1
|
Oslock WM, Chu DI. Future Research Directions in Anal Cancer. Surg Oncol Clin N Am 2025; 34:127-132. [PMID: 39547765 DOI: 10.1016/j.soc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
While anal cancer is somewhat rare, it is increasing in incidence despite improving screening and the human papillomavirus vaccine. Given this, there is growing research into the management of high-grade squamous intraepithelial lesion as well as how to optimize screening approaches. This includes increased study of biomarkers to improve screening sensitivity as well as strategies to improve access and reduce loss to follow-up. Additionally, there is an ongoing research into the role of the microbiome in oncogenesis and research to adapt other treatments to anal cancer.
Collapse
Affiliation(s)
- Wendelyn M Oslock
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Quality, Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Daniel I Chu
- Division of Gastrointestinal Surgery, Department of Surgery, University of Alabama at Birmingham, BDB 581, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
3
|
Gáspár Z, Nagavci B, Szabó BG, Lakatos B. Gut Microbiome Alteration in HIV/AIDS and the Role of Antiretroviral Therapy-A Scoping Review. Microorganisms 2024; 12:2221. [PMID: 39597610 PMCID: PMC11596264 DOI: 10.3390/microorganisms12112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: The gut microbiota plays a crucial role in chronic immune activation associated with human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS) pathogenesis, non-AIDS-related comorbidities, and mortality among people living with HIV (PLWH). The effects of antiretroviral therapy on the microbiome remain underexplored. This study aims to map the evidence of the impact of integrase strand transfer inhibitors (INSTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) on the gut microbiota of PLWH. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: Evidence suggests that INSTI-based regimes generally promote the restoration of alpha diversity, bringing it closer to that of seronegative controls, while beta diversity remains largely unchanged. INSTI-based therapies are suggested to be associated with improvements in microbiota composition and a tendency toward reduced inflammatory markers. In contrast, NNRTI-based treatments demonstrate limited recovery of alpha diversity and are linked to an increase in proinflammatory bacteria. (4) Conclusions: Based on the review of the current literature, it is indicated that INSTI-based antiretroviral therapy (ART) therapy facilitates better recovery of the gut microbiome.
Collapse
Affiliation(s)
- Zsófia Gáspár
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Blin Nagavci
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Bálint Gergely Szabó
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| | - Botond Lakatos
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| |
Collapse
|
4
|
Lacunza E, Fink V, Salas ME, Gun AM, Basiletti JA, Picconi MA, Golubicki M, Robbio J, Kujaruk M, Iseas S, Williams S, Figueroa MI, Coso O, Cahn P, Ramos JC, Abba MC. Transcriptome and microbiome-immune changes across preinvasive and invasive anal cancer lesions. JCI Insight 2024; 9:e180907. [PMID: 39024554 PMCID: PMC11343604 DOI: 10.1172/jci.insight.180907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy linked to high-risk human papillomavirus (HPV) infection, which develops from precursor lesions like low-grade squamous intraepithelial lesions and high-grade squamous intraepithelial lesions (HGSILs). ASCC incidence varies across populations and poses increased risk for people living with HIV. Our investigation focused on transcriptomic and metatranscriptomic changes from squamous intraepithelial lesions to ASCC. Metatranscriptomic analysis highlighted specific bacterial species (e.g., Fusobacterium nucleatum, Bacteroides fragilis) more prevalent in ASCC than precancerous lesions. These species correlated with gene-encoding enzymes (Acca, glyQ, eno, pgk, por) and oncoproteins (FadA, dnaK), presenting potential diagnostic or treatment markers. Unsupervised transcriptomic analysis identified distinct sample clusters reflecting histological diagnosis, immune infiltrate, HIV/HPV status, and pathway activities, recapitulating anal cancer progression's natural history. Our study unveiled molecular mechanisms in anal cancer progression, aiding in stratifying HGSIL cases based on low or high risk of progression to malignancy.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
| | - Valeria Fink
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - María E. Salas
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
| | - Ana M. Gun
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Jorge A. Basiletti
- Laboratorio Nacional y Regional de Referencia de Virus Papiloma Humano, Instituto Nacional de Enfermedades Infecciosas - ANLIS “Dr. Malbrán”, Buenos Aires, Argentina
| | - María A. Picconi
- Laboratorio Nacional y Regional de Referencia de Virus Papiloma Humano, Instituto Nacional de Enfermedades Infecciosas - ANLIS “Dr. Malbrán”, Buenos Aires, Argentina
| | - Mariano Golubicki
- Unidad de Oncología, Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina
| | - Juan Robbio
- Unidad de Oncología, Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina
| | - Mirta Kujaruk
- Unidad de Oncología, Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina
| | - Soledad Iseas
- Medical Oncology Department, Paris-St Joseph Hospital, Paris, France
| | - Sion Williams
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- University of Miami - Center for AIDS Research/Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - María I. Figueroa
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Omar Coso
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Cahn
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Juan C. Ramos
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- University of Miami - Center for AIDS Research/Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Martín C. Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
| |
Collapse
|
5
|
Geistlinger L, Mirzayi C, Zohra F, Azhar R, Elsafoury S, Grieve C, Wokaty J, Gamboa-Tuz SD, Sengupta P, Hecht I, Ravikrishnan A, Gonçalves RS, Franzosa E, Raman K, Carey V, Dowd JB, Jones HE, Davis S, Segata N, Huttenhower C, Waldron L. BugSigDB captures patterns of differential abundance across a broad range of host-associated microbial signatures. Nat Biotechnol 2024; 42:790-802. [PMID: 37697152 PMCID: PMC11098749 DOI: 10.1038/s41587-023-01872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/20/2023] [Indexed: 09/13/2023]
Abstract
The literature of human and other host-associated microbiome studies is expanding rapidly, but systematic comparisons among published results of host-associated microbiome signatures of differential abundance remain difficult. We present BugSigDB, a community-editable database of manually curated microbial signatures from published differential abundance studies accompanied by information on study geography, health outcomes, host body site and experimental, epidemiological and statistical methods using controlled vocabulary. The initial release of the database contains >2,500 manually curated signatures from >600 published studies on three host species, enabling high-throughput analysis of signature similarity, taxon enrichment, co-occurrence and coexclusion and consensus signatures. These data allow assessment of microbiome differential abundance within and across experimental conditions, environments or body sites. Database-wide analysis reveals experimental conditions with the highest level of consistency in signatures reported by independent studies and identifies commonalities among disease-associated signatures, including frequent introgression of oral pathobionts into the gut.
Collapse
Affiliation(s)
- Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Chloe Mirzayi
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Fatima Zohra
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Rimsha Azhar
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Shaimaa Elsafoury
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Clare Grieve
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Jennifer Wokaty
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Samuel David Gamboa-Tuz
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | | | - Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Rafael S Gonçalves
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Eric Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Vincent Carey
- Channing Division of Network Medicine, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Jennifer B Dowd
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Heidi E Jones
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Sean Davis
- Departments of Biomedical Informatics and Medicine, University of Colorado Anschutz School of Medicine, Denver, CO, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Istituto Europeo di Oncologia (IEO) IRCSS, Milan, Italy
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Levi Waldron
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA.
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA.
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
6
|
Ron R, Moreno E, Rosas Cancio-Suárez M, Serrano-Villar S. The microbiome as a biomarker of anal precancerous lesions in people with HIV. Curr Opin Infect Dis 2024; 37:17-25. [PMID: 37889583 DOI: 10.1097/qco.0000000000000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
PURPOSE OF REVIEW Early detection and treatment of human papillomavirus (HPV)-related anal dysplasia in some high-risk groups can help anal cancer prevention, but new tools to improve diagnostic and risk assessment are needed. Here, we aim to discuss the evidence on the role of the microbiome as a potential biomarker for anal high-grade squamous intraepithelial lesions (HSILs) in people with HIV (PWH). RECENT FINDINGS This review covers relevant studies on the links between the microbiome and HPV infection, cervical dysplasia/cancer, and anal HPV disease. It focuses on anal samples and precancerous lesions. SUMMARY The review highlights the promising potential of the anal microbiome as a novel biomarker for precancerous lesions in people with HIV, while also discussing limitations and future research needs.
Collapse
Affiliation(s)
- Raquel Ron
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain, CIBERINFEC
| | | | | | | |
Collapse
|
7
|
Lacunza E, Fink V, Salas ME, Canzoneri R, Naipauer J, Williams S, Coso O, Sued O, Cahn P, Mesri EA, Abba MC. Oral and anal microbiome from HIV-exposed individuals: role of host-associated factors in taxa composition and metabolic pathways. NPJ Biofilms Microbiomes 2023; 9:48. [PMID: 37438354 DOI: 10.1038/s41522-023-00413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Evidence indicates that the microbiome plays a significant role in HIV immunopathogenesis and associated complications. This study aimed to characterize the oral and anal microbiome of Men who have Sex with Men (MSM) and Transgender Women (TGW), with and without HIV. One hundred and thirty oral and anal DNA-derived samples were obtained from 78 participants and subjected to shotgun metagenomics sequencing for further microbiome analysis. Significant differences in the microbiome composition were found among subjects associated with HIV infection, gender, sex behavior, CD4+ T-cell counts, antiretroviral therapy (ART), and the presence of HPV-associated precancerous anal lesions. Results confirm the occurrence of oncogenic viromes in this high HIV-risk population. The oral microbiome in HIV-associated cases exhibited an enrichment of bacteria associated with periodontal disease pathogenesis. Conversely, anal bacteria showed a significant decrease in HIV-infected subjects (Coprococcus comes, Finegoldia magna, Blautia obeum, Catenibacterium mitsuokai). TGW showed enrichment in species related to sexual transmission, which concurs that most recruited TGW are or have been sex workers. Prevotella bivia and Fusobacterium gonidiaformans were positively associated with anal precancerous lesions among HIV-infected subjects. The enrichment of Holdemanella biformis and C. comes was associated with detectable viral load and ART-untreated patients. Metabolic pathways were distinctly affected by predominant factors linked to sexual behavior or HIV pathogenesis. Gene family analysis identified bacterial gene signatures as potential prognostic and predictive biomarkers for HIV/AIDS-associated malignancies. Conclusions: Identified microbial features at accessible sites are potential biomarkers for predicting precancerous anal lesions and therapeutic targets for HIV immunopathogenesis.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Valeria Fink
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - María E Salas
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Romina Canzoneri
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julián Naipauer
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sion Williams
- University of Miami - Center for AIDS Research (UM-CFAR) / Sylvester Comprehensive Cancer Center (CCC), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Coso
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Sued
- Pan American Health Organization, Washington, USA
| | - Pedro Cahn
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Enrique A Mesri
- University of Miami - Center for AIDS Research (UM-CFAR) / Sylvester Comprehensive Cancer Center (CCC), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martín C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
8
|
Moreno E, Ron R, Serrano-Villar S. The microbiota as a modulator of mucosal inflammation and HIV/HPV pathogenesis: From association to causation. Front Immunol 2023; 14:1072655. [PMID: 36756132 PMCID: PMC9900135 DOI: 10.3389/fimmu.2023.1072655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Although the microbiota has largely been associated with the pathogenesis of viral infections, most studies using omics techniques are correlational and hypothesis-generating. The mechanisms affecting the immune responses to viral infections are still being fully understood. Here we focus on the two most important sexually transmitted persistent viruses, HPV and HIV. Sophisticated omics techniques are boosting our ability to understand microbiota-pathogen-host interactions from a functional perspective by surveying the host and bacterial protein and metabolite production using systems biology approaches. However, while these strategies have allowed describing interaction networks to identify potential novel microbiota-associated biomarkers or therapeutic targets to prevent or treat infectious diseases, the analyses are typically based on highly dimensional datasets -thousands of features in small cohorts of patients-. As a result, we are far from getting to their clinical use. Here we provide a broad overview of how the microbiota influences the immune responses to HIV and HPV disease. Furthermore, we highlight experimental approaches to understand better the microbiota-host-virus interactions that might increase our potential to identify biomarkers and therapeutic agents with clinical applications.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Liu X, Pan X, Liu H, Ma X. Gut Microbial Diversity in Female Patients With Invasive Mole and Choriocarcinoma and Its Differences Versus Healthy Controls. Front Cell Infect Microbiol 2021; 11:704100. [PMID: 34513727 PMCID: PMC8428518 DOI: 10.3389/fcimb.2021.704100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate variation in gut microbiome in female patients with invasive mole (IM) and choriocarcinoma (CC) and compare it with healthy controls. Methods Fecal microbiome of 12 female patients with IM, 9 female patients with CC, and 24 healthy females were analyzed based on 16s rDNA sequencing. Alpha (α) diversity was evaluated using Shannon diversity index and Pielou evenness index, while beta (β) diversity was assessed using principle coordinate analysis (PCoA) of unweighted Unifrac distances. The potential functional changes of microbiomes were predicted using Tax4Fun. The relative abundance of microbial taxa was compared using Welch’s t test. The role of varied gut microbiota was analyzed via receiver operating characteristic (ROC) curve. Results The α diversity and β diversity were significantly different between IM patients and controls, but not between CC patients and controls. In addition, the abundance of cancer-related genes was significantly increased in IM and CC patients. Notably, a total of 19 families and 39 genera were found to have significant differences in bacterial abundance. ROC analysis indicated that Prevotella_7 may be a potential biomarker among IM, CC, and controls. Conclusion Our study demonstrated that the diversity and composition of gut microbiota among IM patients, CC patients, and healthy females were significantly different, which provides rationale for using gut microbiota as diagnostic markers and treatment targets, as well as for further study of gut microbiota in gestational trophoblastic neoplasia (GTN).
Collapse
Affiliation(s)
- Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Pan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Serrano-Villar S, Talavera-Rodríguez A, Gosalbes MJ, Madrid N, Pérez-Molina JA, Elliott RJ, Navia B, Lanza VF, Vallejo A, Osman M, Dronda F, Budree S, Zamora J, Gutiérrez C, Manzano M, Vivancos MJ, Ron R, Martínez-Sanz J, Herrera S, Ansa U, Moya A, Moreno S. Fecal microbiota transplantation in HIV: A pilot placebo-controlled study. Nat Commun 2021; 12:1139. [PMID: 33602945 PMCID: PMC7892558 DOI: 10.1038/s41467-021-21472-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Changes in the microbiota have been linked to persistent inflammation during treated HIV infection. In this pilot double-blind study, we study 30 HIV-infected subjects on antiretroviral therapy (ART) with a CD4/CD8 ratio < 1 randomized to either weekly fecal microbiota capsules or placebo for 8 weeks. Stool donors were rationally selected based on their microbiota signatures. We report that fecal microbiota transplantation (FMT) is safe, not related to severe adverse events, and attenuates HIV-associated dysbiosis. FMT elicits changes in gut microbiota structure, including significant increases in alpha diversity, and a mild and transient engraftment of donor's microbiota during the treatment period. The greater engraftment seems to be achieved by recent antibiotic use before FMT. The Lachnospiraceae and Ruminococcaceae families, which are typically depleted in people with HIV, are the taxa more robustly engrafted across time-points. In exploratory analyses, we describe a significant amelioration in the FMT group in intestinal fatty acid-binding protein (IFABP), a biomarker of intestinal damage that independently predicts mortality. Gut microbiota manipulation using a non-invasive and safe strategy of FMT delivery is feasible and deserves further investigation. Trial number: NCT03008941.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain.
| | | | - María José Gosalbes
- Area of Genomics and Health, FISABIO-Salud Pública, Valencia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nadia Madrid
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - José A Pérez-Molina
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | | | - Beatriz Navia
- Department of Nutrition, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain
| | - Alejandro Vallejo
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | | | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | | | - Javier Zamora
- Barts and the London School for Medicine and Dentistry. Queen Mary University of London, London, UK
| | - Carolina Gutiérrez
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Mónica Manzano
- Department of Nutrition, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Sabina Herrera
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Uxua Ansa
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, FISABIO-Salud Pública, Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG), Valencia, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| |
Collapse
|
11
|
Isaguliants M, Bayurova E, Avdoshina D, Kondrashova A, Chiodi F, Palefsky JM. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel) 2021; 13:305. [PMID: 33467638 PMCID: PMC7830613 DOI: 10.3390/cancers13020305] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.
Collapse
Affiliation(s)
- Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ekaterina Bayurova
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Darya Avdoshina
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Alla Kondrashova
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, CA 94117, USA;
| |
Collapse
|
12
|
Passos FC, Gois MB, Sousa AD, de Marinho AIL, Corvo L, Soto M, Barral-Netto M, Barral A, Baccan GC. Investigating associations between intestinal alterations and parasite load according to Bifidobacterium spp. and Lactobacillus spp. abundance in the gut microbiota of hamsters infected by Leishmania infantum. Mem Inst Oswaldo Cruz 2020; 115:e200377. [PMID: 33263602 PMCID: PMC7703327 DOI: 10.1590/0074-02760200377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a tropical neglected disease with high associated rates of mortality. Several studies have highlighted the importance of the intestinal tract (IT) and gut microbiota (GM) in the host immunological defense. Data in the literature on parasite life cycle and host immune defense against VL are scarce regarding the effects of infection on the IT and GM. OBJECTIVES This study aimed to investigate changes observed in the colon of Leishmania infantum-infected hamsters, including alterations in the enteric nervous system (ENS) and GM (specifically, levels of bifidobacteria and lactobacilli). METHODS Male hamsters were inoculated with L. infantum and euthanised at four or eight months post-infection. Intestines were processed for histological analysis and GM analysis. Quantitative polymerase chain reaction (qPCR) was performed to quantify each group of bacteria: Bifidobacterium spp. (Bf) and Lactobacillus spp (LacB). FINDINGS Infected hamsters showed histoarchitectural loss in the colon wall, with increased thickness in the submucosa and the mucosa layer, as well as greater numbers of intraepithelial lymphocytes. Forms suggestive of amastigotes were seen inside mononuclear cells. L. infantum infection induced changes in ENS, as evidenced by increases in the area of colonic enteric ganglia. Despite the absence of changes in the levels of Bf and LacB during the course of infection, the relative abundance of these bacteria was associated with parasite load and histological alterations. MAIN CONCLUSIONS Our results indicate that L. infantum infection leads to important changes in the colon and suggest that bacteria in the GM play a protective role.
Collapse
Affiliation(s)
- Fabine Correia Passos
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| | - Marcelo Biondaro Gois
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências da Saúde, Santo Antônio de Jesus, BA, Brasil
| | - Adenilma Duranes Sousa
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| | - Ananda Isis Lima de Marinho
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| | - Laura Corvo
- Universidad Autónoma de Madrid, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Madrid, Spain
| | - Manoel Soto
- Universidad Autónoma de Madrid, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Madrid, Spain
| | - Manoel Barral-Netto
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Muniz, Salvador, BA, Brasil
| | - Aldina Barral
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisas Gonçalo Muniz, Salvador, BA, Brasil
| | - Gyselle Chrystina Baccan
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Bioquímica e Biofísica, Salvador, BA, Brasil
| |
Collapse
|
13
|
Rosel-Pech C, Chávez-Torres M, Bekker-Méndez VC, Pinto-Cardoso S. Therapeutic avenues for restoring the gut microbiome in HIV infection. Curr Opin Pharmacol 2020; 54:188-201. [PMID: 33271427 DOI: 10.1016/j.coph.2020.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
The interplay between the gut microbiota, the intestinal barrier and the mucosal immune system is profoundly altered in Human Immunodeficiency Virus (HIV) infection. An HIV-associated microbial dysbiotic signature has been difficult to define due to the strong impact of confounders that are intimately linked with HIV infection, namely HIV risk behaviors. When controlling for sexual preference and gender, HIV-associated microbial dysbiotic signatures are characterized by an increase in deleterious taxa and a decrease in beneficial bacteria and their respective metabolic end-products. First attempts to restore the gut microbiota of HIV subjects on Antiretroviral Therapy using Fecal Microbiota Transplantation proved to be safe and reported mild transient engraftment of donor microbiota and no effect on markers of HIV disease progression. This review focuses on the current evidence supporting a role for microbial dysbiosis in HIV pathogenesis, and reviews current microbiome-based therapeutics for restoring the gut microbiota in HIV infection.
Collapse
Affiliation(s)
- Cecilia Rosel-Pech
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr. Daniel Méndez Hernández", Centro Médico Nacional "La Raza", IMSS, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Monserrat Chávez-Torres
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr. Daniel Méndez Hernández", Centro Médico Nacional "La Raza", IMSS, Ciudad de México, Mexico
| | - Sandra Pinto-Cardoso
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico.
| |
Collapse
|
14
|
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci 2020; 21:ijms21218061. [PMID: 33137960 PMCID: PMC7662318 DOI: 10.3390/ijms21218061] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
Collapse
|
15
|
Tamalet C, Devaux C, Dubourg G, Colson P. Resistance to human immunodeficiency virus infection: a rare but neglected state. Ann N Y Acad Sci 2020; 1485:22-42. [PMID: 33009659 DOI: 10.1111/nyas.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022]
Abstract
The natural history of human immunodeficiency virus (HIV) infection is well understood. In most individuals sexually exposed to HIV, the risk of becoming infected depends on the viral load and on sexual practices and gender. However, a low percentage of individuals who practice frequent unprotected sexual intercourse with HIV-infected partners remain uninfected. Although the systematic study of these individuals has made it possible to identify HIV resistance factors including protective genetic patterns, such epidemiological situations remain paradoxical and not fully understood. In vitro experiments have demonstrated that peripheral blood mononuclear cells (PBMCs) from HIV-free, unexposed blood donors are not equally susceptible to HIV infection; in addition, PBMCs from highly exposed seronegative individuals are generally resistant to infection by primary HIV clinical isolates. We review the literature on permissiveness of PBMCs from healthy blood donors and uninfected hyperexposed individuals to sustained infection and replication of HIV-1 in vitro. In addition, we focus on recent evidence indicating that the gut microbiota may either contribute to natural resistance to or delay replication of HIV infected individuals.
Collapse
Affiliation(s)
- Catherine Tamalet
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Gregory Dubourg
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|