1
|
Capuano V, Semoun O, Combes A, Mehanna CJ, Oubraham H, Souied EH. [Diagnostic approach and treatment paradigm in atrophic age related macular degeneration: Recommendations of the France Macula Federation]. J Fr Ophtalmol 2025; 48:104473. [PMID: 40058064 DOI: 10.1016/j.jfo.2025.104473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025]
Abstract
Atrophic age-related macular degeneration (AMD) represents a detrimental progression of age-related maculopathy, characterized by advanced retinal lesions associated with drusen and pseudodrusen as well as alterations in the outer retinal layers and RPE. It is characterized by a thinning of the neuroretinal tissue linked to the disappearance of the outer layers of the retina and the RPE. Our goal is to offer to ophthalmologists recommendations in the diagnosis and management of atrophic AMD with a standardized approach, in order to facilitate and optimize the management of this disease. The diagnosis of atrophic AMD is based on multimodal imaging; color fundus photography, autofluorescence images of the fundus (AFF) and structural optical coherence tomography (OCT) are the first-line examinations to assess lesion size and foveolar sparing. OCT-angiography (OCT-A) is useful in diagnosing associated choroidal neovascularization. At times, the differential diagnosis will require other complementary examinations, such as fluorescein and/or indocyanine green angiography. The assessment of visual function is essentially based on the measurement of visual acuity; other functional tests such as reading speed, measurement of visual acuity in low luminance (LLVA), contrast sensitivity or microperimetry are of definite interest, but are not yet used in routine clinical practice. The therapeutic solutions for this pathology are multidisciplinary; they combine regular clinical monitoring, medical treatment, psychological support, orthoptic rehabilitation and optical visual aids. Support groups are of significant benefit.
Collapse
Affiliation(s)
- V Capuano
- Centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000 Créteil, France.
| | - O Semoun
- Centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000 Créteil, France
| | - A Combes
- Centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000 Créteil, France
| | - C-J Mehanna
- Centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000 Créteil, France
| | - H Oubraham
- Centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000 Créteil, France
| | - E H Souied
- Centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000 Créteil, France; Asso DMLA, 40, avenue de Verdun, 94000 Créteil, France
| |
Collapse
|
2
|
He Y, Guo K, Xin J. Complement updates in optic neuritis. Front Neurol 2025; 16:1566771. [PMID: 40206291 PMCID: PMC11978624 DOI: 10.3389/fneur.2025.1566771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Optic neuritis (ON) is an inflammatory condition of the optic nerve associated with demyelinating diseases like multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin oligodendrocyte glycoprotein antibody-associated disease. The complement system is crucial in ON pathogenesis, driving blood-optic nerve barrier disruption, inflammation, and tissue damage. This review explores the complement activation pathways-classical, alternative, and lectin-and their roles in ON progression. Key proteins such as C3, C5, and terminal pathway components are highlighted as central to disease mechanisms. Recent advances in complement-targeted therapies, including C1q blockers, C3 and C5 inhibitors, show promising results in clinical and preclinical studies. Novel therapies, like anaphylatoxin receptor blockers and recombinant factor H, expand the treatment landscape, while plasma exchange remains vital for severe, corticosteroid-resistant cases. Challenges remain, such as ON heterogeneity, the long-term safety of complement inhibition, and the need for personalized approaches. Future studies should focus on unraveling complement-mediated mechanisms, identifying biomarkers, and refining therapeutic strategies. This review highlights the critical role of complement in ON and the latest therapeutic advances to improve patient outcomes.
Collapse
Affiliation(s)
- Yuhong He
- Department of Ophthalmology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Kai Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jifu Xin
- Department of Ophthalmology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Fujii R, Matsushita M, Itani Y, Hama A, Natsume T, Takamatsu H. Intravitreal Administration of Avacincaptad Pegol in a Nonhuman Primate Model of Dry Age-Related Macular Degeneration. Pharmacol Res Perspect 2025; 13:e70052. [PMID: 39722646 PMCID: PMC11669843 DOI: 10.1002/prp2.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The lack of effective treatments for dry age-related macular degeneration (AMD) is in part due to a lack of a preclinical animal model that recapitulates features of the clinical state including macular retinal pigment epithelium (RPE) degeneration, also known as geographic atrophy (GA). A nonhuman primate model of GA was developed and its responsiveness to an approved treatment, avacincaptad pegol (ACP), a complement C5 inhibitor, was evaluated. Intravitreal (ivt) administration of sodium iodate (SI) into one eye of male Macaca fascicularis leads to retinal areas (mm2) of hyper- or hypo-autofluorescence. Qualitative changes to the retinal structure over time were observed with spectral domain optical coherence tomography (OCT). Six days after SI administration, prior to treatment, mean (± SEM) GA of all eyes was 8.2 ± 1.8 mm2. Following randomization to treatment groups, either vehicle or ACP was ivt injected and treatment was continued every 4 weeks, for a total of four treatments. Sixteen weeks after SI administration, the GA area in vehicle-treated eyes was 18.9 ± 6.6 mm2, whereas GA in ACP-treated eyes was 11.4 ± 4.0 mm2, a reduction by about 36%. Increased, followed by decreased, overall macular thickness was observed with OCT over time following SI administration. Treatment with ACP did not change alter macular thickness thinning. Geographic atrophy-like lesions that expand over time are observed following SI administration. The current macaque model could be utilized to further explore the mechanism of dry AMD and to develop more novel therapeutics.
Collapse
Affiliation(s)
- Rintaro Fujii
- Hamamatsu Pharma Research, Inc.HamamatsuShizuokaJapan
| | | | | | - Aldric Hama
- Hamamatsu Pharma Research, Inc.HamamatsuShizuokaJapan
| | | | | |
Collapse
|
4
|
Wang X, Zhang C, Jiang H. Association of dietary inflammatory index with ocular diseases: a population-based cross-sectional study. Eur J Med Res 2025; 30:62. [PMID: 39891276 PMCID: PMC11783699 DOI: 10.1186/s40001-025-02294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Our research was designed to investigate the relationship between dietary inflammatory index (DII) and risk of ocular diseases, including glaucoma, cataract, age-related macular degeneration (ARMD), and diabetic retinopathy. METHODS We used the National Health and Nutrition Examination Survey (NHANES) data from 2005 to 2008 to conduct this study. The correlation between DII and risk of ocular diseases was examined using weighted multivariable logistic regression analysis, restricted cubic spline (RCS) plots, and subgroup analysis. RESULTS In total, 2885 participants from the NHANES database were included. The DII scores were divided into four group: Q1 (- 4.438-0.386), Q2 (0.387-1.848), Q3 (1.849-3.073), and Q4 (3.074-4.970). RCS shown that there was a U-shaped correlation between DII and prevalence of glaucoma, cataract, ARMD, and diabetic retinopathy. After adjusting for underlying confounding variables, compared to Q1 group, the odd ratios (ORs) with 95 percent confidence intervals (CIs) for glaucoma, cataract, ARMD, and diabetic retinopathy across the quartiles were [0.97 (0.54, 1.75), 1.20 (0.68, 2.11), and 1.29 (0.73, 2.30)], [0.87 (0.56, 1.35), 1.12 (0.73, 1.73), and 1.16 (0.75, 1.80)], [0.85 (0.53, 1.36), 0.66 (0.40, 1.09), and 0.97 (0.61, 1.56)] and [0.86 (0.63, 1.18), 0.89 (0.65, 1.22), and 1.04 (0.75, 1.45)] for DII, respectively. CONCLUSIONS Reducing the intake of pro-inflammatory foods may be an effective measure to prevent the onset of ocular disease, including glaucoma, cataract, ARMD, and diabetic retinopathy. However, eating only anti-inflammatory foods is not the best choice.
Collapse
Affiliation(s)
- Xue Wang
- Department of Ophthalmology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Zhenhua East Road, Lianyungang, 222000, Jiangsu, China.
| | - Can Zhang
- Department of Ophthalmology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Zhenhua East Road, Lianyungang, 222000, Jiangsu, China
| | - Haitao Jiang
- Department of Ophthalmology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Zhenhua East Road, Lianyungang, 222000, Jiangsu, China
| |
Collapse
|
5
|
Vujosevic S, Lupidi M, Donati S, Astarita C, Gallinaro V, Pilotto E. Role of inflammation in diabetic macular edema and neovascular age-related macular degeneration. Surv Ophthalmol 2024; 69:870-881. [PMID: 39029747 DOI: 10.1016/j.survophthal.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD) are multifactorial disorders that affect the macula and cause significant vision loss. Although inflammation and neoangiogenesis are hallmarks of DME and nAMD, respectively, they share some biochemical mediators. While inflammation is a trigger for the processes that lead to the development of DME, in nAMD inflammation seems to be the consequence of retinal pigment epithelium and Bruch membrane alterations. These pathophysiologic differences may be the key issue that justifies the difference in treatment strategies. Vascular endothelial growth factor inhibitors have changed the treatment of both diseases, however, many patients with DME fail to achieve the established therapeutic goals. From a clinical perspective, targeting inflammatory pathways with intravitreal corticosteroids has been proven to be effective in patients with DME. On the contrary, the clinical relevance of addressing inflammation in patients with nAMD has not been proven yet. We explore the role and implication of inflammation in the development of nAMD and DME and its therapeutical relevance.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences University of Milan, Milan, Italy; Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | - Marco Lupidi
- Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Simone Donati
- Department of Medicine and Surgery, University of Insubria of Varese, Varese, Italy
| | - Carlo Astarita
- AbbVie S.r.l., SR 148 Pontina, Campoverde, LT 04011, Italy
| | | | - Elisabetta Pilotto
- Department of Neuroscience-Ophthalmology, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Ariza M, Delas B, Rodriguez B, De Frutos B, Cano N, Segura B, Barrué C, Bejar J, Asaad M, Cortés CU, Junqué C, Garolera M. Retinal Microvasculature Changes Linked to Executive Function Impairment after COVID-19. J Clin Med 2024; 13:5671. [PMID: 39407733 PMCID: PMC11477391 DOI: 10.3390/jcm13195671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Studies using optical coherence tomography angiography (OCTA) have revealed that individuals recovering from COVID-19 have a reduced retinal vascular density (VD) and larger foveal avascular zones (FAZs) than healthy individuals, with more severe cases showing greater reductions. We aimed to examine aspects of the retinal microvascularization in patients with post-COVID-19 condition (PCC) classified by COVID-19 severity and how these aspects relate to cognitive performance. Methods: This observational cross-sectional study included 104 PCC participants from the NAUTILUS Project, divided into severe (n = 59) and mild (n = 45) COVID-19 groups. Participants underwent cognitive assessments and OCTA to measure VD and perfusion density (PD) in the superficial capillary plexus (SVP) and FAZ. Analysis of covariance and partial Pearson and Spearman correlations were used to study intergroup differences and the relationships between cognitive and OCTA variables. Results: Severe PCC participants had significantly lower central (p = 0.03) and total (p = 0.03) VD, lower central (p = 0.02) PD measurements, and larger FAZ areas (p = 0.02) and perimeters (p = 0.02) than mild cases. Severe cases showed more cognitive impairment, particularly in speed processing (p = 0.003) and executive functions (p = 0.03). Lower central VD, lower central PD, and larger FAZ areas and perimeters were associated with worse executive function performance in the entire PCC sample and in the mild COVID-19 group. Conclusions: Retinal microvascular alterations, characterized by reduced VD and PD in the SVP and larger FAZ areas, were associated with cognitive impairments in PCC individuals. These findings suggest that severe COVID-19 leads to long-lasting microvascular damage, impacting retinal and cognitive health.
Collapse
Affiliation(s)
- Mar Ariza
- Grup de Recerca en Cervell, Cognició i Conducta, Consorci Sanitari de Terrassa (CST)-Hospital Universitari, 08227 Terrassa, Spain; (M.A.); (N.C.)
- Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Barbara Delas
- Ophtalmology Department, Consorci Sanitari de Terrassa (CST)-Hospital Universitari, 08227 Terrassa, Spain; (B.D.); (B.R.); (B.D.F.)
| | - Beatriz Rodriguez
- Ophtalmology Department, Consorci Sanitari de Terrassa (CST)-Hospital Universitari, 08227 Terrassa, Spain; (B.D.); (B.R.); (B.D.F.)
| | - Beatriz De Frutos
- Ophtalmology Department, Consorci Sanitari de Terrassa (CST)-Hospital Universitari, 08227 Terrassa, Spain; (B.D.); (B.R.); (B.D.F.)
| | - Neus Cano
- Grup de Recerca en Cervell, Cognició i Conducta, Consorci Sanitari de Terrassa (CST)-Hospital Universitari, 08227 Terrassa, Spain; (M.A.); (N.C.)
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Bàrbara Segura
- Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona (UB), 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Cristian Barrué
- Departament de Ciències de la Computació, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain (C.U.C.)
| | - Javier Bejar
- Departament de Ciències de la Computació, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain (C.U.C.)
| | - Mouafk Asaad
- Ophtalmology Department, Consorci Sanitari de Terrassa (CST)-Hospital Universitari, 08227 Terrassa, Spain; (B.D.); (B.R.); (B.D.F.)
| | - Claudio Ulises Cortés
- Departament de Ciències de la Computació, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain (C.U.C.)
| | - Carme Junqué
- Unitat de Psicologia Mèdica, Departament de Medicina, Universitat de Barcelona (UB), 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Maite Garolera
- Grup de Recerca en Cervell, Cognició i Conducta, Consorci Sanitari de Terrassa (CST)-Hospital Universitari, 08227 Terrassa, Spain; (M.A.); (N.C.)
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
- Neuropsychology Unit, Consorci Sanitari de Terrassa (CST)-Hospital Universitari, 08227 Terrassa, Spain
| | | |
Collapse
|
7
|
Mo Q, Liu X, Gong W, Wang Y, Yuan Z, Sun X, Wang S. Pinpointing Novel Plasma and Brain Proteins for Common Ocular Diseases: A Comprehensive Cross-Omics Integration Analysis. Int J Mol Sci 2024; 25:10236. [PMID: 39408566 PMCID: PMC11476976 DOI: 10.3390/ijms251910236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The pathogenesis of ocular diseases (ODs) remains unclear, although genome-wide association studies (GWAS) have identified numerous associated genetic risk loci. We integrated protein quantitative trait loci (pQTL) datasets and five large-scale GWAS summary statistics of ODs under a cutting-edge systematic analytic framework. Proteome-wide association studies (PWAS) identified plasma and brain proteins associated with ODs, and 11 plasma proteins were identified by Mendelian randomization (MR) and colocalization (COLOC) analyses as being potentially causally associated with ODs. Five of these proteins (protein-coding genes ECI1, LCT, and NPTXR for glaucoma, WARS1 for age-related macular degeneration (AMD), and SIGLEC14 for diabetic retinopathy (DR)) are newly reported. Twenty brain-protein-OD pairs were identified by COLOC analysis. Eight pairs (protein-coding genes TOM1L2, MXRA7, RHPN2, and HINT1 for senile cataract, WARS1 and TDRD7 for AMD, STAT6 for myopia, and TPPP3 for DR) are newly reported in this study. Phenotype-disease mapping analysis revealed 10 genes related to the eye/vision phenotype or ODs. Combined with a drug exploration analysis, we found that the drugs related to C3 and TXN have been used for the treatment of ODs, and another eight genes (GSTM3 for senile cataract, IGFBP7 and CFHR1 for AMD, PTPMT1 for glaucoma, EFEMP1 and ACP1 for myopia, SIRPG and CTSH for DR) are promising targets for pharmacological interventions. Our study highlights the role played by proteins in ODs, in which brain proteins were taken into account due to the deepening of eye-brain connection studies. The potential pathogenic proteins finally identified provide a more reliable reference range for subsequent medical studies.
Collapse
Affiliation(s)
- Qinyou Mo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhuaxi Road, Jinan 250012, China; (Q.M.); (X.L.); (W.G.); (Y.W.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Xinyu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhuaxi Road, Jinan 250012, China; (Q.M.); (X.L.); (W.G.); (Y.W.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhuaxi Road, Jinan 250012, China; (Q.M.); (X.L.); (W.G.); (Y.W.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Yunzhuang Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhuaxi Road, Jinan 250012, China; (Q.M.); (X.L.); (W.G.); (Y.W.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhuaxi Road, Jinan 250012, China; (Q.M.); (X.L.); (W.G.); (Y.W.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Xiubin Sun
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhuaxi Road, Jinan 250012, China; (Q.M.); (X.L.); (W.G.); (Y.W.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Shukang Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhuaxi Road, Jinan 250012, China; (Q.M.); (X.L.); (W.G.); (Y.W.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| |
Collapse
|
8
|
Preya UH, Sayed S, Nguyen NL, Kim JT. Potential role of CTSS in AMDImmune modulatory and anti-angiogenic effects of cathepsin S knockdown in ARPE-19 cells. Exp Eye Res 2024; 245:109981. [PMID: 38914301 DOI: 10.1016/j.exer.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
We aimed to determine the role of cathepsin S (CTSS) in modulating oxidative stress-induced immune and inflammatory reactions and angiogenesis in age-related macular degeneration. Human retinal pigment epithelium cells line ARPE-19 (immature) were maintained and treated with H2O2. The expression of CTSS, inflammatory cytokines, and complement factors induced by oxidative stress was compared between cells incubated without (control) and with CTSS knockdown (using small interfering ribonucleic acid; siRNA). To evaluate the role of CTSS in angiogenesis, we assayed tube formation using human umbilical vein endothelial cells and conditioned medium from ARPE-19 cells. We also used a mouse model of laser-induced choroidal neovascularization. CTSS levels were higher in ARPE-19 cells treated with H2O2 than in control cells. Oxidative stress-induced CTSS resulted in significantly elevated transcription of nuclear factor kappa B-dependent inflammatory cytokines, complement factors C3a and C5a, membrane attack complex (C5b-9), and C3a and C5a receptors. siRNA-mediated knockdown of CTSS reduced the number of inflammatory signals. Furthermore, oxidative stress-induced CTSS regulated the expression of peroxisome proliferator-activated receptor γ and vascular endothelial growth factor A/Akt serine/threonine kinase family signaling, which led to angiogenesis. Tube formation assays and mouse models of choroidal neovascularization revealed that CTSS knockdown ameliorated angiogenesis in vitro and in vivo. The present findings suggest that CTSS modulates the complement pathway, inflammatory reactions, and neovascularization, and that CTSS knockdown induces potent immunomodulatory effects. Hence, it could be a promising target for the prevention and treatment of early- and late-stage age-related macular degeneration.
Collapse
Affiliation(s)
- Umma Hafsa Preya
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Shithima Sayed
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Ngoc Lan Nguyen
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Jee Taek Kim
- Ophthalmology Department, School of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea; Chung-Ang University Hospital, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Shukla P, Russell MW, Muste JC, Shaia JK, Kumar M, Nowacki AS, Hajj-Ali RA, Singh RP, Talcott KE. Propensity-Matched Analysis of the Risk of Age-Related Macular Degeneration with Systemic Immune-Mediated Inflammatory Disease. Ophthalmol Retina 2024; 8:778-785. [PMID: 38320691 DOI: 10.1016/j.oret.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE The pathogenesis of age-related macular degeneration (AMD) involves aberrant complement activation and is a leading cause of vision loss worldwide. Complement aberrations are also implicated in many systemic immune-mediated inflammatory diseases (IMIDs), but the relationship between AMD and these conditions remains undescribed. The aim of this study is to first assess the association between AMD and IMIDs, and then assess the risk of AMD in patients with specific IMIDs associated with AMD. DESIGN Cross-sectional study and cohort study. SUBJECTS AND CONTROLS Patients with AMD were compared with control patients with cataracts and no AMD to ensure evaluation by an ophthalmologist. Patients with IMIDs were compared with patients without IMIDs but with cataracts. METHODS This study used deidentified data from a national database (2006-2023), using International Classification of Diseases 10 codes to select for IMIDs. Propensity score matching was based on patients on age, sex, race, ethnicity, and smoking. Odds ratios were generated for IMIDs and compared between AMD and control patients. For IMIDs associated with AMD, the risk of AMD in patients with the IMID versus patients without IMIDs was determined utilizing a cohort study design. MAIN OUTCOME MEASURES Odds ratio of IMID, risk ratios (RRs), and 95% confidence intervals (CIs) of AMD diagnosis, given an IMID. RESULTS After propensity score matching, AMD and control cohorts (n = 217 197 each) had a mean ± standard deviation age of 74.7 ± 10.4 years, were 56% female, and 9% of patients smoked. Age-related macular degeneration showed associations with systemic lupus erythematosus (SLE), Crohn's disease, ulcerative colitis, rheumatoid arthritis (RA), psoriasis, sarcoidosis, scleroderma, giant cell arteritis, and vasculitis. Cohorts for each positively associated IMID were created and matched to control cohorts with no IMID history. Patients with RA (RR, 1.40; 95% CI, 1.30-1.49), SLE (RR, 1.73; 95% CI, 1.37-2.18), Crohn's disease (RR, 1.42; 95% CI, 1.20-1.71), ulcerative colitis (RR, 1.45; 95% CI, 1.29-1.63), psoriasis (RR, 1.48; 95% CI, 1.37-1.60), vasculitis (RR, 1.48; 95% CI, 1.33-1.64), scleroderma (RR, 1.65; 95% CI, 1.35-2.02), and sarcoidosis (RR, 1.42; 95% CI, 1.24-1.62) showed a higher risk of developing AMD compared with controls. CONCLUSIONS The results suggest that there is an increased risk of developing AMD in patients with RA, SLE, Crohn's disease, ulcerative colitis, psoriasis, vasculitis, scleroderma, and sarcoidosis compared with patients with no IMIDs. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Priya Shukla
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Justin C Muste
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jacqueline K Shaia
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Madhukar Kumar
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Amy S Nowacki
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Rula A Hajj-Ali
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Rheumatology and Immunologic Diseases, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Rishi P Singh
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Cleveland Clinic Martin Hospitals, Cleveland Clinic Florida, Stuart, Florida
| | - Katherine E Talcott
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
10
|
Danzig CJ, Khanani AM, Loewenstein A. C5 inhibitor avacincaptad pegol treatment for geographic atrophy: A comprehensive review. Immunotherapy 2024; 16:779-790. [PMID: 39073397 PMCID: PMC11457614 DOI: 10.1080/1750743x.2024.2368342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Geographic atrophy (GA) remains a leading cause of central vision loss with no known cure. Until recently, there were no approved treatments for GA, often resulting in poor quality of life for affected patients. GA is characterized by atrophic lesions on the retina that may eventually threaten the fovea. Emerging treatments have demonstrated the ability to reduce the rate of lesion growth, potentially preserving visual function. Avacincaptad pegol (ACP; Astellas Pharma Inc), a complement component 5 inhibitor, is an FDA-approved treatment for GA that has been evaluated in numerous clinical trials. Here we review the current clinical trial landscape of ACP, including critical post hoc analyses that suggest ACP may reduce the risk of severe loss among patients with GA.
Collapse
Affiliation(s)
- Carl J Danzig
- Rand Eye Institute, Deerfield Beach, FL 33064, USA
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Arshad M Khanani
- Sierra Eye Associates, Reno, NV 89502, USA
- The University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Anat Loewenstein
- Division of Ophthalmology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
11
|
Kaštelan S, Nikuševa-Martić T, Pašalić D, Antunica AG, Zimak DM. Genetic and Epigenetic Biomarkers Linking Alzheimer's Disease and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7271. [PMID: 39000382 PMCID: PMC11242094 DOI: 10.3390/ijms25137271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) represents a prominent neurodegenerative disorder (NDD), accounting for the majority of dementia cases worldwide. In addition to memory deficits, individuals with AD also experience alterations in the visual system. As the retina is an extension of the central nervous system (CNS), the loss in retinal ganglion cells manifests clinically as decreased visual acuity, narrowed visual field, and reduced contrast sensitivity. Among the extensively studied retinal disorders, age-related macular degeneration (AMD) shares numerous aging processes and risk factors with NDDs such as cognitive impairment that occurs in AD. Histopathological investigations have revealed similarities in pathological deposits found in the retina and brain of patients with AD and AMD. Cellular aging processes demonstrate similar associations with organelles and signaling pathways in retinal and brain tissues. Despite these similarities, there are distinct genetic backgrounds underlying these diseases. This review comprehensively explores the genetic similarities and differences between AMD and AD. The purpose of this review is to discuss the parallels and differences between AMD and AD in terms of pathophysiology, genetics, and epigenetics.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, Clinical Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
12
|
Chou YL, Hsu YA, Lin CF, Chen CS, Tien PT, Wang YC, Chang CY, Lin ES, Chen JJY, Wu MY, Chuang CY, Lin HJ, Wan L. Complement decay-accelerating factor inhibits inflammation-induced myopia development. Mol Immunol 2024; 171:47-55. [PMID: 38795684 DOI: 10.1016/j.molimm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Myopia is regarded as a worldwide epidemic ocular disease, has been proved related to inflammation. CD55, also known as decay-accelerating factor (DAF) can modulate the activation of complement through inhibiting the formation of complement 3 convertase and its dysregulation is involved in various inflammatory diseases. To investigate the association between CD55 and myopia, and to test whether CD55 can inhibit myopia development by suppressing inflammation in the eye, we use three different animal models including monocular form-deprivation myopia, myopia induced by TNF-α administration and allergic conjunctivitis animal model to reveal the CD55 in myopia development. The tears of thirty-eight participants with different spherical equivalents were collected and CD55 in the tears were also analyzed. Complement 3 and complement 5 levels increased while CD55 levels decreased in allergic conjunctivitis and myopic eyes. After anti-inflammatory drugs administration, CD55 expression was increased in monocular form-deprivation myopia model. We also found inflammatory cytokines TGF-β, IL-6, TNF-α, and IL-1β may enhance complement 3 and complement 5 activation while CD55 level was suppressed contrary. Moreover, lower CD55 levels were found in the tears of patients with myopia with decreased diopter values. Finally, CD55-Fc administration on the eyelids can inhibit the elongation of axial length and change of refractive error. CD55-Fc application also suppress myopia development subsequent to complement 3 and complement 5 reduction and can lower myopia-specific (MMP-2 and TGF-β) cytokine expression in TNF-α induced myopia animal model. This suggests that CD55 can inhibit myopia development by suppression of complement activation and eventual down-regulation of inflammation.
Collapse
Affiliation(s)
- Yung-Lan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-An Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chemistry, National Central University, Taoyuan, Taiwan
| | - Chi-Fong Lin
- Ph.D. Program for Health Science and industry, China Medical University, Taichung, Taiwan
| | - Chih-Sheng Chen
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan; Division of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Peng-Tai Tien
- School of Medicine, China Medical University, Taichung, Taiwan; Eye center, China Medical University Hospital, Taichung, Taiwan
| | - Yao-Chien Wang
- Department of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Ching-Yao Chang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung, Taiwan
| | | | - Ming-Yen Wu
- Eye center, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Eye center, China Medical University Hospital, Taichung, Taiwan.
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
13
|
Ong J, Zarnegar A, Selvam A, Driban M, Chhablani J. The Complement System as a Therapeutic Target in Retinal Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:945. [PMID: 38929562 PMCID: PMC11205777 DOI: 10.3390/medicina60060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The complement cascade is a vital system in the human body's defense against pathogens. During the natural aging process, it has been observed that this system is imperative for ensuring the integrity and homeostasis of the retina. While this system is critical for proper host defense and retinal integrity, it has also been found that dysregulation of this system may lead to certain retinal pathologies, including geographic atrophy and diabetic retinopathy. Targeting components of the complement system for retinal diseases has been an area of interest, and in vivo, ex vivo, and clinical trials have been conducted in this area. Following clinical trials, medications targeting the complement system for retinal disease have also become available. In this manuscript, we discuss the pathophysiology of complement dysfunction in the retina and specific pathologies. We then describe the results of cellular, animal, and clinical studies targeting the complement system for retinal diseases. We then provide an overview of complement inhibitors that have been approved by the Food and Drug Administration (FDA) for geographic atrophy. The complement system in retinal diseases continues to serve as an emerging therapeutic target, and further research in this field will provide additional insights into the mechanisms and considerations for treatment of retinal pathologies.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amrish Selvam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew Driban
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Dias PB, Messias-Reason I, Hokazono K, Nisihara R. The role of mannose-binding lectin (MBL) in diabetic retinopathy: A scoping review. Immunol Lett 2024; 267:106863. [PMID: 38705482 DOI: 10.1016/j.imlet.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Diabetes mellitus (DM) is a chronic systemic disease characterized by a multifactorial nature, which may lead to several macro and microvascular complications. Diabetic retinopathy (DR) is one of the most severe microvascular complications of DM, which can result in permanent blindness. The mechanisms involved in the pathogenesis of DR are multiple and still poorly understood. Factors such as dysregulation of vascular regeneration, oxidative and hyperosmolar stress in addition to inflammatory processes have been associated with the pathogenesis of DR. Furthermore, compelling evidence shows that components of the immune system, including the complement system, play a relevant role in the development of the disease. Studies suggest that high concentrations of mannose-binding lectin (MBL), an essential component of the complement lectin pathway, may contribute to the development of DR in patients with DM. This review provides an update on the possible role of the complement system, specifically the lectin pathway, in the pathogenesis of DR and discusses the potential of MBL as a non-invasive biomarker for both, the presence and severity of DR, in addition to its potential as a therapeutic target for intervention strategies.
Collapse
Affiliation(s)
- Paula Basso Dias
- Clinical Hospital, Federal University of Paraná, Curitiba, Brazil; Department of Ophthalmology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Kenzo Hokazono
- Department of Ophthalmology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Renato Nisihara
- Clinical Hospital, Federal University of Paraná, Curitiba, Brazil; Department of Medicine, Positivo University, Curitiba, Brazil.
| |
Collapse
|
15
|
Wilke GA, Apte RS. Complement regulation in the eye: implications for age-related macular degeneration. J Clin Invest 2024; 134:e178296. [PMID: 38690727 PMCID: PMC11060743 DOI: 10.1172/jci178296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.
Collapse
Affiliation(s)
- Georgia A. Wilke
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
- Department of Medicine, and
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Peterson SL, Krishnan A, Patel D, Khanehzar A, Lad A, Shaughnessy J, Ram S, Callanan D, Kunimoto D, Genead MA, Tolentino MJ. PolySialic Acid Nanoparticles Actuate Complement-Factor-H-Mediated Inhibition of the Alternative Complement Pathway: A Safer Potential Therapy for Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2024; 17:517. [PMID: 38675477 PMCID: PMC11053938 DOI: 10.3390/ph17040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) conversion, optic neuritis, and retinal vasculitis, leaving room for other equally efficacious but safer therapeutics, including Poly Sialic acid (PSA) nanoparticle (PolySia-NP)-actuated complement factor H (CFH) alternative pathway inhibition. Our previous paper demonstrated that PolySia-NP inhibits pro-inflammatory polarization and cytokine release. Here, we extend these findings by investigating the therapeutic potential of PolySia-NP to attenuate the alternative complement pathway. First, we show that PolySia-NP binds CFH and enhances affinity to C3b. Next, we demonstrate that PolySia-NP treatment of human serum suppresses alternative pathway hemolytic activity and C3b deposition. Further, we show that treating human macrophages with PolySia-NP is non-toxic and reduces markers of complement activity. Finally, we describe PolySia-NP-treatment-induced decreases in neovascularization and inflammatory response in a laser-induced CNV mouse model of neovascular AMD. In conclusion, PolySia-NP suppresses alternative pathway complement activity in human serum, human macrophage, and mouse CNV without increasing neovascularization.
Collapse
Affiliation(s)
- Sheri L. Peterson
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Anitha Krishnan
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Diyan Patel
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Ali Khanehzar
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Amit Lad
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (J.S.); (S.R.)
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (J.S.); (S.R.)
| | - David Callanan
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Derek Kunimoto
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Mohamed A. Genead
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
| | - Michael J. Tolentino
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (A.L.); (D.C.); (D.K.); (M.A.G.)
- Department of Ophthalmology, University of Central Florida School of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
17
|
Blasiak J, Pawlowska E, Ciupińska J, Derwich M, Szczepanska J, Kaarniranta K. A New Generation of Gene Therapies as the Future of Wet AMD Treatment. Int J Mol Sci 2024; 25:2386. [PMID: 38397064 PMCID: PMC10888617 DOI: 10.3390/ijms25042386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease and the most common cause of vision loss in the Western World. In its advanced stage, AMD occurs in two clinically distinguished forms, dry and wet, but only wet AMD is treatable. However, the treatment based on repeated injections with vascular endothelial growth factor A (VEGFA) antagonists may at best stop the disease progression and prevent or delay vision loss but without an improvement of visual dysfunction. Moreover, it is a serious mental and financial burden for patients and may be linked with some complications. The recent first success of intravitreal gene therapy with ADVM-022, which transformed retinal cells to continuous production of aflibercept, a VEGF antagonist, after a single injection, has opened a revolutionary perspective in wet AMD treatment. Promising results obtained so far in other ongoing clinical trials support this perspective. In this narrative/hypothesis review, we present basic information on wet AMD pathogenesis and treatment, the concept of gene therapy in retinal diseases, update evidence on completed and ongoing clinical trials with gene therapy for wet AMD, and perspectives on the progress to the clinic of "one and done" therapy for wet AMD to replace a lifetime of injections. Gene editing targeting the VEGFA gene is also presented as another gene therapy strategy to improve wet AMD management.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Justyna Ciupińska
- Clinical Department of Infectious Diseases and Hepatology, H. Bieganski Hospital, 91-347 Lodz, Poland;
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
18
|
Tolentino MJ, Tolentino AJ, Tolentino EM, Krishnan A, Genead MA. Sialic Acid Mimetic Microglial Sialic Acid-Binding Immunoglobulin-like Lectin Agonism: Potential to Restore Retinal Homeostasis and Regain Visual Function in Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2023; 16:1735. [PMID: 38139861 PMCID: PMC10747662 DOI: 10.3390/ph16121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration.
Collapse
Affiliation(s)
- Michael J. Tolentino
- Department of Ophthalmology, University of Central Florida College of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | - Andrew J. Tolentino
- Department of Biology, University of California Berkeley, Berkeley, CA 94720, USA;
| | | | - Anitha Krishnan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | | |
Collapse
|
19
|
Nadeem A, Malik IA, Shariq F, Afridi EK, Taha M, Raufi N, Naveed AK, Iqbal J, Habte A. Advancements in the treatment of geographic atrophy: focus on pegcetacoplan in age-related macular degeneration. Ann Med Surg (Lond) 2023; 85:6067-6077. [PMID: 38098608 PMCID: PMC10718344 DOI: 10.1097/ms9.0000000000001466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
Geographic atrophy (GA) is a progressive form of age-related macular degeneration characterized by the degeneration of retinal pigment epithelial cells and photoreceptor death. The dysregulation of the complement cascade has been implicated in GA progression. This review provides a comprehensive overview of the pathophysiology of age-related macular degeneration and GA, discusses current therapeutic options, and focuses on the recent breakthrough drug, pegcetacoplan (SYFOVRE). Pegcetacoplan is a complement inhibitor that selectively targets the C3 complement protein, effectively modulating complement activation. Clinical trials, including the OAKS and DERBY studies, have demonstrated the efficacy of SYFOVRE in reducing the growth of GA lesions compared to placebo. The FDA approval of SYFOVRE as the first and only definitive therapy for GA marks a significant milestone in the management of this debilitating condition. The review also explores potential future treatment strategies, including immune-modulating agents and ocular gene therapy. While SYFOVRE offers new hope for GA patients, further research is needed to evaluate its long-term benefits, safety profile, and optimal treatment regimens.
Collapse
Affiliation(s)
| | | | | | | | | | - Nahid Raufi
- Department of Medicine, Kabul Medical University, Afghanistan
| | - Ahmed K. Naveed
- Department of Medicine, Dow University of Health Sciences, Karachi
| | - Javed Iqbal
- King Edward Medical University Lahore, Pakistan
| | - Alexander Habte
- Department of Surgery, Assab Military Hospital, Assab, Eritrea
| |
Collapse
|
20
|
Li J, Wang J, Ibarra IL, Cheng X, Luecken MD, Lu J, Monavarfeshani A, Yan W, Zheng Y, Zuo Z, Colborn SLZ, Cortez BS, Owen LA, Tran NM, Shekhar K, Sanes JR, Stout JT, Chen S, Li Y, DeAngelis MM, Theis FJ, Chen R. Integrated multi-omics single cell atlas of the human retina. RESEARCH SQUARE 2023:rs.3.rs-3471275. [PMID: 38014002 PMCID: PMC10680922 DOI: 10.21203/rs.3.rs-3471275/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell sequencing has revolutionized the scale and resolution of molecular profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of the most accessible portion of the mammalian central nervous system, the retina. We compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points, to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin accessibility, unveiling over 110 types. Engaging the retina community, we annotated each cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs across cell types. In addition, we modeled changes in gene expression and chromatin openness across gender and age. This integrated atlas also enabled the fine-mapping of GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-donor and cross-lab HRCA, can facilitate a better understanding of retinal function and pathology.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Jun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Ignacio L Ibarra
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Lung Health & Immunity, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jiaxiong Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Zhen Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | | | | | - Leah A Owen
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Nicholas M Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Center for Computational Biology; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California, United States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - J Timothy Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Margaret M DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
21
|
Heier JS, Lad EM, Holz FG, Rosenfeld PJ, Guymer RH, Boyer D, Grossi F, Baumal CR, Korobelnik JF, Slakter JS, Waheed NK, Metlapally R, Pearce I, Steinle N, Francone AA, Hu A, Lally DR, Deschatelets P, Francois C, Bliss C, Staurenghi G, Monés J, Singh RP, Ribeiro R, Wykoff CC. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023; 402:1434-1448. [PMID: 37865470 DOI: 10.1016/s0140-6736(23)01520-9] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Geographic atrophy is a leading cause of progressive, irreversible vision loss. The objectives of OAKS and DERBY were to assess the efficacy and safety of pegcetacoplan compared with sham treatment in patients with geographic atrophy. METHODS OAKS and DERBY were two 24-month, multicentre, randomised, double-masked, sham-controlled, phase 3 studies, in which patients aged 60 years and older with geographic atrophy secondary to age-related macular degeneration were enrolled at 110 clinical sites and 122 clinical sites worldwide, respectively. Patients were randomly assigned (2:2:1:1) by central web-based randomisation system to intravitreal 15 mg per 0·1 mL pegcetacoplan monthly or every other month, or sham monthly or every other month using stratified permuted block randomisation (stratified by geographic atrophy lesion area at screening, history or presence of active choroidal neovascularisation in the eye not under assessment, and block size of six). Study site staff, patients, reading centre personnel, evaluating physicians, and the funder were masked to group assignment. Sham groups were pooled for the analyses. The primary endpoint was the change from baseline to month 12 in the total area of geographic atrophy lesions in the study eye based on fundus autofluorescence imaging, in the modified intention-to-treat population (ie, all patients who received one or more injections of pegcetacoplan or sham and had a baseline and at least one post-baseline value of lesion area). Key secondary endpoints (measured at 24 months) were change in monocular maximum reading speed of the study eye, change from baseline in mean functional reading independence index score, change from baseline in normal luminance best-corrected visual acuity score, and change from baseline in the mean threshold sensitivity of all points in the study eye by mesopic microperimetry (OAKS only). Safety analyses included patients who were randomly assigned and received at least one injection of pegcetacoplan or sham. The now completed studies are registered with ClinicalTrials.gov, NCT03525613 (OAKS) and NCT03525600 (DERBY). FINDINGS Between Aug 30, 2018, and July 3, 2020, 1258 patients were enrolled in OAKS and DERBY. The modified intention-to-treat populations comprised 614 (96%) of 637 patients in OAKS (202 receiving pegcetacoplan monthly, 205 pegcetacoplan every other month, and 207 sham) and 597 (96%) of 621 patients in DERBY (201 receiving pegcetacoplan monthly, 201 pegcetacoplan every other month, and 195 sham). In OAKS, pegcetacoplan monthly and pegcetacoplan every other month significantly slowed geographic atrophy lesion growth by 21% (absolute difference in least-squares mean -0·41 mm2, 95% CI -0·64 to -0·18; p=0·0004) and 16% (-0·32 mm2, -0·54 to -0·09; p=0·0055), respectively, compared with sham at 12 months. In DERBY, pegcetacoplan monthly and pegcetacoplan every other month slowed geographic atrophy lesion growth, although it did not reach significance, by 12% (-0·23 mm2, -0·47 to 0·01; p=0·062) and 11% (-0·21 mm2, -0·44 to 0·03; p=0·085), respectively, compared with sham at 12 months. At 24 months, pegcetacoplan monthly and pegcetacoplan every other month slowed geographic atrophy lesion growth by 22% (-0·90 mm2, -1·30 to -0·50; p<0·0001) and 18% (-0·74 mm2, -1·13 to -0·36; p=0·0002) in OAKS, and by 19% (-0·75 mm2, -1·15 to -0·34; p=0·0004) and 16% (-0·63 mm2, -1·05 to -0·22; p=0·0030) in DERBY, respectively, compared with sham. There were no differences in key secondary visual function endpoints at 24 months. Serious ocular treatment-emergent adverse events were reported in five (2%) of 213, four (2%) of 212, and one (<1%) of 211 patients in OAKS, and in four (2%) of 206, two (1%) of 208, and two (1%) of 206 patients in DERBY receiving pegcetacoplan monthly, pegcetacoplan every other month, and sham, respectively, at 24 months. New-onset exudative age-related macular degeneration was reported in 24 (11%), 16 (8%), and four (2%) patients in OAKS, and in 27 (13%), 12 (6%), and nine (4%) patients in DERBY receiving pegcetacoplan monthly, pegcetacoplan every other month, and sham, respectively, at 24 months. INTERPRETATION Pegcetacoplan, the first treatment approved by the US Food and Drug Administration for geographic atrophy, slowed geographic atrophy lesion growth with an acceptable safety profile. FUNDING Apellis Pharmaceuticals.
Collapse
Affiliation(s)
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - David Boyer
- Retina Vitreous Associates Medical Group, Los Angeles, CA, USA
| | | | | | - Jean-Francois Korobelnik
- Service d'Ophtalmologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Ophthalmology Department, University of Bordeaux, Bordeaux, France
| | - Jason S Slakter
- Department of Ophthalmology, New York University, New York, NY, USA
| | | | | | - Ian Pearce
- Department of Ophthalmology, Royal Liverpool University Hospital, Liverpool, UK
| | | | | | - Allen Hu
- Cumberland Valley Retina Consultants, Hagerstown, MD, USA
| | - David R Lally
- New England Retina Consultants, Springfield, MA, USA
| | | | | | | | - Giovanni Staurenghi
- Department of Biomedical and Clinical Science, Ospedale Luigi Sacco University of Milan, Milan, Italy
| | - Jordi Monés
- Institut de la Màcula, Centro Médico Teknon, Barcelona, Spain; Barcelona Macula Foundation: Research for Vision, Barcelona, Spain
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cleveland Clinic, Cleveland, OH, USA
| | | | - Charles C Wykoff
- Retina Consultants of Texas, Houston, TX, USA; Blanton Eye Institute, Houston, TX, USA; Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
22
|
Amini MA, Karbasi A, Vahabirad M, Khanaghaei M, Alizamir A. Mechanistic Insight into Age-Related Macular Degeneration (AMD): Anatomy, Epidemiology, Genetics, Pathogenesis, Prevention, Implications, and Treatment Strategies to Pace AMD Management. Chonnam Med J 2023; 59:143-159. [PMID: 37840684 PMCID: PMC10570864 DOI: 10.4068/cmj.2023.59.3.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
One of the most complicated eye disorders is age-related macular degeneration (AMD) which is the leading cause of irremediable blindness all over the world in the elderly. AMD is classified as early stage to late stage (advanced AMD), in which this stage is divided into the exudative or neovascular form (wet AMD) and the nonexudative or atrophic form (dry AMD). Clinically, AMD primarily influences the central area of retina known as the macula. Importantly, the wet form is generally associated with more severe vision loss. AMD has a systemic component, where many factors, like aging, genetic, environment, autoimmune and non-autoimmune disorders are associated with this disease. Additionally, healthy lifestyles, regular exercise, maintaining a normal lipid profile and weight are crucial to decreasing the risk of AMD. Furthermore, therapeutic strategies for limiting AMD should encompass a variety of factors to avoid and improve drug interventions, and also need to take into account personalized genetic information. In conclusion, with the development of technology and research progress, visual impairment and legal blindness from AMD have been substantially reduced in incidence. This review article is focused on identifying and developing the knowledge about the association between genetics, and etiology with AMD. We hope that this review will encourage researchers and lecturers, open new discussions, and contribute to a better understanding of AMD that improves patients' visual acuity, and upgrades the quality of life of AMD patients.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Karbasi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Vahabirad
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Khanaghaei
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Aida Alizamir
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
23
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
24
|
Khan AH, Chowers I, Lotery AJ. Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells 2023; 12:1708. [PMID: 37443742 PMCID: PMC10340338 DOI: 10.3390/cells12131708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Landmark genetic studies have revealed the effect of complement biology and its regulation on the pathogenesis of age-related macular degeneration (AMD). Limited phase 3 clinical trial data showing a benefit of complement inhibition in AMD raises the prospect of more complex mediators at play. Substantial evidence supports the role of para-inflammation in maintaining homeostasis in the retina and choroid. With increasing age, a decline in immune system regulation, known as immunosenescence, has been shown to alter the equilibrium maintained by para-inflammation. The altered equilibrium results in chronic, sterile inflammation with aging, termed 'inflammaging', including in the retina and choroid. The chronic inflammatory state in AMD is complex, with contributions from cells of the innate and adaptive branches of the immune system, sometimes with overlapping features, and the interaction of their secretory products with retinal cells such as microglia and retinal pigment epithelium (RPE), extracellular matrix and choroidal vascular endothelial cells. In this review, the chronic inflammatory state in AMD will be explored by immune cell type, with a discussion of factors that will need to be overcome in the development of curative therapies.
Collapse
Affiliation(s)
- Adnan H. Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
25
|
Gu F, Jiang J, Sun P. Recent advances of exosomes in age-related macular degeneration. Front Pharmacol 2023; 14:1204351. [PMID: 37332352 PMCID: PMC10272348 DOI: 10.3389/fphar.2023.1204351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Exosomes are 30-150 nm extracellular vesicles that are secreted by almost all types of cells. Exosomes contain a variety of biologically active substances, such as proteins, nucleic acids, and lipids, and are important in the intercellular communication of biological mediators involved in nerve injury and repair, vascular regeneration, immune response, fibrosis formation, and many other pathophysiological processes. Although it has been extensively studied in the field of cancer, the exploration of ocular diseases has only just begun. Here, we discuss the latest developments in exosomes for age-related macular degeneration (AMD), including the pathogenesis of exosomes in age-related macular degeneration, their potential as diagnostic markers, and therapeutic vectors of the disease. Finally, the study of exosomes in age-related macular degeneration is still relatively few, and more detailed basic research and clinical trials are needed to verify its application in treatment and diagnosis, so as to adopt more personalized diagnosis and treatment strategies to stop the progression of age-related macular degeneration.
Collapse
|
26
|
Choudhary M, Malek G. Potential therapeutic targets for age-related macular degeneration: The nuclear option. Prog Retin Eye Res 2023; 94:101130. [PMID: 36220751 PMCID: PMC10082136 DOI: 10.1016/j.preteyeres.2022.101130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 02/07/2023]
Abstract
The functions and activities of nuclear receptors, the largest family of transcription factors in the human genome, have classically focused on their ability to act as steroid and hormone sensors in endocrine organs. However, they are responsible for a diverse array of physiological functions, including cellular homeostasis and metabolism, during development and aging. Though the eye is not a traditional endocrine organ, recent studies have revealed high expression levels of nuclear receptors in cells throughout the posterior pole. These findings have precipitated an interest in investigating the role of these transcription factors in the eye as a function of age and ocular disease, in particular age-related macular degeneration (AMD). As the leading cause of vision impairment in the elderly, identifying signaling pathways that may be targeted for AMD therapy is of great importance, given the lack of therapeutic options for over 85% of patients with this disease. Herein we review this relatively new field and recent findings supporting the hypothesis that the eye is a secondary endocrine organ, in which nuclear receptors serve as the bedrock for biological processes in cells vulnerable in AMD, including retinal pigment epithelial and choroidal endothelial cells, and discuss the therapeutic potential of targeting these receptors for AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
27
|
Wooff Y, Cioanca AV, Wills E, Chu-Tan JA, Sekar R, Natoli R. Short exposure to photo-oxidative damage triggers molecular signals indicative of early retinal degeneration. Front Immunol 2023; 14:1088654. [PMID: 37180103 PMCID: PMC10174249 DOI: 10.3389/fimmu.2023.1088654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, currently affecting over 350 billion people globally. For the most prevalent late-stage form of this disease, atrophic AMD, there are no available prevention strategies or treatments, in part due to inherent difficulties in early-stage diagnosis. Photo-oxidative damage is a well-established model for studying inflammatory and cell death features that occur in late-stage atrophic AMD, however to date has not been investigated as a potential model for studying early features of disease onset. Therefore, in this study we aimed to determine if short exposure to photo-oxidative damage could be used to induce early retinal molecular changes and advance this as a potential model for studying early-stage AMD. Methods C57BL/6J mice were exposed to 1, 3, 6, 12, or 24h photo-oxidative damage (PD) using 100k lux bright white light. Mice were compared to dim-reared (DR) healthy controls as well as mice which had undergone long periods of photo-oxidative damage (3d and 5d-PD) as known timepoints for inducing late-stage retinal degeneration pathologies. Cell death and retinal inflammation were measured using immunohistochemistry and qRT-PCR. To identify retinal molecular changes, retinal lysates were sent for RNA sequencing, following which bioinformatics analyses including differential expression and pathway analyses were performed. Finally, to investigate modulations in gene regulation as a consequence of degeneration, microRNA (miRNA) expression patterns were quantified using qRT-PCR and visualized using in situ hybridization. Results Short exposure to photo-oxidative damage (1-24h-PD) induced early molecular changes in the retina, with progressive downregulation of homeostatic pathways including metabolism, transport and phototransduction observed across this time-course. Inflammatory pathway upregulation was observed from 3h-PD, preceding observable levels of microglia/macrophage activation which was noted from 6h-PD, as well as significant photoreceptor row loss from 24h-PD. Further rapid and dynamic movement of inflammatory regulator miRNA, miR-124-3p and miR-155-5p, was visualized in the retina in response to degeneration. Conclusion These results support the use of short exposure to photo-oxidative damage as a model of early AMD and suggest that early inflammatory changes in the retina may contribute to pathological features of AMD progression including immune cell activation and photoreceptor cell death. We suggest that early intervention of these inflammatory pathways by targeting miRNA such as miR-124-3p and miR-155-5p or their target genes may prevent progression into late-stage pathology.
Collapse
Affiliation(s)
- Yvette Wooff
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Adrian V. Cioanca
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Elly Wills
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Joshua A. Chu-Tan
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Rakshanya Sekar
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - Riccardo Natoli
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
28
|
Arrigo A, Aragona E, Bandello F. The Role of Inflammation in Age-Related Macular Degeneration: Updates and Possible Therapeutic Approaches. Asia Pac J Ophthalmol (Phila) 2023; 12:158-167. [PMID: 36650098 DOI: 10.1097/apo.0000000000000570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 01/19/2023] Open
Abstract
Age-related macular degeneration (AMD) is a common retinal disease characterized by complex pathogenesis and extremely heterogeneous characteristics. Both in "dry" and "wet" AMD forms, the inflammation has a central role to promote the degenerative process and to stimulate the onset of complications. AMD is characterized by several proinflammatory stimuli, cells and mediators involved, and metabolic pathways. Nowadays, inflammatory biomarkers may be unveiled and analyzed by means of several techniques, including laboratory approaches, histology, immunohistochemistry, and noninvasive multimodal retinal imaging. These methodologies allowed to perform remarkable steps forward for understanding the role of inflammation in AMD pathogenesis, also offering new opportunities to optimize the diagnostic workup of the patients and to develop new treatments. The main goal of the present paper is to provide an updated scenario of the current knowledge regarding the role of inflammation in "dry" and "wet" AMD and to discuss new possible therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
29
|
Santos FM, Ciordia S, Mesquita J, Cruz C, Sousa JPCE, Passarinha LA, Tomaz CT, Paradela A. Proteomics profiling of vitreous humor reveals complement and coagulation components, adhesion factors, and neurodegeneration markers as discriminatory biomarkers of vitreoretinal eye diseases. Front Immunol 2023; 14:1107295. [PMID: 36875133 PMCID: PMC9978817 DOI: 10.3389/fimmu.2023.1107295] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are leading causes of visual impairment and blindness in people aged 50 years or older in middle-income and industrialized countries. Anti-VEGF therapies have improved the management of neovascular AMD (nAMD) and proliferative DR (PDR), no treatment options exist for the highly prevalent dry form of AMD. Methods To unravel the biological processes underlying these pathologies and to find new potential biomarkers, a label-free quantitative (LFQ) method was applied to analyze the vitreous proteome in PDR (n=4), AMD (n=4) compared to idiopathic epiretinal membranes (ERM) (n=4). Results and discussion Post-hoc tests revealed 96 proteins capable of differentiating among the different groups, whereas 118 proteins were found differentially regulated in PDR compared to ERM and 95 proteins in PDR compared to dry AMD. Pathway analysis indicates that mediators of complement, coagulation cascades and acute phase responses are enriched in PDR vitreous, whilst proteins highly correlated to the extracellular matrix (ECM) organization, platelet degranulation, lysosomal degradation, cell adhesion, and central nervous system development were found underexpressed. According to these results, 35 proteins were selected and monitored by MRM (multiple reaction monitoring) in a larger cohort of patients with ERM (n=21), DR/PDR (n=20), AMD (n=11), and retinal detachment (n=13). Of these, 26 proteins could differentiate between these vitreoretinal diseases. Based on Partial least squares discriminant and multivariate exploratory receiver operating characteristic (ROC) analyses, a panel of 15 discriminatory biomarkers was defined, which includes complement and coagulation components (complement C2 and prothrombin), acute-phase mediators (alpha-1-antichymotrypsin), adhesion molecules (e.g., myocilin, galectin-3-binding protein), ECM components (opticin), and neurodegeneration biomarkers (beta-amyloid, amyloid-like protein 2).
Collapse
Affiliation(s)
- Fátima M. Santos
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Joana Mesquita
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - João Paulo Castro e Sousa
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Luís A. Passarinha
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Química/Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Cândida T. Tomaz
- CICS-UBI – Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
30
|
Armento A, Merle DA, Ueffing M. The Noncanonical Role of Complement Factor H in Retinal Pigment Epithelium (RPE) Cells and Implications for Age-Related Macular Degeneration (AMD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:9-13. [PMID: 37440007 DOI: 10.1007/978-3-031-27681-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Age-related macular degeneration (AMD) is a complex degenerative disease of the retina. Dysfunction of the retinal pigment epithelium (RPE) occurs in early stages of AMD, and progressive RPE atrophy leads to photoreceptor death and visual impairments that ultimately manifest as geographic atrophy (GA), one of the late-stage forms of AMD. AMD is caused by a combination of risk factors including aging, lifestyle choices, and genetic predisposition. A gene variant in the complement factor H gene (CFH) that leads to the Y402H polymorphism in the factor H protein (FH) confers the second highest risk for the development and progression of AMD. FH is a major negative regulator of the alternative pathway of the complement system, and the FH Y402H variant leads to increased complement activation, which is detectable in AMD patients. For this reason, various therapeutic approaches targeting the complement system have been developed, however, so far with very limited or no efficacy. Interestingly, recent studies suggest roles for FH beyond complement regulation. Here, we will discuss the noncanonical functions of FH in RPE cells and highlight the potential implications of those functions for future therapeutic approaches.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - David Adrian Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Gibson BG, Cox TE, Marchbank KJ. Contribution of animal models to the mechanistic understanding of Alternative Pathway and Amplification Loop (AP/AL)-driven Complement-mediated Diseases. Immunol Rev 2023; 313:194-216. [PMID: 36203396 PMCID: PMC10092198 DOI: 10.1111/imr.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.
Collapse
Affiliation(s)
- Beth G. Gibson
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Thomas E. Cox
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| |
Collapse
|
32
|
Stradiotto E, Allegrini D, Fossati G, Raimondi R, Sorrentino T, Tripepi D, Barone G, Inforzato A, Romano MR. Genetic Aspects of Age-Related Macular Degeneration and Their Therapeutic Potential. Int J Mol Sci 2022; 23:13280. [PMID: 36362067 PMCID: PMC9653831 DOI: 10.3390/ijms232113280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifactorial disease, resulting from the interaction of environmental and genetic factors. The continuous discovery of associations between genetic polymorphisms and AMD gives reason for the pivotal role attributed to the genetic component to its development. In that light, genetic tests and polygenic scores have been created to predict the risk of development and response to therapy. Still, none of them have yet been validated. Furthermore, there is no evidence from a clinical trial that the determination of the individual genetic structure can improve treatment outcomes. In this comprehensive review, we summarize the polymorphisms of the main pathogenetic ways involved in AMD development to identify which of them constitutes a potential therapeutic target. As complement overactivation plays a major role, the modulation of targeted complement proteins seems to be a promising therapeutic approach. Herein, we summarize the complement-modulating molecules now undergoing clinical trials, enlightening those in an advanced phase of trial. Gene therapy is a potential innovative one-time treatment, and its relevance is quickly evolving in the field of retinal diseases. We describe the state of the art of gene therapies now undergoing clinical trials both in the field of complement-suppressors and that of anti-VEGF.
Collapse
Affiliation(s)
- Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Davide Allegrini
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Giovanni Fossati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Domenico Tripepi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano-Milan, Italy
| | - Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| |
Collapse
|
33
|
Altay HY, Ozdemir F, Afghah F, Kilinc Z, Ahmadian M, Tschopp M, Agca C. Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: From proof-of-concept to clinical trial. Front Neurosci 2022; 16:924917. [PMID: 36340792 PMCID: PMC9630553 DOI: 10.3389/fnins.2022.924917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 09/11/2023] Open
Abstract
Gene editing and gene regulatory fields are continuously developing new and safer tools that move beyond the initial CRISPR/Cas9 technology. As more advanced applications are emerging, it becomes crucial to understand and establish more complex gene regulatory and editing tools for efficient gene therapy applications. Ophthalmology is one of the leading fields in gene therapy applications with more than 90 clinical trials and numerous proof-of-concept studies. The majority of clinical trials are gene replacement therapies that are ideal for monogenic diseases. Despite Luxturna's clinical success, there are still several limitations to gene replacement therapies including the size of the target gene, the choice of the promoter as well as the pathogenic alleles. Therefore, further attempts to employ novel gene regulatory and gene editing applications are crucial to targeting retinal diseases that have not been possible with the existing approaches. CRISPR-Cas9 technology opened up the door for corrective gene therapies with its gene editing properties. Advancements in CRISPR-Cas9-associated tools including base modifiers and prime editing already improved the efficiency and safety profile of base editing approaches. While base editing is a highly promising effort, gene regulatory approaches that do not interfere with genomic changes are also becoming available as safer alternatives. Antisense oligonucleotides are one of the most commonly used approaches for correcting splicing defects or eliminating mutant mRNA. More complex gene regulatory methodologies like artificial transcription factors are also another developing field that allows targeting haploinsufficiency conditions, functionally equivalent genes, and multiplex gene regulation. In this review, we summarized the novel gene editing and gene regulatory technologies and highlighted recent translational progress, potential applications, and limitations with a focus on retinal diseases.
Collapse
Affiliation(s)
- Halit Yusuf Altay
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Fatma Ozdemir
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Ferdows Afghah
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Zeynep Kilinc
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Mehri Ahmadian
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Markus Tschopp
- Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| |
Collapse
|
34
|
Liisborg C. Age-related macular degeneration and myeloproliferative neoplasms - A common pathway. Acta Ophthalmol 2022; 100 Suppl 271:3-35. [PMID: 36200281 PMCID: PMC9828081 DOI: 10.1111/aos.15247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/22/2021] [Indexed: 01/12/2023]
Abstract
DANSK RESUMÉ (DANISH SUMMARY): Aldersrelateret makuladegeneration (AMD) er den hyppigste årsag til uopretteligt synstab og blindhed i højindkomstlande. Det er en progredierende nethindesygdom som gradvist fører til ødelaeggelse af de celler som er ansvarlige for vores centralsyn. De tidlige stadier er ofte asymptomatiske, imens senstadie AMD, som opdeles i to former, neovaskulaer AMD (nAMD) og geografisk atrofi (GA), begge udviser gradvist synstab, dog generelt med forskellig hastighed. Tidlig AMD er karakteriseret ved tilstedevaerelsen af druser og pigmentforandringer i nethinden mens nAMD og GA udviser henholdsvis karnydannelse i og atrofi af nethinden. AEtiologien er multifaktoriel og udover alder omfatter patogenesen miljø- og genetiske risikofaktorer. Forskning har specielt fokuseret på lokale forandringer i øjet hvor man har fundet at inflammation spiller en betydelig rolle for udviklingen af sygdommen, men flere studier tyder også på at systemiske forandringer og specielt systemisk inflammation spiller en vaesentlig rolle i patogenesen. De Philadelphia-negative myeloproliferative neoplasier (MPNs) er en gruppe af haematologiske kraeftsygdomme med en erhvervet genetisk defekt i den tidlige pluripotente stamcelle som medfører en overproduktion af en eller flere af blodets modne celler. Sygdommene er fundet at udvikle sig i et biologisk kontinuum fra tidligt cancerstadie, essentiel trombocytose (ET) over polycytaemi vera (PV) og endelig til det sene myelofibrose stadie (PMF). Symptomer hos disse patienter skyldes isaer den aendrede sammensaetning af blodet, hyperviskositet, kompromitteret mikrocirkulation og nedsat vaevsgennemblødning. Den øgede morbiditet og mortalitet beror i høj grad på tromboembolier, blødninger og leukemisk transformation. En raekke mutationer som driver MPN sygdommene er identificeret, bl.a. JAK2V617F-mutationen som medfører en deregulering JAK/STAT signalvejen, der bl.a. har betydning for cellers vaekst og overlevelse. Et tidligere stort registerstudie har vist at patienter med MPNs har en øget risiko for neovaskulaer AMD og et pilotstudie har vist øget forekomst af intermediaer AMD. Dette ønsker vi at undersøge naermere i et større studie i dette Ph.d.- projekt. Flere studier har også vist at kronisk inflammation spiller en vigtig rolle for både initiering og udvikling af den maligne celleklon hos MPNs og herfra er en "Human Inflammationsmodel" blevet udviklet. Siden er MPN sygdommene blevet anvendt som "model sygdomme" for en tilsvarende inflammationsmodel for udvikling af Alzheimers sygdom. I dette Ph.d.-projekt vil vi tilsvarende forsøge at undersøge systemisk inflammation i forhold til forekomst af druser. Det vil vi gøre ved at sammenligne systemiske immunologiske markører som tidligere er undersøgt hos patienter med AMD og sammenligne med MPN. Specielt er vi interesseret i systemiske immunologiske forskelle på patienter med MPN og druser (MPNd) og MPN med normale nethinder (MPNn). Denne afhandling består af to overordnede studier. I Studie I, undersøgte vi forekomsten af retinale forandringer associeret med AMD hos 200 patienter med MPN (artikel I). Studie II, omhandlede immunologiske ligheder ved AMD og MPN, og var opdelt i yderligere tre delstudier hvor vi undersøgte hhv. systemiske markører for inflammation, aldring og angiogenese (artikel II, III og IV). Vi undersøgte markørerne i fire typer af patienter: nAMD, intermediaer AMD (iAMD), MPNd og MPNn. Undersøgelsen af forskelle mellem MPNd og MPNn, vil gøre det muligt at identificere forandringer i immunsystemet som kunne vaere relevante for AMD-patogenesen. Vi vil endvidere sammenholde resultaterne for patienter med MPN med patienter som har iAMD og nAMD. I studie I (Artikel I) fandt vi at patienter med MPN har en signifikant højere praevalens af store druser og AMD tidligere i livet sammenlignet med estimater fra tre store befolkningsundersøgelser. Vi fandt også at forekomst af druser var associeret med højere neutrofil-lymfocyt ratio, hvilket indikerer et højere niveau af kronisk inflammation i patienterne med druser sammenlignet med dem uden druser. I studie II (Artikel II, III og IV) fandt vi flere immunologiske forskelle mellem patienter med MPNd og MPNn. Da vi undersøgte markører for inflammation, fandt vi en højere grad af systemisk inflammation i MPNd end MPNn. Dette blev vist ved en højere inflammationsscore (udregnet på baggrund af niveauer af pro-inflammatoriske markører), en højere neutrofil-lymfocyt ratio, samt indikationer på et dereguleret komplementsystem. Ved undersøgelse af aldringsmarkører fandt vi tegn på accelereret immunaldring hos MPNd i forhold til MPNn, hvilket kommer til udtryk ved en større procentdel af "effector memory T celler". Endelig fandt vi en vaesentlig lavere ekspression af CXCR3 på T celler og monocytter hos patienter med nAMD sammenlignet med iAMD, MPNd og MPNn. Dette er i overensstemmelse med tidligere studier hvor CXCR3 ekspression er fundet lavere end hos raske kontroller. Derudover fandt vi en faldende CXCR3 ekspression på monocytter over det biologiske MPN-kontinuum. Disse studier indikerer en involvering af CXCR3 i både nAMD og PMF, begge sygdomsstadier som er karakteriseret ved angiogenese og fibrose. Ud fra resultaterne af denne afhandling kan vi konkludere at forekomsten af druser og AMD hos MPN er øget i forhold til baggrundsbefolkningen. Endvidere viser vores resultater at systemisk inflammation muligvis spiller en vaesentlig større rolle i udviklingen af AMD end tidligere antaget. Vi foreslår derfor en AMD-model (Figur 18) hvor inflammation kan initiere og accelerere den normale aldersafhaengige akkumulation af affaldsstoffer i nethinden, som senere udvikler sig til druser, medførende øget lokal inflammation og med tiden tidlig og intermediaer AMD. Dette resulterer i den øgede risiko for udvikling til de invaliderende senstadier af AMD. ENGLISH SUMMARY: Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss and blindness in high-income countries. It is a progressive retinal disease leading to damage of the cells responsible for central vision. The early stages of the disease are often asymptomatic, while late-stage AMD, which is divided into two entities, neovascular AMD and geographic atrophy (GA), both show vision loss, though generally with different progression rates. Drusen and pigmentary abnormalities in the retina characterise early AMD, while nAMD and GA show angiogenesis in and atrophy of the retina, respectively. The aetiology is multifactorial and, in addition to ageing, which is the most significant risk factor for developing AMD, environmental- and genetic risk factors are implicated in the pathogenesis. Research has focused on local changes in the eye where inflammation has been found to play an essential role, but studies also point to systemic alterations and especially systemic inflammation to be involved in the pathogenesis. The Philadelphia-negative myeloproliferative neoplasms (MPN) are a group of haematological cancers with an acquired genetic defect of the pluripotent haematopoietic stem cell, characterised by excess haematopoiesis of the myeloid cell lineage. The diseases have been found to evolve in a biological continuum from early cancer state, essential thrombocythemia, over polycythaemia vera (PV), to the advanced myelofibrosis stage (PMF). The symptoms in these patients are often a result of the changes in the blood composition, hyperviscosity, microvascular disturbances, and reduced tissue perfusion. The major causes of morbidity and mortality are thromboembolic- and haemorrhagic events, and leukemic transformation. A group of mutations that drive the MPNs has been identified, e.g., the JAK2V617F mutation, which results in deregulation of the JAK/STAT signal transduction pathway important, for instance, in cell differentiation and survival. A previous large register study has shown that patients with MPNs have an increased risk of neovascular AMD, and a pilot study has shown an increased prevalence of intermediate AMD. We wish to study this further in a larger scale study. Several studies have also shown that systemic inflammation plays an essential role in both the initiation and progression of the malignant cell clone in MPNs. From this knowledge, a "Human inflammation model" has been developed. Since then, the MPNs has been used as model diseases for a similar inflammation model for the development of Alzheimer's disease. In this PhD project, we would like to investigate systemic inflammation in relation to drusen presence. We will do this by comparing systemic immunological markers previously investigated in patients with AMD and compare with MPN. We are primarily interested in systemic immunological differences between patients with MPN and drusen (MPNd) and MPN with normal retinas (MPNn). This thesis consists of two main studies. Study I investigated the prevalence of retinal changes associated with AMD and the prevalence of different AMD stages in 200 patients with MPN (paper I). Study II examined immunological similarities between AMD and MPNs. This study was divided into three substudies exploring systemic markers of inflammation, ageing and angiogenesis, respectively. This was done in four types of patients: nAMD, intermediate AMD (iAMD), MPNd and MPNn. Investigating, differences between MPNd and MPNn, will make it possible to identify changes in the immune system, relevant for AMD pathogenesis. Additionally, we will compare patients with MPNs with patients with iAMD and nAMD. In study I (Paper I), we found that patients with MPNs have a significantly higher prevalence of large drusen and consequently AMD from an earlier age compared to the estimates from three large population-based studies. We also found that drusen prevalence was associated with a higher neutrophil-to-lymphocyte ratio indicating a higher level of chronic low-grade inflammation in patients with drusen compared to those without drusen. In study II (papers II, III and IV), we found immunological differences between patients with MPNd and MPNn. When we investigated markers of inflammation, we found a higher level of systemic inflammation in MPNd than MPNn. This was indicated by a higher inflammation score (based on levels of pro-inflammatory markers), a higher neutrophil-to-lymphocyte ratio, and indications of a deregulated complement system. When examining markers of ageing, we found signs of accelerated immune ageing in MPNd compared to MPNn, shown by more senescent effector memory T cells. Finally, when exploring a marker of angiogenesis, we found a lower CXCR3 expression on monocytes and T cells in nAMD compared to iAMD, MPNd and MPNn, in line with previous studies of nAMD compared to healthy controls. Further, we found decreasing CXCR3 expression over the MPN biological continuum. These studies indicate CXCR3 involvement in both nAMD and PMF, two disease stages characterised by angiogenesis and fibrosis. From the results of this PhD project, we can conclude that the prevalence of drusen and AMD is increased in patients with MPN compared to the general population. Further, our results show that systemic inflammation may play a far more essential role in AMD pathogenesis than previously anticipated. We, therefore, propose an AMD model (Figure 18) where inflammation can initiate and accelerate the normal age-dependent accumulation of debris in the retina, which later evolve into drusen, resulting in increased local inflammation, and over time early- and intermediate AMD. This results in the increased risk of developing the late debilitating stages of AMD.
Collapse
|
35
|
Fabre M, Mateo L, Lamaa D, Baillif S, Pagès G, Demange L, Ronco C, Benhida R. Recent Advances in Age-Related Macular Degeneration Therapies. Molecules 2022; 27:molecules27165089. [PMID: 36014339 PMCID: PMC9414333 DOI: 10.3390/molecules27165089] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) was described for the first time in the 1840s and is currently the leading cause of blindness for patients over 65 years in Western Countries. This disease impacts the eye’s posterior segment and damages the macula, a retina section with high levels of photoreceptor cells and responsible for the central vision. Advanced AMD stages are divided into the atrophic (dry) form and the exudative (wet) form. Atrophic AMD consists in the progressive atrophy of the retinal pigment epithelium (RPE) and the outer retinal layers, while the exudative form results in the anarchic invasion by choroidal neo-vessels of RPE and the retina. This invasion is responsible for fluid accumulation in the intra/sub-retinal spaces and for a progressive dysfunction of the photoreceptor cells. To date, the few existing anti-AMD therapies may only delay or suspend its progression, without providing cure to patients. However, in the last decade, an outstanding number of research programs targeting its different aspects have been initiated by academics and industrials. This review aims to bring together the most recent advances and insights into the mechanisms underlying AMD pathogenicity and disease evolution, and to highlight the current hypotheses towards the development of new treatments, i.e., symptomatic vs. curative. The therapeutic options and drugs proposed to tackle these mechanisms are analyzed and critically compared. A particular emphasis has been given to the therapeutic agents currently tested in clinical trials, whose results have been carefully collected and discussed whenever possible.
Collapse
Affiliation(s)
- Marie Fabre
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Lou Mateo
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Diana Lamaa
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
| | - Stéphanie Baillif
- Ophthalmology Department, University Hospital of Nice, 30 Avenue De La Voie Romaine, 06000 Nice, France
| | - Gilles Pagès
- Institute for Research on Cancer and Aging (IRCAN), UMR 7284 and INSERM U 1081, Université Côte d’Azur, CNRS 28 Avenue de Valombrose, 06107 Nice, France
| | - Luc Demange
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris Cité, 4, Avenue de l’Observatoire, 75006 Paris, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Cyril Ronco
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Correspondence: (L.D.); (C.R.); (R.B.)
| | - Rachid Benhida
- Institut de Chimie de Nice UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Department of Chemical and Biochemical Sciences-Green Process Engineering (CBS-GPE), Mohamed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Correspondence: (L.D.); (C.R.); (R.B.)
| |
Collapse
|
36
|
Complement 3a Mediates CCN2/CTGF in Human Retinal Pigment Epithelial Cells. J Ophthalmol 2022; 2022:3259453. [PMID: 36276919 PMCID: PMC9581697 DOI: 10.1155/2022/3259453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Complement 3 (C3) is the crucial component of the complement cascade when retina was exposed to external stimulus. Cellular communication network 2/connective tissue growth factor (CCN2/CTGF) is important in response of retinal stress and a fulcrum for angiogenesis and fibrosis scar formation. Our study aims to explore the interaction between C3 and CCN2/CTGF via bioinformatics analyses and in vitro cell experiments. Methods. The GSE dataset was selected to analyse the chemokine expression in human retinal pigment epithelium (ARPE-19) cells under stimulus. Then, RPE cells were further transfected with or without C3 siRNA, followed by C3a (0.1 μM or 0.3 μM) for 24, 48, and 72 hours. Reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to measure CCN2/CTGF mRNA and protein levels. Results. The GSE36331 revealed C3 expression was significantly elevated in RPE under stimulus. Compared with negative control, CCN2/CTGF mRNA was increased with all types of C3a treatments, whereas a significant increase of protein level was only observed with high concentration of 0.3 μM C3a for a prolonged 72-hour time. Compared with nontransfected cells, significant reductions of CCN2/CTGF mRNA were observed in the C3 siRNA transfected cells with 0.3 μM C3a for 24, 48, and 72 hours, and a significant reduction of CCN2/CTGF protein was observed with 0.3 μM C3a for 48 hours. Conclusions. C3 was elevated in RPE under environmental stimulus and long-term exposure to specified concentration of C3a increased CCN2/CTGF expression in RPE, which could be partially reversed by C3 siRNA.
Collapse
|
37
|
Gavriilaki E, Papakonstantinou A, Agrios KA. Novel Insights into Factor D Inhibition. Int J Mol Sci 2022; 23:7216. [PMID: 35806224 PMCID: PMC9267021 DOI: 10.3390/ijms23137216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/15/2023] Open
Abstract
Complement-mediated diseases or complementopathies, such as Paroxysmal nocturnal hemoglobinuria (PNH), cold agglutinin disease (CAD), and transplant-associated thrombotic microangiopathy (TA-TMA), demand advanced complement diagnostics and therapeutics be adopted in a vast field of medical specialties, such as hematology, transplantation, rheumatology, and nephrology. The miracle of complement inhibitors as "orphan drugs" has dramatically improved morbidity and mortality in patients with otherwise life-threatening complementopathies. Efficacy has been significantly improved by upstream inhibition in patients with PNH. Different molecules may exert diverse characteristics in vitro and in vivo. Further studies remain to show safety and efficacy of upstream inhibition in other complementopathies. In addition, cost and availability issues are major drawbacks of current treatments. Therefore, further developments are warranted to address the unmet clinical needs in the field of complementopathies. This state-of-the-art narrative review aims to delineate novel insights into factor D inhibition as a promising target for complementopathies.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department, G Papanicolaou Hospital, 57010 Thessaloniki, Greece
| | - Anna Papakonstantinou
- Department of Urology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos A. Agrios
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA
| |
Collapse
|
38
|
Shu DY, Frank SI, Fitch TC, Karg MM, Butcher ER, Nnuji-John E, Kim LA, Saint-Geniez M. Dimethyl Fumarate Blocks Tumor Necrosis Factor-Alpha-Driven Inflammation and Metabolic Rewiring in the Retinal Pigment Epithelium. Front Mol Neurosci 2022; 15:896786. [PMID: 35813071 PMCID: PMC9259930 DOI: 10.3389/fnmol.2022.896786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The retinal pigment epithelium (RPE) acts as a metabolic gatekeeper between photoreceptors and the choroidal vasculature to maintain retinal function. RPE dysfunction is a key feature of age-related macular degeneration (AMD), the leading cause of blindness in developed countries. Inflammation is a key pathogenic mechanism in AMD and tumor necrosis factor-alpha (TNFα) has been implicated as a pro-inflammatory cytokine involved in AMD. While mitochondrial dysfunction has been implicated in AMD pathogenesis, the interplay between inflammation and cellular metabolism remains elusive. The present study explores how the pro-inflammatory cytokine, TNFα, impacts mitochondrial morphology and metabolic function in RPE. Matured human primary RPE (H-RPE) were treated with TNFα (10 ng/ml) for up to 5 days. TNFα-induced upregulation of IL-6 secretion and inflammatory genes (IL-6, IL-8, MCP-1) was accompanied by increased oxidative phosphorylation (OXPHOS) and reduced glycolysis, leading to an increase in cellular adenosine triphosphate (ATP) content. Transmission electron microscopy (TEM) revealed defects in mitochondrial morphology with engorged mitochondria and loss of cristae integrity following TNFα treatment. Pre-treatment with the anti-inflammatory drug, 80 μM dimethyl fumarate (DMFu), blocked TNFα-induced inflammatory activation of RPE (IL-6, IL-8, MCP-1, CFH, CFB, C3) and normalized their bioenergetic profile to control levels by regulating PFKFB3 and PKM2 gene expression. Furthermore, DMFu prevented TNFα-induced mitochondrial dysfunction and morphological anomalies. Thus, our results indicate that DMFu serves as a novel therapeutic avenue for combating inflammatory activation and metabolic dysfunction of RPE in AMD.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Scott I. Frank
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Tessa C. Fitch
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Margarete M. Karg
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Erik R. Butcher
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Emmanuella Nnuji-John
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Cold Spring Harbor Laboratory, School of Biological Sciences, Cold Spring Harbor, NY, United States
| | - Leo A. Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Magali Saint-Geniez,
| |
Collapse
|
39
|
Zauhar R, Biber J, Jabri Y, Kim M, Hu J, Kaplan L, Pfaller AM, Schäfer N, Enzmann V, Schlötzer-Schrehardt U, Straub T, Hauck SM, Gamlin PD, McFerrin MB, Messinger J, Strang CE, Curcio CA, Dana N, Pauly D, Grosche A, Li M, Stambolian D. As in Real Estate, Location Matters: Cellular Expression of Complement Varies Between Macular and Peripheral Regions of the Retina and Supporting Tissues. Front Immunol 2022; 13:895519. [PMID: 35784369 PMCID: PMC9240314 DOI: 10.3389/fimmu.2022.895519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.
Collapse
Affiliation(s)
- Randy Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Mijin Kim
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna M. Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B. McFerrin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christianne E. Strang
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicholas Dana
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Du L, Peng GH. Complement C3 deficiency alleviates alkylation-induced retinal degeneration in mice. EYE AND VISION (LONDON, ENGLAND) 2022; 9:22. [PMID: 35676725 PMCID: PMC9178834 DOI: 10.1186/s40662-022-00292-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/20/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND It has been found that the extensive use of anticancer drugs containing DNA-alkylating agents not only target cancer cells but also cause retinal inflammation through toxic intermediates. Complement C3 (C3) is a core component of the complement activation pathway, and dysregulation of the complement pathway is involved in several retinal degenerative diseases. However, whether C3 plays a critical role in alkylation-induced retinal degeneration is unclear. METHODS Following treatment with the alkylating agent methyl methane sulfonate (MMS), the C3 mRNA and protein level was measured, DNA damage and photoreceptor cell death were assessed in both wild-type (WT) C57BL/6J and C3 knockout (KO) mice. RESULTS We determined that complement pathway is activated following MMS treatment, and C3 knockout (KO) increased the rate of photoreceptor cell survival and preserved visual function. The mRNA levels of nuclear erythroid-related factor 2 (Nrf2) and related genes were higher after MMS application in C3 KO mice. CONCLUSION In summary, our study found that C3 KO promotes photoreceptor cell survival and activates the Nrf2 signaling pathway in the context of alkylation-induced retinal degeneration.
Collapse
Affiliation(s)
- Lu Du
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, 100039 China
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, 100 Science Ave, Zhengzhou, 450001 Henan China
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing, 100039 China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001 Henan China
| |
Collapse
|
41
|
Al-Moujahed A, Velez G, Vu JT, Lima de Carvalho JR, Levi SR, Bassuk AG, Sepah YJ, Tsang SH, Mahajan VB. Proteomic analysis of autoimmune retinopathy implicates NrCAM as a potential biomarker. OPHTHALMOLOGY SCIENCE 2022; 2:100131. [PMID: 35529077 PMCID: PMC9075676 DOI: 10.1016/j.xops.2022.100131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
Purpose To identify vitreous molecular biomarkers associated with autoimmune retinopathy (AIR). Design Case-control study. Participants We analyzed six eyes from four patients diagnosed with AIR and eight comparative controls diagnosed with idiopathic macular holes and epiretinal membranes. Methods Vitreous biopsies were collected from the participants and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) or multiplex ELISA. Outcome Measures Protein expression changes were evaluated by 1-way ANOVA (significant p-value <0.05), hierarchical clustering, and pathway analysis to identify candidate protein biomarkers. Results There were 16 significantly upregulated and 17 significantly downregulated proteins in the vitreous of three AIR patients compared to controls. The most significantly upregulated proteins included lysozyme C (LYSC), zinc-alpha-2-glycoprotein (ZA2G), complement factor D (CFAD), transforming growth factor-beta induced protein (BGH3), beta-crystallin B2, and alpha-crystallin A chain. The most significantly downregulated proteins included disco-interacting protein 2 homolog (DIP2C), retbindin (RTBDN), and amyloid beta precursor like protein 2 (APLP2). Pathway analysis revealed that vascular endothelial growth factor (VEGF) signaling was a top represented pathway in the vitreous of AIR patients compared to controls. In comparison to a different cohort of three AIR patients analyzed by multiplex ELISA, a commonly differentially expressed protein was neuronal cell adhesion molecule (NrCAM) with p-values of 0.027 in the LC-MS/MS dataset and 0.035 in the ELISA dataset. Conclusion Protein biomarkers such as NrCAM in the vitreous may eventually help diagnose AIR.
Collapse
Key Words
- autoimmune retinopathy
- nrcam
- proteomics
- retina
- vitreous
- air, autoimmune retinopathy
- elisa, enzyme-linked immunosorbent assay
- erm, epiretinal membrane
- il, interleukin
- imh, idiopathic macular hole
- lc-ms/ms, liquid chromatography-tandem mass spectrometry
- nrcam, neuronal cell adhesion molecule
- rgc, retinal ganglion cell
- rnfl, retinal nerve fiber layer
- tgf-ß, transforming growth factor beta
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ahmad Al-Moujahed
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | - Gabriel Velez
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Jennifer T. Vu
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | | | - Sarah R. Levi
- Department of Ophthalmology, Columbia University, New York, New York
| | | | - Yasir J. Sepah
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York, New York
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
42
|
Bohley M, Dillinger AE, Tamm ER, Goepferich A. Targeted drug delivery to the retinal pigment epithelium: Untapped therapeutic potential for retinal diseases. Drug Discov Today 2022; 27:2497-2509. [PMID: 35654389 DOI: 10.1016/j.drudis.2022.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022]
Abstract
The retinal pigment epithelium (RPE) plays a crucial part in sight-threatening diseases. In this review, we shed light on the pivotal implication of the RPE in age-related macular degeneration, diabetic retinopathy and retinopathy of prematurity; and explain why a paradigm shift toward targeted RPE therapy is needed to efficiently fight these retinal diseases. We provide guidance for the development of RPE-specific nanotherapeutics by giving a comprehensive overview of the possibilities and challenges of drug delivery to the RPE and highlight successful nanotherapeutic approaches targeting the RPE.
Collapse
Affiliation(s)
- Marilena Bohley
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.
| | - Andrea E Dillinger
- Department of Human Anatomy and Embryology, University of Regensburg, 93053 Regensburg, Germany
| | - Ernst R Tamm
- Department of Human Anatomy and Embryology, University of Regensburg, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
43
|
Genetic Variants of Complement Factor H Y402H (rs1061170), C2 R102G (rs2230199), and C3 E318D (rs9332739) and Response to Intravitreal Anti-VEGF Treatment in Patients with Exudative Age-Related Macular Degeneration. Medicina (B Aires) 2022; 58:medicina58050658. [PMID: 35630075 PMCID: PMC9145696 DOI: 10.3390/medicina58050658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background and Objectives: To assess the association between the single nucleotide polymorphisms (SNPs) in the genes encoding complement factors CFH, C2, and C3 (Y402H rs1061170, R102G rs2230199, and E318D rs9332739, respectively) and response to intravitreal anti-vascular endothelial growth factor (VEGF) therapy in patients with exudative age-related macular degeneration (AMD). Materials and Methods: The study included 111 patients with exudative AMD treated with intravitreal bevacizumab or ranibizumab injections. Response to therapy was assessed on the basis of best-corrected visual acuity (BCVA) and central retinal thickness (CRT) measured every 4 weeks for 12 months. The control group included 58 individuals without AMD. The SNPs were genotyped by a real-time polymerase chain reaction in genomic DNA isolated from peripheral blood samples. Results: The CC genotype in SNP rs1061170 of the CFH gene was more frequent in patients with AMD than in controls (p = 0.0058). It was also more common among the 28 patients (25.2%) with poor response to therapy compared with good responders (p = 0.0002). Poor responders, especially those without this genotype, benefited from switching to another anti-VEGF drug. At the last follow-up assessment, carriers of this genotype had significantly worse BCVA (p = 0.0350) and greater CRT (p = 0.0168) than noncarriers. TT genotype carriers showed improved BCVA (p = 0.0467) and reduced CRT compared with CC and CT genotype carriers (p = 0.0194). No associations with AMD or anti-VEGF therapy outcomes for SNP rs9332739 in the C2 gene and SNP rs2230199 in the C3 gene were found. Conclusions: The CC genotype for SNP rs1061170 in the CFH gene was associated with AMD in our population. Additionally, it promoted a poor response to anti-VEGF therapy. On the other hand, TT genotype carriers showed better functional and anatomical response to anti-VEGF therapy at 12 months than carriers of the other genotypes for this SNP.
Collapse
|
44
|
Rad LM, Yumashev AV, Hussen BM, Jamad HH, Ghafouri-Fard S, Taheri M, Rostami S, Niazi V, Hajiesmaeili M. Therapeutic Potential of Microvesicles in Cell Therapy and Regenerative Medicine of Ocular Diseases With an Especial Focus on Mesenchymal Stem Cells-Derived Microvesicles. Front Genet 2022; 13:847679. [PMID: 35422841 PMCID: PMC9001951 DOI: 10.3389/fgene.2022.847679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
These days, mesenchymal stem cells (MSCs), because of immunomodulatory and pro-angiogenic abilities, are known as inevitable factors in regenerative medicine and cell therapy in different diseases such as ocular disorder. Moreover, researchers have indicated that exosome possess an essential potential in the therapeutic application of ocular disease. MSC-derived exosome (MSC-DE) have been identified as efficient as MSCs for treatment of eye injuries due to their small size and rapid diffusion all over the eye. MSC-DEs easily transfer their ingredients such as miRNAs, proteins, and cytokines to the inner layer in the eye and increase the reconstruction of the injured area. Furthermore, MSC-DEs deliver their immunomodulatory cargos in inflamed sites and inhibit immune cell migration, resulting in improvement of autoimmune uveitis. Interestingly, therapeutic effects were shown only in animal models that received MSC-DE. In this review, we summarized the therapeutic potential of MSCs and MSC-DE in cell therapy and regenerative medicine of ocular diseases.
Collapse
Affiliation(s)
- Lina Moallemi Rad
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Alexey V Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Hadayat Jamad
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Samaneh Rostami
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciecnes, Zanjan, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Critical Care Quality Improvement Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Smith JM, Mandava N, Tirado-Gonzalez V, Garcia-Santisteban R, Geiger MD, Patnaik JL, Frazer-Abel A, Lynch AM, Mandava N, Holers VM, Wagner BD, Sanchez-Santos I, Meizner D, Quiroz-Mercado H, Palestine AG. Correlation of Complement Activation in Aqueous and Vitreous in Patients With Proliferative Diabetic Retinopathy. Transl Vis Sci Technol 2022; 11:13. [PMID: 35420644 PMCID: PMC9034714 DOI: 10.1167/tvst.11.4.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose A growing body of evidence suggests complement dysregulation is present in the vitreous of patients with diabetic eye disease. Further translational study could be simplified if aqueous-as opposed to vitreous-were used to sample the intraocular complement environment. Here, we analyze aqueous samples and assess whether a correlation exists between aqueous and vitreous complement levels. Methods We collected aqueous, vitreous, and plasma samples from patients with and without proliferative diabetic retinopathy (PDR) undergoing vitrectomy. We assessed correlation between complement levels in aqueous and vitreous samples after using a normalizing ratio to correct for vascular leakage. Spearman correlation coefficients were used to assess the correlation between complement levels in the aqueous and vitreous. Results Aqueous samples were obtained from 17 cases with PDR and 28 controls. In all patients, aqueous Ba, C3a, and albumin levels were strongly correlated with vitreous levels (Spearman correlation coefficient of 0.8 for Ba and C3a and 0.7 for albumin; all P values < 0.0001). In PDR eyes only, aqueous and vitreous C3a levels were significantly correlated (Spearman correlation coefficient 0.7; P = 0.002), whereas in control eyes, both Ba and C3a (Spearman correlation coefficients of 0.7; P < 0.0001) were significantly correlated. Conclusions A strong correlation exists between aqueous and vitreous complement levels in diabetic eye disease. Translational Relevance The results establish that accurate sampling of the intraocular complement can be done by analyzing aqueous specimens, allowing for the rapid and safe measurement of experimental complement targets and treatment response.
Collapse
Affiliation(s)
- Jesse M Smith
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nikhil Mandava
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Matthew D Geiger
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer L Patnaik
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashley Frazer-Abel
- Exsersa BioLabs, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anne M Lynch
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Naresh Mandava
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - V Michael Holers
- Departments of Immunology and Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO, USA
| | | | | | | | - Alan G Palestine
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
46
|
Discovery of APL-1030, a Novel, High-Affinity Nanofitin Inhibitor of C3-Mediated Complement Activation. Biomolecules 2022; 12:biom12030432. [PMID: 35327625 PMCID: PMC8946527 DOI: 10.3390/biom12030432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Uncontrolled complement activation contributes to multiple immune pathologies. Although synthetic compstatin derivatives targeting C3 and C3b are robust inhibitors of complement activation, their physicochemical and molecular properties may limit access to specific organs, development of bifunctional moieties, and therapeutic applications requiring transgenic expression. Complement-targeting therapeutics containing only natural amino acids could enable multifunctional pharmacology, gene therapies, and targeted delivery for underserved diseases. A Nanofitin library of hyperthermophilic protein scaffolds was screened using ribosome display for C3/C3b-targeting clones mimicking compstatin pharmacology. APL-1030, a recombinant 64-residue Nanofitin, emerged as the lead candidate. APL-1030 is thermostable, binds C3 (KD, 1.59 nM) and C3b (KD, 1.11 nM), and inhibits complement activation via classical (IC50 = 110.8 nM) and alternative (IC50 = 291.3 nM) pathways in Wieslab assays. Pharmacologic activity (determined by alternative pathway inhibition) was limited to primate species of tested sera. C3b-binding sites of APL-1030 and compstatin were shown to overlap by X-ray crystallography of C3b-bound APL-1030. APL-1030 is a novel, high-affinity inhibitor of primate C3-mediated complement activation developed from natural amino acids on the hyperthermophilic Nanofitin platform. Its properties may support novel drug candidates, enabling bifunctional moieties, gene therapy, and tissue-targeted C3 pharmacologics for diseases with high unmet need.
Collapse
|
47
|
Ou K, Li Y, Liu L, Li H, Cox K, Wu J, Liu J, Dick AD. Recent developments of neuroprotective agents for degenerative retinal disorders. Neural Regen Res 2022; 17:1919-1928. [PMID: 35142668 PMCID: PMC8848613 DOI: 10.4103/1673-5374.335140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Retinal degeneration is a debilitating ocular complication characterized by the progressive loss of photoreceptors and other retinal neurons, which are caused by a group of retinal diseases affecting various age groups, and increasingly prevalent in the elderly. Age-related macular degeneration, diabetic retinopathy and glaucoma are among the most common complex degenerative retinal disorders, posing significant public health problems worldwide largely due to the aging society and the lack of effective therapeutics. Whilst pathoetiologies vary, if left untreated, loss of retinal neurons can result in an acquired degeneration and ultimately severe visual impairment. Irrespective of underlined etiology, loss of neurons and supporting cells including retinal pigment epithelium, microvascular endothelium, and glia, converges as the common endpoint of retinal degeneration and therefore discovery or repurposing of therapies to protect retinal neurons directly or indirectly are under intensive investigation. This review overviews recent developments of potential neuroprotectants including neuropeptides, exosomes, mitochondrial-derived peptides, complement inhibitors, senolytics, autophagy enhancers and antioxidants either still experimentally or in clinical trials. Effective treatments that possess direct or indirect neuroprotective properties would significantly lift the burden of visual handicap.
Collapse
Affiliation(s)
- Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ling Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Katherine Cox
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jiahui Wu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew D Dick
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol; Institute of Ophthalmology, University College London, London; National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
48
|
Cortes C, Desler C, Mazzoli A, Chen JY, Ferreira VP. The role of properdin and Factor H in disease. Adv Immunol 2022; 153:1-90. [PMID: 35469595 DOI: 10.1016/bs.ai.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The complement system consists of three pathways (alternative, classical, and lectin) that play a fundamental role in immunity and homeostasis. The multifunctional role of the complement system includes direct lysis of pathogens, tagging pathogens for phagocytosis, promotion of inflammatory responses to control infection, regulation of adaptive cellular immune responses, and removal of apoptotic/dead cells and immune complexes from circulation. A tight regulation of the complement system is essential to avoid unwanted complement-mediated damage to the host. This regulation is ensured by a set of proteins called complement regulatory proteins. Deficiencies or malfunction of these regulatory proteins may lead to pro-thrombotic hematological diseases, renal and ocular diseases, and autoimmune diseases, among others. This review focuses on the importance of two complement regulatory proteins of the alternative pathway, Factor H and properdin, and their role in human diseases with an emphasis on: (a) characterizing the main mechanism of action of Factor H and properdin in regulating the complement system and protecting the host from complement-mediated attack, (b) describing the dysregulation of the alternative pathway as a result of deficiencies, or mutations, in Factor H and properdin, (c) outlining the clinical findings, management and treatment of diseases associated with mutations and deficiencies in Factor H, and (d) defining the unwanted and inadequate functioning of properdin in disease, through a discussion of various experimental research findings utilizing in vitro, mouse and human models.
Collapse
Affiliation(s)
- Claudio Cortes
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States.
| | - Caroline Desler
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Amanda Mazzoli
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Jin Y Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| |
Collapse
|
49
|
Complement cascade inhibition in geographic atrophy: a review. Eye (Lond) 2022; 36:294-302. [PMID: 34999723 PMCID: PMC8807727 DOI: 10.1038/s41433-021-01765-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
The pathophysiology of dry age-related macular degeneration (AMD) and specifically geographic atrophy (GA) has been linked to the complement cascade. This cascade is part of the innate immune system and is made up of the classical, alternative, and lectin pathways. The pathways comprise a system of plasma and membrane-associated serum proteins that are activated with identification of a nonself entity. A number of these proteins have been implicated in the development and progression of dry AMD. The three pathways converge at C3 and cascade down through C5, making both of these proteins viable targets for the treatment of dry AMD. In addition, there are a number of complement factors, CFB, CFD, CFH, and CFI, which are potential therapeutic targets as well. Several different complement-directed therapeutics are being studied for the treatment of dry AMD with the hope that one of these approaches will emerge as the first approved treatment for GA.
Collapse
|
50
|
Ormenişan DM, Borda A. Benefits of genetic and immunohistochemical markers in understanding abnormalities in aging retina. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:121-127. [PMID: 36074675 PMCID: PMC9593114 DOI: 10.47162/rjme.63.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The aim of the study was to better understand the interplay between genetic factors and the aging process in the human retina through mapping complement factor H (CFH) and related proteins. Two human eyes, from 92- and 64-year-old donors, were genotyped for the expression of CFH-related 1 (CFHR1) and CFH-related 3 (CFHR3) genes. Deoxyribonucleic acid (DNA) was extracted and analyzed for concentration and purity with a spectrophotometer, at 260 nm. The results showed a DNA concentration of 469.17 ng∕μL in the aged retina and of 399.20 ng∕μL in the younger one. Through polymerase chain reaction (PCR) genotyping, the DNA CFHR1 and CFHR3 were visible as bands of 175 bp and 181 bp. Immunohistochemistry by immunofluorescence method was used with a panel of specific antibodies for CFH, CFHR1, CFHR3 and GFAP, a marker for Müller cells. All the samples were examined, and images captured using confocal microscopy. In the younger retina, CFH was localized in the inner plexiform layer and below the outer nuclear layer, while in the aged retina, it was found in the photoreceptors. CFH was also detected in the choriocapillaris and within the end-feet of the Müller cells. Our controls showed autofluorescence of the retinal pigment epithelium shedding light on a false positive CFH immunostaining of this layer. GFAP immunoreactivity highlighted an increased gliosis within the aged retina. CFHR3 signal was found in the microglia, while CFHR1 was detected in the choriocapillaris. In summary, underpinning the expression of these components can show the potential involvement of these modulators in implementing new treatment strategies.
Collapse
|