cells Modulate 26 Out of 41 T Cell Subsets from Systemic Sclerosis Patients. Biomedicines 2023; 11:1329. [PMID: 37239000 PMCID: PMC10215673 DOI: 10.3390/biomedicines11051329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc) is an immune-mediated disease wherein T cells are particularly implicated, presenting a poor prognosis and limited therapeutic options. Thus, mesenchymal-stem/stromal-cell (MSC)-based therapies can be of great benefit to SSc patients given their immunomodulatory, anti-fibrotic, and pro-angiogenic potential, which is associated with low toxicity. In this study, peripheral blood mononuclear cells from healthy individuals (HC, n = 6) and SSc patients (n = 9) were co-cultured with MSCs in order to assess how MSCs affected the activation and polarization of 58 different T cell subsets, including Th1, Th17, and Treg. It was found that MSCs downregulated the activation of 26 out of the 41 T cell subsets identified within CD4+, CD8+, CD4+CD8+, CD4-CD8-, and γδ T cells in SSc patients (HC: 29/42) and affected the polarization of 13 out of 58 T cell subsets in SSc patients (HC: 22/64). Interestingly, SSc patients displayed some T cell subsets with an increased activation status and MSCs were able to downregulate all of them. This study provides a wide-ranging perspective of how MSCs affect T cells, including minor subsets. The ability to inhibit the activation and modulate the polarization of several T cell subsets, including those implicated in SSc's pathogenesis, further supports the potential of MSC-based therapies to regulate T cells in a disease whose onset/development may be due to immune system's malfunction.
Collapse
Affiliation(s)
- Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco dos Santos
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Maria João Salvador
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (M.J.S.); (T.S.)
| | - Irina N. Simões
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Carla M. P. Cardoso
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Bárbara M. Silva
- Algarve Biomedical Center (ABC), Universidade do Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Helena Henriques-Antunes
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Luísa Corte-Real
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Sofia Couceiro
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Filipa Monteiro
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Carolina Santos
- Stemlab S.A., Famicord Group, 3060-197 Cantanhede, Portugal; (F.d.S.); (I.N.S.); (C.M.P.C.); (H.H.-A.); (L.C.-R.); (S.C.); (F.M.); (C.S.)
| | - Tânia Santiago
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (M.J.S.); (T.S.)
| | - José A. P. da Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Rheumatology Department, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (M.J.S.); (T.S.)
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| |
Collapse
|
12
|
Xie L, Long X, Mo M, Jiang J, Zhang Q, Long M, Li M. Bone marrow mesenchymal stem cell-derived exosomes alleviate skin fibrosis in systemic sclerosis by inhibiting the IL-33/ST2 axis via the delivery of microRNA-214. Mol Immunol 2023; 157:146-157. [PMID: 37028129 DOI: 10.1016/j.molimm.2023.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
Interleukin (IL)- 33 is a tissue-derive proinflammatory cytokine that promotes fibrosis in systemic sclerosis (SSc). microRNA (miR)- 214 expression has been elaborated to be downregulated in SSc patients and exert anti-fibrotic and anti-inflammatory effects. This study elucidates the role of bone marrow mesenchymal stem cell-derived exosome (BMSC-Exos)-delivered miR-214 in SSc and the relationship between this miR and IL-33/ST2 axis. SSc clinical samples were obtained to evaluate levels of miR-214, IL-33, and ST2. Primary fibroblasts and BMSC-Exos were extracted, followed by the co-culture of PKH6-labeled BMSC-Exos and fibroblasts. Subsequently, Exos extracted from miR-214 inhibitor-transfected BMSCs were co-cultured with TGF-β1-stimulated fibroblasts, after which the expression of fibrotic markers, miR-214, IL-33, and ST2, as well as fibroblast proliferation and migration, was determined. A skin fibrosis mouse model was induced with bleomycin (BLM) and treated with BMSC-Exos. Collagen fiber accumulation, collagen content, α-SMA expression, and IL-33 and ST2 levels were examined in BLM-treated or IL-33-knockout mice. IL-33 and ST2 were upregulated and miR-214 was downregulated in SSc patients. Mechanistically, miR-214 targeted IL-33 and blocked the IL-33/ST2 axis. BMSC-Exos delivering miR-214 inhibitor augmented proliferation, migration, and fibrotic gene expression in TGF-β1-stimulated fibroblasts. Similarly, IL-33 induced migration, proliferation, and fibrotic gene expression in fibroblasts via ST2. In BLM-treated mice, IL-33 knockout suppressed skin fibrosis, and BMSC-Exos delivered miR-214 to suppress the IL-33/ST2 axis, thus mitigating skin fibrosis. Conclusively, BMSC-Exos alleviate skin fibrosis through the blockade of the IL-33/ST2 axis by delivering miR-214.
Collapse
Affiliation(s)
- Lihu Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaoping Long
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Meili Mo
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Jinmei Jiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Qingxiu Zhang
- Department of Rehabilitation, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Mei Long
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Mei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
13
|
Ganesan N, Chang YD, Hung SC, Lan JL, Liao JW, Fu ST, Lee CC. Mesenchymal stem cells suppressed skin and lung inflammation and fibrosis in topoisomerase I-induced systemic sclerosis associated with lung disease mouse model. Cell Tissue Res 2023; 391:323-337. [PMID: 36447073 DOI: 10.1007/s00441-022-03716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Systemic sclerosis associated with lung interstitial lung disease (SSc-ILD) is the most common cause of death among patients with SSc. Mesenchymal stem cell (MSCs) transplantations had been treated by SSc patients that showed in the previous case report. The therapeutic mechanisms and effects of MSCs on SSc-ILD are still obscure. In this study, we investigated the therapeutic effects and mechanisms of treatment of BM-MSC derived from C57BL/6 on the topoisomerase I (TOPO I) induced SSc-ILD-like mice model. The mice were immunized with a mixture of recombinant human TOPO I in PBS solution (500 U/mL) and completed Freund's adjuvant [CFA; 1:1 (volume/volume)] twice per week for 9 weeks. On week 10, the mice were sacrificed to analyze the related pathological parameters. Lung and skin pathologies were analyzed using histochemical staining. CD4 T-helper (TH) cell differentiation in lung and skin-draining lymph nodes was detected using flow cytometry. Our results revealed that allogeneic and syngeneic MSCs exhibited similar repressive effects on TOPO I-induced IgG1 and IgG2a in the SSc group. After intravascular (IV) treatment with syngeneic or allogeneic MSCs, the dermal thickness and fibrosis dramatically condensed and significantly reduced airway hyperresponsiveness. These findings showed that both allogeneic and syngeneic MSCs have therapeutic potential for SSc-ILD.
Collapse
Affiliation(s)
- Nithya Ganesan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Di Chang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Shih-Chieh Hung
- New Drug Development Center, China Medical University, Taichung, Taiwan.,Institute of Translation Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Joung-Liang Lan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Shih Tsung Fu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan. .,New Drug Development Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Adipose Tissue and Adipose-Tissue-Derived Cell Therapies for the Treatment of the Face and Hands of Patients Suffering from Systemic Sclerosis. Biomedicines 2023; 11:biomedicines11020348. [PMID: 36830886 PMCID: PMC9953720 DOI: 10.3390/biomedicines11020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue is recognized as a valuable source of cells with angiogenic, immunomodulatory, reparative and antifibrotic properties and emerged as a therapeutic alternative for the regeneration and repair of damaged tissues. The use of adipose-tissue-based therapy is expanding in autoimmune diseases, particularly in Systemic Sclerosis (SSc), a disease in which hands and face are severely affected, leading to disability and a decrease in quality of life. Combining the advantage of an abundant supply of fat tissue and a high abundance of stem/stromal cells, fat grafting and adipose tissue-derived cell-based therapies are attractive therapeutic options in SSc. This review aims to synthesize the evidence to determine the effects of the use of these biological products for face and hands treatment in the context of SSc. This highlights several points: the need to use relevant effectiveness criteria taking into account the clinical heterogeneity of SSc in order to facilitate assessment and comparison of innovative therapies; second, it reveals some impacts of the disease on fat-grafting success; third, an important heterogeneity was noticed regarding the manufacturing of the adipose-derived products and lastly, it shows a lack of robust evidence from controlled trials comparing adipose-derived products with standard care.
Collapse
|
15
|
Xue E, Minniti A, Alexander T, Del Papa N, Greco R. Cellular-Based Therapies in Systemic Sclerosis: From Hematopoietic Stem Cell Transplant to Innovative Approaches. Cells 2022; 11:3346. [PMID: 36359742 PMCID: PMC9658618 DOI: 10.3390/cells11213346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 08/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic disease characterized by autoimmune responses, vasculopathy and tissue fibrosis. The pathogenic mechanisms involve a wide range of cells and soluble factors. The complexity of interactions leads to heterogeneous clinical features in terms of the extent, severity, and rate of progression of skin fibrosis and internal organ involvement. Available disease-modifying drugs have only modest effects on halting disease progression and may be associated with significant side effects. Therefore, cellular therapies have been developed aiming at the restoration of immunologic self-tolerance in order to provide durable remissions or to foster tissue regeneration. Currently, SSc is recommended as the 'standard indication' for autologous hematopoietic stem cell transplantation by the European Society for Blood and Marrow Transplantation. This review provides an overview on cellular therapies in SSc, from pre-clinical models to clinical applications, opening towards more advanced cellular therapies, such as mesenchymal stem cells, regulatory T cells and potentially CAR-T-cell therapies.
Collapse
Affiliation(s)
- Elisabetta Xue
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Tobias Alexander
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | | | - Raffaella Greco
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | | |
Collapse
|
16
|
Ten Ham RMT, Frederix GWJ, Wu O, Goettsch W, Leufkens HGM, Klungel OH, Hoekman J. Key Considerations in the Health Technology Assessment of Advanced Therapy Medicinal Products in Scotland, The Netherlands, and England. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2022; 25:390-399. [PMID: 35227451 DOI: 10.1016/j.jval.2021.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Advanced therapy medicinal products (ATMPs) are highly innovative therapies. Their costs and uncertain value claims have raised concerns among health technology assessment (HTA) bodies and payers. Little is known about how underlying considerations in HTA of ATMPs shape assessment and reimbursement recommendations. We aim to identify and assess key considerations that played a role in HTA of ATMPs underlying reimbursement recommendations. METHODS A review of HTA reports was conducted of all authorized ATMPs in Scotland, The Netherlands, and England. Considerations were extracted and categorized into EUnetHTA Core Model domains. Per jurisdiction, considerations were aggregated and key considerations identified (defined as occurring in >1/assessment per jurisdiction). A narrative analysis was conducted comparing key considerations between jurisdictions and different reimbursement recommendations. RESULTS We identified 15 ATMPs and 18 HTA reports. In The Netherlands and England most key considerations were identified in clinical effectiveness (EFF) and cost- and economic effectiveness (ECO) domains. In Scotland, the social aspects domain yielded most key considerations, followed by ECO and EFF. More uncertainty in evidence and assessment outcomes was accepted when orphan or end-of-life criteria were applied. A higher percentage of considerations supporting recommendations were identified for products with positive recommendations compared with restricted and negative recommendations. CONCLUSIONS This is the first empirical review of HTA's using the EUnetHTA Core Model to identify and structure key considerations retrospectively. It provides insights in supporting and opposing considerations for reimbursement of individual products and differences between jurisdictions. Besides the EFF and ECO domain, the social, ethical, and legal domains seem to bear considerable weight in assessment of ATMPs.
Collapse
Affiliation(s)
- Renske M T Ten Ham
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; Health Economics and Health Technology Assessment, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, UK.
| | - Geert W J Frederix
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olivia Wu
- Health Economics and Health Technology Assessment, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, UK
| | - Wim Goettsch
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; National Health Care Institute, Diemen, The Netherlands
| | - Hubert G M Leufkens
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; Lygature, Utrecht, The Netherlands
| | - Olaf H Klungel
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Jarno Hoekman
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; Innovation Studies, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Benfaremo D, Svegliati S, Paolini C, Agarbati S, Moroncini G. Systemic Sclerosis: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10010163. [PMID: 35052842 PMCID: PMC8773282 DOI: 10.3390/biomedicines10010163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic, immune-mediated chronic disorder characterized by small vessel alterations and progressive fibrosis of the skin and internal organs. The combination of a predisposing genetic background and triggering factors that causes a persistent activation of immune system at microvascular and tissue level is thought to be the pathogenetic driver of SSc. Endothelial alterations with subsequent myofibroblast activation, excessive extracellular matrix (ECM) deposition, and unrestrained tissue fibrosis are the pathogenetic steps responsible for the clinical manifestations of this disease, which can be highly heterogeneous according to the different entity of each pathogenic step in individual subjects. Although substantial progress has been made in the management of SSc in recent years, disease-modifying therapies are still lacking. Several molecular pathways involved in SSc pathogenesis are currently under evaluation as possible therapeutic targets in clinical trials. These include drugs targeting fibrotic and metabolic pathways (e.g., TGF-β, autotaxin/LPA, melanocortin, and mTOR), as well as molecules and cells involved in the persistent activation of the immune system (e.g., IL4/IL13, IL23, JAK/STAT, B cells, and plasma cells). In this review, we provide an overview of the most promising therapeutic targets that could improve the future clinical management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Gianluca Moroncini
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
- Correspondence:
| |
Collapse
|
18
|
Velier M, Daumas A, Simoncini S, Arcani R, Magalon J, Benyamine A, Granel B, Dignat George F, Chabannon C, Sabatier F. Combining systemic and locally applied cellular therapies for the treatment of systemic sclerosis. Bone Marrow Transplant 2022; 57:17-22. [PMID: 34663928 DOI: 10.1038/s41409-021-01492-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by a functional and structural alteration of the microvascular network associated with cutaneous and visceral fibrosis lesions. Conventional therapies are based on the use of immunomodulatory molecules and symptomatic management but often prove to be insufficient, particularly for patients suffering from severe and rapidly progressive forms of the disease. In this context, cellular therapy approaches could represent a credible solution with the goal to act on the different components of the disease: the immune system, the vascular system and the extracellular matrix. The purpose of this review is to provide an overview of the cellular therapies available for the management of SSc. The first part will focus on systemically injected therapies, whose primary effect is based on immunomodulatory properties and immune system resetting, including autologous hematopoietic stem cell transplantation and intravenous injection of mesenchymal stem cells. The second part will discuss locally administered regenerative cell therapies, mainly derived from adipose tissue, developed for the management of local complications as hand and face disabilities.
Collapse
Affiliation(s)
- Mélanie Velier
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France. .,Laboratoire de Culture et Thérapie Cellulaire, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France.
| | - Aurélie Daumas
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Service de Médecine Interne, Gériatrie et Thérapeutique, Hôpital La Timone, AP-HM, Marseille, France
| | | | - Robin Arcani
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Service de Médecine Interne, Gériatrie et Thérapeutique, Hôpital La Timone, AP-HM, Marseille, France
| | - Jérémy Magalon
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Laboratoire de Culture et Thérapie Cellulaire, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Audrey Benyamine
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Service de Médecine Interne, Hôpital Nord, pôle MICA, AP-HM, Marseille, France
| | - Brigitte Granel
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Service de Médecine Interne, Hôpital Nord, pôle MICA, AP-HM, Marseille, France
| | | | - Christian Chabannon
- Centre de Thérapie Cellulaire et INSERM CIC BT-1409, Institut Paoli-Calmettes Comprehensive Cancer Center, Marseille, France
| | - Florence Sabatier
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France.,Laboratoire de Culture et Thérapie Cellulaire, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| |
Collapse
|
19
|
Les cellules stromales mésenchymateuses de patients sclérodermiques conservent leurs fonctions anti-fibrotiques et immunosuppressives. Rev Med Interne 2021. [DOI: 10.1016/j.revmed.2021.10.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Yang J, Ren XJ, Chen XT, Jiang YF, Han ZB, Han ZC, Li XR, Zhang XM. Human umbilical cord-derived mesenchymal stem cells treatment for refractory uveitis: a case series. Int J Ophthalmol 2021; 14:1784-1790. [PMID: 34804871 DOI: 10.18240/ijo.2021.11.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/14/2021] [Indexed: 01/22/2023] Open
Abstract
AIM To evaluate therapeutic outcomes of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) treatment in patients with refractory uveitis. METHODS A retrospective and noncomparative review was performed on four patients with refractory uveitis from December 2013 to December 2017. HUC-MSCs were administered intravenously at a dose of 1×106 cells/kg. Clinical response, relapse rate, change of visual acuity, and other metrics were evaluated. RESULTS All four patients presented with responses to HUC-MSCs treatment, with three males and one female. The numbers of uveitis attacks per year after the HUC-MSCs treatment (0, 2, 0, 0 respectively) all decreased compared with the numbers before the treatment (3, 6, 4, 4 respectively). The oral steroid and immunosuppressive agents were tapered in all patients without recrudescence of ocular inflammation, and three patients discontinued their oral medicine at the last visit. The best corrected visual acuity (BCVA) of 3 patients was improved to varying degrees, and the BCVA of 1 patient remained at 20/20 (Snellen chart) from the first to the last consultation. CONCLUSION The study provides an effective therapy of HUC-MSCs in maintaining remission in patients affected by uveitis refractory to previous immunosuppressant treatments.
Collapse
Affiliation(s)
- Jing Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xin-Jun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xi-Teng Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yuan-Feng Jiang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Zhi-Bo Han
- National Engineering Research Center of Cell Products, Tianjin 300457, China
| | - Zhong-Chao Han
- National Engineering Research Center of Cell Products, Tianjin 300457, China.,Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Beijing 300457, China
| | - Xiao-Rong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Min Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
21
|
Elessawi DF, Gabr H, Badawy MMM, Gheita TA. Therapeutic potential of mesenchymal stem cells for scleroderma induced in mouse model. Tissue Cell 2021; 73:101671. [PMID: 34742053 DOI: 10.1016/j.tice.2021.101671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To examine the potential therapeutic effect of mesenchymal stem cells (MSCs) for experimental scleroderma. MATERIALS AND METHODS Fifty-four mice six-week-old (30-35 g) were studied. Hypochlorous acid (HOCl) induced scleroderma was considered. Mice were divided into 3 groups: (I) Control: Six mice did not receive any treatment and were sacrificed at the end of the experiment; (II) HOCl mice (induced scleroderma as a positive control): (III) MSCs-treated HOCl mice: Thirty six HOCl-induced mice were injected with MSCs (7.5 × 105) intravenous every week for 3 weeks. Skin pieces were taken from the backs of mice and lung tissue pieces. a smooth muscle actin (α-SMA) and transforming growth factor-β (TGF-β1) were analysed or fixed in 10 % formalin for skin and lung tissue histopathological analysis. Plasma nitric oxide (NO) was also assayed. RESULTS There was a significant rise in the NO level and of the cutaneous and lung tissue α-SMA and TGF-β1 in untreated scleroderma-induced mice. The values significantly normalized after MSC therapy over the 7 weeks duration of the study. The altered histopathology of the skin and lung tissues in the scleroderma-induced mice showed a remarkable tendency to normalization of the skin and lung parenchyma and vasculature. CONCLUSION There was a significant rise in the level of NO and skin and lung tissue α-SMA and TGF-β1 in untreated scleroderma-induced mice and values were significantly normalized after MSC therapy over the 7 weeks duration of the study. Altered histopathology of the skin and lung appeared nearly normal after MSC therapy.
Collapse
Affiliation(s)
- Dina Fathy Elessawi
- Department of Health Radiation Research - National Center for Radiation Research and Technology (NCRRT) - Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hala Gabr
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Monda Mohamed Maher Badawy
- Department of Health Radiation Research - National Center for Radiation Research and Technology (NCRRT) - Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Tamer A Gheita
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Rozier P, Maumus M, Maria ATJ, Toupet K, Jorgensen C, Guilpain P, Noël D. Lung Fibrosis Is Improved by Extracellular Vesicles from IFNγ-Primed Mesenchymal Stromal Cells in Murine Systemic Sclerosis. Cells 2021; 10:2727. [PMID: 34685707 PMCID: PMC8535048 DOI: 10.3390/cells10102727] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a severe autoimmune disease for which mesenchymal stromal cells (MSCs)-based therapy was reported to reduce SSc-related symptoms in pre-clinical studies. Recently, extracellular vesicles released by MSCs (MSC-EVs) were shown to mediate most of their therapeutic effect. Here, we aimed at improving their efficacy by increasing the MSC-EV dose or by IFNγ-priming of MSCs. METHODS small size (ssEVs) and large size EVs (lsEVs) were recovered from murine MSCs that were pre-activated using 1 or 20 ng/mL of IFNγ. In the HOCl-induced model of SSc, mice were treated with EVs at day 21 and sacrificed at day 42. Lung and skin samples were collected for histological and molecular analyses. RESULTS increasing the dose of MSC-EVs did not add benefit to the dose previously reported to be efficient in SSc. By contrast, IFNγ pre-activation improved MSC-EVs-based treatment, essentially in the lungs. Low doses of IFNγ decreased the expression of fibrotic markers, while high doses improved remodeling and anti-inflammatory markers. IFNγ pre-activation upregulated iNos, IL1ra and Il6 in MSCs and ssEVs and the PGE2 protein in lsEVs. CONCLUSION IFNγ-pre-activation improved the therapeutic effect of MSC-EVs preferentially in the lungs of SSc mice by modulating anti-inflammatory and anti-fibrotic markers.
Collapse
Affiliation(s)
- Pauline Rozier
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
| | - Alexandre Thibault Jacques Maria
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| | - Philippe Guilpain
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| |
Collapse
|
23
|
Li M, Zhang HP, Wang XY, Chen ZG, Lin XF, Zhu W. Mesenchymal Stem Cell-Derived Exosomes Ameliorate Dermal Fibrosis in a Murine Model of Bleomycin-Induced Scleroderma. Stem Cells Dev 2021; 30:981-990. [PMID: 34428952 DOI: 10.1089/scd.2021.0112] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have become a promising therapeutic strategy for scleroderma. Exosomes derived from MSCs (MSC-exosomes) possess functional properties similar to those of their source cells. In this study, we aimed to explore the potential role of MSC-exosomes in the treatment of scleroderma. MSC-exosomes were isolated from human umbilical cords through ultracentrifugation and characterized. An experimental fibrosis model was established in BALB/c mice by a subcutaneous injection of bleomycin, followed by treatment with MSC-exosomes or MSC infusions once a week for a total of four doses. Using hematoxylin and eosin and Masson's trichrome staining and immunohistochemistry, hydroxyproline content, and quantitative real-time polymerase chain reaction analyses, we investigated the effects of MSC-exosomes on dermal fibrosis and explored the underlying mechanism. MSC-exosome treatment restored the dermal architecture, reduced dermal thickness, and partially increased subcutaneous adipose tissue thickness. In addition, MSC-exosomes inhibited the expression of collagen (COL)-I, COL-III, and α-smooth muscle actin. The transforming growth factor (TGF)-β/Smad signaling pathway was also suppressed in MSC-exosome-treated mice. Taken together, our results suggest that MSC-exosomes can attenuate myofibroblast activation and collagen deposition in dermal fibrosis by downregulating the TGF-β/Smad signaling pathway. Therefore, the use of MSC-exosomes may be a potential therapeutic approach for the treatment of scleroderma.
Collapse
Affiliation(s)
- Man Li
- Department of Dermatology and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Hai-Ping Zhang
- Department of Dermatology and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Xue-Yao Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Zhi-Guo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Xue-Fei Lin
- Department of Dermatology and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Wei Zhu
- Department of Dermatology and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| |
Collapse
|
24
|
Baral H, Uchiyama A, Yokoyama Y, Sekiguchi A, Yamazaki S, Amalia SN, Inoue Y, Ogino S, Torii R, Hosoi M, Matsuzaki T, Motegi SI. Antifibrotic effects and mechanisms of mesenchymal stem cell-derived exosomes in a systemic sclerosis mouse model: Possible contribution of miR-196b-5p. J Dermatol Sci 2021; 104:39-47. [PMID: 34479773 DOI: 10.1016/j.jdermsci.2021.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/01/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disorder characterized by the development of fibrosis in the skin and internal organs. Increasing evidence suggests that mesenchymal stem cells (MSCs) can be used to a treatment for fibrotic diseases. Recent studies have demonstrated that some of the biological effects of MSCs are due to the secretion of exosomes. However, the precise mechanisms underlying MSCs-derived exosomes in skin fibrosis are not well understood. OBJECTIVE We aimed to elucidate the effect of MSCs-derived exosomes on skin fibrosis in SSc and the mechanism underlying their inhibitory action on fibrosis. METHODS Exosome was collected from MSCs by ultracentrifugation method. We examined the suppressive effect of MSCs-derived exosome on skin fibrosis in bleomycin-induced SSc mouse model. Skin samples from the injected site were collected for further examination, and micro-RNA analysis of MSCs-derived exosome was performed. RESULTS Injection of MSCs-derived exosomes significantly inhibited bleomycin-induced dermal fibrosis in mice. MSCs-derived exosomes significantly reduced the amount of collagen and the number of α-SMA+ myofibroblasts and CD68+ macrophages in lesional skin. They also reduced the expression of type I collagen and TGF-β receptor 1 in fibroblasts in vitro. Moreover, micro-RNA analysis revealed that several microRNAs in MSCs-derived exosomes have antifibrotic potential. We confirmed that overexpression of miR-196b-5p in fibroblasts significantly suppressed collagen type I alpha 2 expression. CONCLUSION This study demonstrated that inhibition of collagen type I expression by miR-196b-5p in exosomes might be one of the mechanisms by which MSCs suppress skin fibrosis in an SSc mouse model.
Collapse
Affiliation(s)
- Hritu Baral
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Uchiyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Yoko Yokoyama
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Syahla Nisaa Amalia
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuta Inoue
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sachiko Ogino
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryoko Torii
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mari Hosoi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
25
|
Jin X, Hou J, Zheng K, Wei D, Zhang A, Wang S, Mei H, Li C, Cheng L, Sun X. Umbilical Cord Mesenchymal Stem Cells for Inhibiting the Fibrosis and Autoimmune Development in HOCl-Induced Systemic Scleroderma Mouse Model. Int J Stem Cells 2021; 14:262-274. [PMID: 34158413 PMCID: PMC8429945 DOI: 10.15283/ijsc20002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/02/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Background and Objectives Systemic scleroderma (SSc) is a rare and serious connective tissue disease, an autoimmune disease, and a rare refractory disease. In this study, preventive effect of single systemic human umbilical cord mesenchymal stem cells (UC-MSCs) transfusion on SSc was preliminarily explored. Methods and Results SSc mouse model was established by daily intradermal injection of Hypochlorite (HOCl). SSc mice were treated by single transfusion of UC-MSCs at 0.625×105, 2.5×105 and 1×106 respectively. At the 42nd day of intradermal injection of HOCl, the symptoms showed up by skin and alveolar wall thickening, lymphocytic infiltration, increased collagen in skin/lung, and the increased proportion of CD3+CD4+CD25+FoxP3+ cells (a Treg subset) in spleen. After UC-MSCs transfusion, the degree of skin thickening, alveolar wall thickening and lymphocyte infiltration were decreased, the collagen sedimentation in skin/lung was decreased, and the proportion of CD3+CD4+CD25+FoxP3+ cells was decreased. Conclusions UC-MSC can achieve a preventive effect in SSc mice by fibrosis attenuation and immunoregulation.
Collapse
Affiliation(s)
- Xin Jin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.,National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Jiali Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.,National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Ke Zheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.,National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Dan Wei
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.,National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Ali Zhang
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, School of Clinical Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Siqi Wang
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Hua Mei
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Chuang Li
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.,National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.,National Engineering Research Center of Human Stem Cells, Changsha, China
| |
Collapse
|
26
|
Lai AN, Zhou R, Chen B, Guo L, Dai YY, Jia YP. MiR-149-3p can improve the osteogenic differentiation of human adipose-derived stem cells via targeting AKT1. Kaohsiung J Med Sci 2021; 37:1077-1088. [PMID: 34382740 DOI: 10.1002/kjm2.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
The study aims to investigate the role of microRNA-149-3p (miR-149-3p) in regulating osteogenic differentiation of human adipose-derived stem cells (hADSCs) by targeting v-akt murine thymoma viral oncogene homolog 1 (AKT1). Bioinformatics websites and a dual luciferase reporter assay were used to predict and verify the targeting relationship between miR-149-3p and AKT1. The hADSCs were divided into the blank, negative control (NC), mimic, control siRNA, AKT1 siRNA, and miR-149-3p inhibitors + AKT1 siRNA groups and then subjected to Alizarin Red staining, Alkaline phosphatase (ALP) staining, ALP activity detections, MTT assay, and EdU cell proliferation assay. Gene or protein expression was quantified using quantitative real-time PCR (qRT-PCR) or Western blotting, respectively. The miR-149-3p expression increased gradually and AKT1 expression decreased gradually during osteogenic differentiation of hADSCs. The prediction of bioinformatics websites miRTarBase and TargetScan and the dual luciferase reporter assay indicated that miR-149-3p can directly target AKT1. After hADSCs were transfected with miR-149-3p mimic, AKT1 expression was significantly downregulated. However, transfection with AKT1 siRNA did not have an impact on miR-149-3p in hADSCs. In comparison with the AKT1 siRNA group, the miR-149-3p inhibitors + AKT1 siRNA group showed decreased miR-149-3p expression but increased AKT1 expression. In addition, AKT1 siRNA enhanced the cell viability and proliferation of hADSCs and increased mineral calcium deposition and ALP activity, resulting in higher expression of osteogenic differentiation-related genes, which was reversed by miR-149-3p inhibition. The miR-149-3p can increase the expression of osteogenic differentiation-related genes by targeting AKT1 and thereby enhance the osteogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Ai-Ning Lai
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Rong Zhou
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Bin Chen
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Long Guo
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Yu-Ya Dai
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Yong-Peng Jia
- Section V, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| |
Collapse
|
27
|
Rozier P, Maumus M, Bony C, Maria ATJ, Sabatier F, Jorgensen C, Guilpain P, Noël D. Extracellular Vesicles Are More Potent Than Adipose Mesenchymal Stromal Cells to Exert an Anti-Fibrotic Effect in an In Vitro Model of Systemic Sclerosis. Int J Mol Sci 2021; 22:ijms22136837. [PMID: 34202139 PMCID: PMC8269376 DOI: 10.3390/ijms22136837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.
Collapse
Affiliation(s)
- Pauline Rozier
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Marie Maumus
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Claire Bony
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | | | - Florence Sabatier
- INSERM, INRA, C2VN, Aix Marseille University, 13005 Marseille, France;
| | - Christian Jorgensen
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| | - Philippe Guilpain
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France;
| | - Danièle Noël
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-4-67-33-04-73; Fax: +33-4-67-33-01-13
| |
Collapse
|
28
|
Rozier P, Maumus M, Maria ATJ, Toupet K, Lai-Kee-Him J, Jorgensen C, Guilpain P, Noël D. Mesenchymal stromal cells-derived extracellular vesicles alleviate systemic sclerosis via miR-29a-3p. J Autoimmun 2021; 121:102660. [PMID: 34020253 DOI: 10.1016/j.jaut.2021.102660] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis (SSc) is a potentially lethal disease with no curative treatment. Mesenchymal stromal cells (MSCs) have proved efficacy in SSc but no data is available on MSC-derived extracellular vesicles (EVs) in this multi-organ fibrosis disease. Small size (ssEVs) and large size EVs (lsEVs) were isolated from murine MSCs or human adipose tissue-derived MSCs (ASCs). Control antagomiR (Ct) or antagomiR-29a-3p (A29a) were transfected in MSCs and ASCs before EV production. EVs were injected in the HOCl-induced SSc model at day 21 and euthanasized at day 42. We found that both ssEVs and lsEVs were effective to slow-down the course of the disease. All disease parameters improved in skin and lungs. Interestingly, down-regulating miR-29a-3p in MSCs totally abolished therapeutic efficacy. Besides, we demonstrated a similar efficacy of human ASC-EVs and importantly, EVs from A29a-transfected ASCs failed to improve skin fibrosis. We identified Dnmt3a, Pdgfrbb, Bcl2, Bcl-xl as target genes of miR-29a-3p whose regulation was associated with skin fibrosis improvement. Our study highlights the therapeutic role of miR-29a-3p in SSc and the importance of regulating methylation and apoptosis.
Collapse
Affiliation(s)
- Pauline Rozier
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Alexandre Thibault Jacques Maria
- IRMB, University of Montpellier, INSERM, Montpellier, France; Department of Internal Medicine, Multi-organic Diseases, CHU, Montpellier, France
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Joséphine Lai-Kee-Him
- Centre de Biochimie Structurale (CBS), University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Philippe Guilpain
- IRMB, University of Montpellier, INSERM, Montpellier, France; Department of Internal Medicine, Multi-organic Diseases, CHU, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France.
| |
Collapse
|
29
|
Therapeutic prospects of MicroRNAs carried by mesenchymal stem cells-derived extracellular vesicles in autoimmune diseases. Life Sci 2021; 277:119458. [PMID: 33831424 DOI: 10.1016/j.lfs.2021.119458] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Autoimmune diseases (ADs) are a class of chronic disease conditions with impaired tolerance to autoantigens. Currently, there is no effective treatment for ADs, and the existing medications have limitations due to non-specific targets and side effects. Accumulating evidence has shown that mesenchymal stem cells (MSCs) play a role in ADs treatment. These beneficial effects mainly rely on cell-to-cell communication through the secretion of extracellular vesicles (EVs) and soluble factors. MSC-derived EVs (MSC-EVs) could modulate adjacent and distinct cells by transferring various DNA, mRNA, non-coding RNAs, proteins, and lipids from parent cells to recipient cells. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate multiple target genes at the post-transcriptional level and are involved in chronic inflammatory and immune processes. Compared to fluid, MSC-EVs delivery can protect miRNAs from the degradation of ribonucleases, ensuring that miRNAs are able to perform their respective crucial roles in AD recipient cells. In this review, we discussed the therapeutic prospects and challenges of miRNAs secreted by MSC-EVs (MSC-EV-miRNAs) by reviewing the experimentally verified therapeutic outcomes of MSC-EV-miRNAs for several ADs, including rheumatoid arthritis (RA), autoimmune hepatitis (AIH), asthma, colitis, systemic sclerosis (SSc) and graft-versus-host disease (GVHD).
Collapse
|
30
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
31
|
Mesenchymal stromal cells for systemic sclerosis treatment. Autoimmun Rev 2021; 20:102755. [PMID: 33476823 DOI: 10.1016/j.autrev.2021.102755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis (SSc) is a rare chronic autoimmune disease characterized by vasculopathy, dysregulation of innate and adaptive immune responses, and progressive fibrosis. SSc remains an orphan disease, with high morbity and mortality in SSc patients. The mesenchymal stromal cells (MSC) demonstrate in vitro and in vivo pro-angiogenic, immuno-suppressive, and anti-fibrotic properties and appear as a promising stem cell therapy type, that may target the key pathological features of SSc disease. This review aims to summarize acquired knowledge in the field of :1) MSC definition and in vitro and in vivo functional properties, which vary according to the donor type (allogeneic or autologous), the tissue sources (bone marrow, adipose tissue or umbilical cord) or inflammatory micro-environment in the recipient; 2) preclinical studies in various SSc animal models , which showed reduction in skin and lung fibrosis after MSC infusion; 3) first clinical trials in human, with safety and early efficacy results reported in SSc patients or currently tested in several ongoing clinical trials.
Collapse
|
32
|
Abedi M, Alavi-Moghadam S, Payab M, Goodarzi P, Mohamadi-jahani F, Sayahpour FA, Larijani B, Arjmand B. Mesenchymal stem cell as a novel approach to systemic sclerosis; current status and future perspectives. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:20. [PMID: 33258056 PMCID: PMC7704834 DOI: 10.1186/s13619-020-00058-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis is a rare chronic autoimmune disease with extensive microvascular injury, damage of endothelial cells, activation of immune responses, and progression of tissue fibrosis in the skin and various internal organs. According to epidemiological data, women's populations are more susceptible to systemic sclerosis than men. Until now, various therapeutic options are employed to manage the symptoms of the disease. Since stem cell-based treatments have developed as a novel approach to rescue from several autoimmune diseases, it seems that stem cells, especially mesenchymal stem cells as a powerful regenerative tool can also be advantageous for systemic sclerosis treatment via their remarkable properties including immunomodulatory and anti-fibrotic effects. Accordingly, we discuss the contemporary status and future perspectives of mesenchymal stem cell transplantation for systemic sclerosis.
Collapse
Affiliation(s)
- Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mohamadi-jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disorder with a high mortality rate. There are still many unknowns concerning the pathophysiology of this disease, due to its clinical heterogeneity. Since there is still no curative treatment, researchers focus on finding novel methods to help the patients. One of the valid options is cellular therapy, and mesenchymal stem cells (MSCs)-based therapy yields great expectations. These cells possess especially valuable attributes regarding key points of SSc. Nevertheless, the effectiveness and safety of this therapy must undergo a rigorous process of verification. In preclinical trials, animal models proved to be a valuable source of scientific knowledge regarding SSc. Because of that, it has been possible to test autologous or allogeneic MSCs from various sources in many clinical trials. A lot of aspects still have to be determined to assess their potential in the management of SSc, probably in association with other therapies.
Collapse
|
34
|
Fallet B, Walker UA. Current immunosuppressive and antifibrotic therapies of systemic sclerosis and emerging therapeutic strategies. Expert Rev Clin Pharmacol 2020; 13:1203-1218. [PMID: 33008265 DOI: 10.1080/17512433.2020.1832466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a rare, difficult to treat disease with profound effects on quality of life and high mortality. Complex and incompletely understood pathophysiologic processes and greatly heterogeneous clinical presentations and outcomes have hampered drug development. AREAS COVERED This review summarizes the currently available immunosuppressive and antifibrotic therapies and discusses novel approaches for the treatment of SSc. We reviewed the literature using the MEDLINE and ClinicalTrial.gov databases between May and September 2020. EXPERT OPINION Available immunosuppressive and antifibrotic drugs only modestly impact the course of the disease. Most drugs are currently only investigated in the subset of patients with early diffuse cutaneous SSc. In this patient population, hematopoietic stem-cell transplantation is currently the only treatment that has demonstrated reversal of lung involvement, enhanced quality of life and reduced long-term mortality, but carries the risk of short-term treatment-related mortality. A great need to provide better therapeutic options to patients exists also for those patients who have limited cutaneous skin involvement. A better understanding of SSc pathophysiology has enabled the identification of numerous new therapeutic targets. The progress made in the design of clinical trials and outcome parameters will likely result in the improvement of effective management options.
Collapse
Affiliation(s)
- Bénédict Fallet
- Department of Rheumatology, University Hospital Basel , Basel, Switzerland
| | - Ulrich A Walker
- Department of Rheumatology, University Hospital Basel , Basel, Switzerland
| |
Collapse
|
35
|
Sharma S, Bhonde R. Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics 2020; 112:3615-3623. [DOI: 10.1016/j.ygeno.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
36
|
Liu H, Li R, Liu T, Yang L, Yin G, Xie Q. Immunomodulatory Effects of Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Rheumatoid Arthritis. Front Immunol 2020; 11:1912. [PMID: 32973792 PMCID: PMC7468450 DOI: 10.3389/fimmu.2020.01912] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/16/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects the joints and other organs for which there is currently no effective treatment. Mesenchymal stem cells (MSCs) have therapeutic potential due to their immunomodulatory and differentiation effects. While extensive experimental studies and clinical trials have demonstrated the effects of MSCs in various diseases, MSCs have been found to cause abnormal differentiation and tumor formation. Therefore, extracellular vesicles derived from MSCs (MSC-EVs) are more effective, less toxic, and more stable than the parental cells. MSC-EVs transfer various nucleic acids, proteins, and lipids from parent cells to recipient cells, and thus participate in chronic inflammatory and immune processes. In this review, we summarize the properties and biological functions of MSCs and MSC-EVs in RA. Improvement in our understanding of the mechanisms underlying MSC and MSC-EVs in RA provides an insight into potential biomarkers and therapeutic strategies for RA.
Collapse
Affiliation(s)
- Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicen Li
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Gentile P, Sterodimas A, Pizzicannella J, Dionisi L, De Fazio D, Calabrese C, Garcovich S. Systematic Review: Allogenic Use of Stromal Vascular Fraction (SVF) and Decellularized Extracellular Matrices (ECM) as Advanced Therapy Medicinal Products (ATMP) in Tissue Regeneration. Int J Mol Sci 2020; 21:4982. [PMID: 32679697 PMCID: PMC7404290 DOI: 10.3390/ijms21144982] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Stromal vascular fraction (SVF) containing adipose stem cells (ASCs) has been used for many years in regenerative plastic surgery for autologous applications, without any focus on their potential allogenic role. Allogenic SVF transplants could be based on the possibility to use decellularized extracellular matrix (ECM) as a scaffold from a donor then re-cellularized by ASCs of the recipient, in order to develop the advanced therapy medicinal products (ATMP) in fully personalized clinical approaches. A systematic review of this field has been realized in accordance with the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines. Multistep research of the PubMed, Embase, MEDLINE, Pre-MEDLINE, PsycINFO, CINAHL, Clinicaltrials.gov, Scopus database, and Cochrane databases has been conducted to identify articles and investigations on human allogenic ASCs transplant for clinical use. Of the 341 articles identified, 313 were initially assessed for eligibility on the basis of the abstract. Of these, only 29 met all the predetermined criteria for inclusion according to the PICOS (patients, intervention, comparator, outcomes, and study design) approach, and 19 have been included in quantitative synthesis (meta-analysis). Ninety-one percent of the studies previously screened (284 papers) were focused on the in vitro results and pre-clinical experiments. The allogenic use regarded the treatment of perianal fistulas, diabetic foot ulcers, knee osteoarthritis, acute respiratory distress syndrome, refractory rheumatoid arthritis, pediatrics disease, fecal incontinence, ischemic heart disease, autoimmune encephalomyelitis, lateral epicondylitis, and soft tissue defects. The information analyzed suggested the safety and efficacy of allogenic ASCs and ECM transplants without major side effects.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, Plastic and Reconstructive Surgery, “Tor Vergata” University, 00133 Rome, Italy
- Scientific Director of AIRMESS, Academy of International Regenerative Medicine & Surgery Societies, 1201 Geneva, Switzerland
| | - Aris Sterodimas
- Department of Plastic and Reconstructive Surgery, Metropolitan General Hospital, 18547 Athens, Greece;
| | | | | | - Domenico De Fazio
- Institute of Plastic Surgery, Galeazzi Hospital, 20122 Milan, Italy;
| | | | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
38
|
Motais B, Charvátová S, Hrdinka M, Šimíček M, Jelínek T, Ševčíková T, Kořístek Z, Hájek R, Bagó JR. A Bird's-Eye View of Cell Sources for Cell-Based Therapies in Blood Cancers. Cancers (Basel) 2020; 12:E1333. [PMID: 32456165 PMCID: PMC7281611 DOI: 10.3390/cancers12051333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
: Hematological malignancies comprise over a hundred different types of cancers and account for around 6.5% of all cancers. Despite the significant improvements in diagnosis and treatment, many of those cancers remain incurable. In recent years, cancer cell-based therapy has become a promising approach to treat those incurable hematological malignancies with striking results in different clinical trials. The most investigated, and the one that has advanced the most, is the cell-based therapy with T lymphocytes modified with chimeric antigen receptors. Those promising initial results prepared the ground to explore other cell-based therapies to treat patients with blood cancer. In this review, we want to provide an overview of the different types of cell-based therapies in blood cancer, describing them according to the cell source.
Collapse
Affiliation(s)
- Benjamin Motais
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Sandra Charvátová
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Michal Šimíček
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Zdeněk Kořístek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Roman Hájek
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| | - Juli R. Bagó
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; (B.M.); (S.C.); (M.H.); (M.Š.); (T.J.); (T.Š.); (Z.K.); (R.H.)
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
| |
Collapse
|
39
|
Magalon J, Velier M, Simoncini S, Dignat-George F, Granel B, Paul P, Sabatier F. Response to: 'Adipose stromal vascular fraction and regenerative therapy in SSc: response to the article by Magalon et al' by De Benedetto et al. Ann Rheum Dis 2020; 79:e54. [PMID: 30787004 DOI: 10.1136/annrheumdis-2019-215132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Jérémy Magalon
- Cell Therapy Department, Hôpital de la Conception, Marseille, France
- Aix Marseille University, Marseille, France
| | - Mélanie Velier
- Cell Therapy Department, Hôpital de la Conception, Marseille, France
- Aix Marseille University, Marseille, France
| | | | | | - Brigitte Granel
- Aix Marseille University, Marseille, France
- Internal Medicine Department, Hôpital Nord, Marseille, France
| | - Pascale Paul
- Cell Therapy Department, Hôpital de la Conception, Marseille, France
- Aix Marseille University, Marseille, France
| | - Florence Sabatier
- Cell Therapy Department, Hôpital de la Conception, Marseille, France
- Aix Marseille University, Marseille, France
| |
Collapse
|
40
|
Abstract
Mesenchymal stromal or stem cells (MSC) possess strong immunomodulatory properties. Due to their impressive potential to differentiate into various cell types they are capable of inducing mechanisms of tissue repair. Experimental data have demonstrated impaired MSC function in several rheumatic diseases in vitro; however, the relevance of these phenomena for the pathogenesis of rheumatic disorders has not been convincingly demonstrated. Nevertheless, allogeneic MSC transplantation (MSCT), and possibly autologous MSCT as well, could prove to be an interesting instrument for the treatment of autoimmune rheumatic diseases. The first clinical trials have demonstrated positive effects in systemic lupus erythematosus, systemic sclerosis and Sjogren's syndrome; however, questions regarding the long-term benefits and safety as well as the best source, the optimal cultivation technique and the most effective way of application of MSC are still unanswered.
Collapse
|
41
|
Kuca-Warnawin E, Skalska U, Janicka I, Musiałowicz U, Bonek K, Głuszko P, Szczęsny P, Olesińska M, Kontny E. The Phenotype and Secretory Activity of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Patients with Rheumatic Diseases. Cells 2019; 8:E1659. [PMID: 31861245 PMCID: PMC6952982 DOI: 10.3390/cells8121659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have immunosuppressive and regenerative properties. Adipose tissue is an alternative source of MSCs, named adipose-derived mesenchymal stem cells (ASCs). Because the biology of ASCs in rheumatic diseases (RD) is poorly understood, we performed a basic characterization of RD/ASCs. The phenotype and expression of adhesion molecules (intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1) on commercially available healthy donors (HD), ASC lines (n = 5) and on ASCs isolated from patients with systemic lupus erythematosus (SLE, n = 16), systemic sclerosis (SSc, n = 17) and ankylosing spondylitis (AS, n = 16) were analyzed by flow cytometry. The secretion of immunomodulatory factors by untreated and cytokine-treated ASCs was measured by ELISA. RD/ASCs have reduced basal levels of CD90 and ICAM-1 expression, correlated with interleukin (IL)-6 and transforming growth factor (TGF)-β1 release, respectively. Compared with HD/ASCs, untreated and tumour necrosis factor (TNF) + interferon (IFN)-γ (TI)-treated RD/ASCs produced similar amounts of prostaglandin E2 (PGE2), IL-6, leukemia inhibiting factor (LIF), and TGF-β1, more IL-1Ra, soluble human leukocyte antigen G (sHLA-G) and tumor necrosis factor-inducible gene (TSG)-6, but less kynurenines and galectin-3. Basal secretion of galectin-3 was inversely correlated with the patient's erythrocyte sedimentation rate (ESR) value. IFN-α and IL-23 slightly raised galectin-3 release from SLE/ASCs and AS/ASCs, respectively. TGF-β1 up-regulated PGE2 secretion by SSc/ASCs. In conclusion, RD/ASCs are characterized by low basal levels of CD90 and ICAM-1 expression, upregulated secretion of IL-1Ra, TSG-6 and sHLA-G, but impaired release of kynurenines and galectin-3. These abnormalities may modify biological activities of RD/ASCs.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| | - Urszula Skalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| | - Iwona Janicka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| | - Urszula Musiałowicz
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| | - Krzysztof Bonek
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (K.B.); (P.G.)
| | - Piotr Głuszko
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (K.B.); (P.G.)
| | - Piotr Szczęsny
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (P.S.); (M.O.)
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (P.S.); (M.O.)
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (U.S.); (I.J.); (U.M.); (E.K.)
| |
Collapse
|
42
|
VELIER M, SIMONCINI S, ABELLAN M, FRANCOIS P, EAP S, LAGRANGE A, BERTRAND B, DAUMAS A, GRANEL B, DELORME B, DIGNAT GEORGE F, MAGALON J, SABATIER F. Adipose-Derived Stem Cells from Systemic Sclerosis Patients Maintain Pro-Angiogenic and Antifibrotic Paracrine Effects In Vitro. J Clin Med 2019; 8:E1979. [PMID: 31739569 PMCID: PMC6912239 DOI: 10.3390/jcm8111979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Innovative therapies based on autologous adipose-derived stem/stromal cells (ASC) are currently being evaluated for treatment of systemic sclerosis (SSc). Although paracrine angiogenic and antifibrotic effects are considered the predominant mechanisms of ASC therapeutic potential, the impact of SSc on ASC paracrine functions remains controversial. In this study, phenotype, senescence, differentiation potential, and molecular profile were determined in ASC from SSc patients (SSc-ASC) (n = 7) and healthy donors (HD-ASC) (n = 7). ASC were co-cultured in indirect models with dermal fibroblasts (DF) from SSc patients or endothelial cells to assess their pro-angiogenic and antifibrotic paracrine effects. The angiogenic activity of endothelial cells was measured in vitro using tube formation and spheroid assays. DF collagen and alpha smooth muscle actin (αSMA) content were quantified after five days of co-culture with ASC. Differentiation capacity, senescence, and mRNA profiles did not differ significantly between SSc-ASC and HD-ASC. SSc-ASC retained the ability to stimulate angiogenesis through paracrine mechanisms; however, functional assays revealed reduced potential compared to HD-ASC. DF fibrosis markers were significantly decreased after co-culture with SSc-ASC. Together, these results indicate that SSc effects do not significantly compromise the angiogenic and the antifibrotic paracrine properties of ASC, thereby supporting further development of ASC-based autologous therapies for SSc treatment.
Collapse
Affiliation(s)
- Mélanie VELIER
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| | | | - Maxime ABELLAN
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, 13005 Marseille, France
| | - Pauline FRANCOIS
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| | - Sandy EAP
- R&D Department, Macopharma, 59420 Mouvaux, France
| | | | - Baptiste BERTRAND
- Plastic Surgery Department, Hôpital de la Conception, AP-HM, 13005 Marseille, France
| | - Aurélie DAUMAS
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Internal Medicine Department, Hôpital Nord & Hôpital de la Timone, AP-HM, 13005 Marseille, France
| | - Brigitte GRANEL
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Internal Medicine Department, Hôpital Nord & Hôpital de la Timone, AP-HM, 13005 Marseille, France
| | | | | | - Jérémy MAGALON
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| | - Florence SABATIER
- Aix Marseille University, INSERM, INRA, C2VN, 13005 Marseille, France
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, 13005 Marseille, France
| |
Collapse
|
43
|
Exosomes in Systemic Sclerosis: Messengers Between Immune, Vascular and Fibrotic Components? Int J Mol Sci 2019; 20:ijms20184337. [PMID: 31487964 PMCID: PMC6770454 DOI: 10.3390/ijms20184337] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/18/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disease, characterized by vasculopathy and fibrosis of the skin and internal organs. This disease is still considered incurable and is associated with a high risk of mortality, which is related to fibrotic events. An early diagnosis is useful for preventing complications, and targeted therapies reduce disease progression and ameliorate patients’ quality of life. Nevertheless, there are no validated biomarkers for early diagnosis with predictive prognostic value. Exosomes are membrane vesicles, transporting proteins and nucleic acids that may be delivered to target cells, which influences cellular behavior. They play important roles in cell–cell communication, both in physiological and pathological conditions, and may be useful as circulating biomarkers. Recent evidences suggest a role for these microvesicles in the three main aspects related to the pathogenesis of SSc (immunity, vascular damage, and fibrosis). Moreover, exosomes are of particular interest in the field of nano-delivery and are used as biological carriers. In this review, we report the latest information concerning SSc pathogenesis, clinical aspects of SSc, and current approaches to the treatment of SSc. Furthermore, we indicate a possible role of exosomes in SSc pathogenesis and suggest their potential use as diagnostic and prognostic biomarkers, as well as therapeutic tools.
Collapse
|
44
|
Manetti M, Romano E, Rosa I, Fioretto BS, Praino E, Guiducci S, Iannone F, Ibba-Manneschi L, Matucci-Cerinic M. Systemic Sclerosis Serum Steers the Differentiation of Adipose-Derived Stem Cells Toward Profibrotic Myofibroblasts: Pathophysiologic Implications. J Clin Med 2019; 8:E1256. [PMID: 31430950 PMCID: PMC6723717 DOI: 10.3390/jcm8081256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic sclerosis (SSc; scleroderma) is characterized by life-threatening progressive multiorgan fibrosis orchestrated by profibrotic myofibroblasts originating from different sources. Because recent data demonstrated that the majority of myofibroblasts in a murine scleroderma model arise from adipocytic progenitors through the adipocyte-myofibroblast transition process, we sought to determine whether the SSc microenvironment may affect the differentiation potential of adipose-derived stem cells (ADSC). Normal human ADSC from three donors were treated with serum from SSc patients (n = 6), serum from healthy individuals (n = 6), or recombinant human transforming growth factor-β1 (TGFβ1) as positive control of myofibroblastic phenotype induction. ADSC were subjected to in vitro adipogenic differentiation for up to 21 days in the presence of different stimuli followed by lipid content quantification. In selected experiments, adipocytic and mesenchymal/myofibroblast marker gene and protein expression levels were assessed by Real-Time PCR, immunoblotting and immunofluorescence after administration of different stimuli for 72 and 96 h, respectively. Cell contractile phenotype was assayed by collagen gel contraction assay. Likewise stimulation with TGFβ1, SSc serum was able to significantly inhibit the adipocyte differentiation of ADSC as testified by a strong decrease in red-colored lipid droplets after 21 days of adipogenic induction. Treatment of ADSC either with SSc serum or TGFβ1 resulted in the acquisition of a myofibroblast-like phenotype characterized by a reduced expression of the adipocytic markers perilipin and adiponectin, a significant upregulation of the mesenchymal/myofibroblast markers α-SMA+ stress fibers, S100A4 and type I collagen, and an ability to effectively contract collagen gels. In SSc, the pathologic environment may favor the differentiation of ADSC into profibrotic and contractile myofibroblast-like cells. These findings strengthen the notion that the generation of myofibroblasts from ADSC may be relevant in SSc pathophysiology potentially representing a new target for the prevention/treatment of multiorgan fibrosis.
Collapse
Affiliation(s)
- Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Eloisa Romano
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Bianca Saveria Fioretto
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Emanuela Praino
- Rheumatology Unit, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
| | - Serena Guiducci
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Florenzo Iannone
- Rheumatology Unit, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
| | - Lidia Ibba-Manneschi
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Matucci-Cerinic
- Division of Rheumatology and Scleroderma Unit, AOUC, Department of Geriatric Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
45
|
Chellini F, Tani A, Vallone L, Nosi D, Pavan P, Bambi F, Zecchi-Orlandini S, Sassoli C. Platelet-Rich Plasma and Bone Marrow-Derived Mesenchymal Stromal Cells Prevent TGF-β1-Induced Myofibroblast Generation but Are Not Synergistic when Combined: Morphological in vitro Analysis. Cells Tissues Organs 2019; 206:283-295. [PMID: 31382258 DOI: 10.1159/000501499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
The persistence of activated myofibroblasts is a hallmark of fibrosis of many organs. Thus, the modulation of the generation/functionality of these cells may represent a strategical anti-fibrotic therapeutic option. Bone marrow-derived mesenchymal stromal cell (MSC)-based therapy has shown promising clues, but some criticisms still limit the clinical use of these cells, including the need to avoid xenogeneic compound contamination for ex vivo cell amplification and the identification of appropriate growth factors acting as a pre-conditioning agent and/or cell delivery vehicle during transplantation, thus enabling the improvement of cell survival in the host tissue microenvironment. Many studies have demonstrated the ability of platelet-rich plasma (PRP), a source of many biologically active molecules, to positively influence MSC proliferation, survival, and functionality, as well as its anti-fibrotic potential. Here we investigated the effects of PRP, murine and human bone marrow-derived MSCs, and of the combined treatment PRP/MSCs on in vitro differentiation of murine NIH/3T3 and human HDFα fibroblasts to myofibroblasts induced by transforming growth factor (TGF)-β1, a well-known pro-fibrotic agent. The myofibroblastic phenotype was evaluated morphologically (cell shape and actin cytoskeleton assembly) and immunocytochemically (vinculin-rich focal adhesion clustering, α-smooth muscle actin and type-1 collagen expression). We found that PRP and MSCs, both as single treatments and in combination, were able to prevent the TGF-β1-induced fibroblast-myofibroblast transition. Unexpectedly, the combination PRP/MSCs had no synergistic effects. In conclusion, within the limitations related to an in vitro experimentation, our study may contribute to providing an experimental background for supporting the anti-fibrotic potential of the combination PRP/MSCs which, once translated "from bench to bedside," could potentially offer advantages over the single treatments.
Collapse
Affiliation(s)
- Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Larissa Vallone
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Paola Pavan
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Franco Bambi
- Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy,
| |
Collapse
|
46
|
[Updates in systemic sclerosis pathogenesis: Toward new therapeutic opportunities]. Rev Med Interne 2019; 40:654-663. [PMID: 31301944 DOI: 10.1016/j.revmed.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/04/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023]
Abstract
Systemic sclerosis is a rare connective tissue disease characterized by skin and several internal organ fibrosis, systemic vasculopathy and immune abnormalities. Even if fibroblasts and endothelial cells dysfunction, as well as lymphocytes and other immune cells implication are now well described, the exact origin and chronology of the disease pathogenesis remain unclear. Oxidative stress, influenced by genetic and environmental factors, seems to play a key role. Indeed, it seems to be implicated in the early phases of fibrosis development, vasculopathy and in immune tolerance abnormalities shared by all patients, although disease expression is heterogeneous. To date, no curative treatment is available. Even if immunosuppressive treatment or drugs acting on vascular system are proposed for some patients, overall, treatment efficiency remains modest. Only autologous hematopoietic stem cells transplantation, reserved for patients with severe or rapidly progressive fibrosis, has recently demonstrated efficiency, with lasting regression of fibrosis. Nevertheless, this treatment can expose to important, life-threatening toxicity. In the last decade, new mechanisms implicated in the pathogenesis of systemic sclerosis have been unraveled, bringing new therapeutic opportunities. In this review, we offer to focus on recent insights in the knowledge of systemic sclerosis pathogenesis and its implication in current and future medical care.
Collapse
|
47
|
Tatullo M, Codispoti B, Paduano F, Nuzzolese M, Makeeva I. Strategic Tools in Regenerative and Translational Dentistry. Int J Mol Sci 2019; 20:ijms20081879. [PMID: 30995738 PMCID: PMC6514784 DOI: 10.3390/ijms20081879] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
Human oral-derived stem cells can be easily obtained from several oral tissues, such as dental pulp, periodontal ligament, from gingiva, or periapical cysts. Due to their differentiation potential, oral-derived mesenchymal stem cells are promising for tissue engineering and regenerative medicine. The regenerative ability showed by some oral tissues strongly depends on their sleeping adult stem cell populations that are able to repair small defects and to manage local inflammation. To date, researchers are working on effective and efficient methods to ensure safe and predictable protocols to translate stem cell research into human models. In the last decades, the challenge has been to finally use oral-derived stem cells together with biomaterials or scaffold-free techniques, to obtain strategic tools for regenerative and translational dentistry. This paper aims to give a clear point of view on state of the art developments, with some exciting insights into future strategies.
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Regenerative Medicine, Tecnologica Research Institute, 88900 Crotone, Italy.
- Department of Experimental Medicine, Marrelli Hospital, 88900 Crotone, Italy.
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia.
| | - Bruna Codispoti
- Department of Regenerative Medicine, Tecnologica Research Institute, 88900 Crotone, Italy.
- Department of Experimental Medicine, Marrelli Hospital, 88900 Crotone, Italy.
| | - Francesco Paduano
- Department of Regenerative Medicine, Tecnologica Research Institute, 88900 Crotone, Italy.
- Department of Experimental Medicine, Marrelli Hospital, 88900 Crotone, Italy.
| | - Manuel Nuzzolese
- Department of NHS Foundation Trust, University Hospitals Birmingham ⁻ NHS Foundation Trust, Birmingham B152GW, UK.
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia.
| |
Collapse
|