1
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, White K, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL induces cytokine production via the NFkB2 pathway promoting neutrophil chemotaxis and neutrophil-mediated immune-suppression in triple negative breast cancer cells. Cancer Lett 2025; 620:217692. [PMID: 40187604 DOI: 10.1016/j.canlet.2025.217692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown mechanisms modulating TRAIL activity in patients. We hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. RNAseq analysis of MDA-MB-231 cells along with validation in additional cell lines demonstrated that TRAIL induced cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, TRAIL dependent induction of the cytokines was predominantly mediated by death receptor 5, caspase-8 and the non-canonical NFKB2 pathway. These cytokines produced by TRAIL-treated TNBC cells enhanced chemotaxis of normal human donor isolated neutrophils. Using TNBC xenograft models, TRAIL induced activation of NFkB2 pathway, cytokine production and increased neutrophil recruitment into the tumors. Moreover, preincubation of neutrophils in supernatants from TRAIL-treated TNBC cells significantly impaired neutrophil function as measured by reduced respiratory burst and cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies showed that these neutrophils suppress T cell proliferation and augment Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and neutrophil-mediated immune suppression.
Collapse
Affiliation(s)
- Manjari Kundu
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yoshimi E Greer
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexei Lobanov
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Lisa Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Shashi Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Karley White
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Donna Voeller
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah Weltz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maggie Cam
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Kim Y, Kim J, Eom S, Jun H, Lee HB, Jeong D, Kang S. Protein Nanoparticles Simultaneously Displaying TRAIL and EGFR-Binding Ligands Effectively Induce Apoptotic Cancer Cell Death and Overcome EGFR-TKI Resistance in Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25139-25151. [PMID: 40237189 DOI: 10.1021/acsami.5c04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Lung cancer remains one of the most lethal cancers globally, with nonsmall cell lung cancer (NSCLC) representing the predominant subtype. Despite significant advancements in targeted therapies, overcoming therapeutic resistance in NSCLC remains a significant challenge, particularly in cases resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Here, we developed target-specific, apoptosis-inducing protein nanoparticles using Aquifex aeolicus lumazine synthase (AaLS), which were engineered to simultaneously display multiple TRAIL molecules and EGFR-binding ligands, including EGFR affibody (Afb) or anti-EGFR nanobodies (7D12, 9G8, and EgB4). These nanoparticles utilize the EGFR-binding ligand to enhance selective targeting of EGFR-overexpressing lung adenocarcinoma (PC9, HCC827, A549) and squamous cell carcinoma (H226) cells, regardless of mutations within the intracellular kinase domain of EGFR, which are primarily driven by tyrosine kinase inhibitors commonly used as first-line treatments in lung cancer therapy. The codisplayed EGFR-binding ligands enhance the attachment of TRAIL-displaying protein nanoparticles to cancer cells by stabilizing interactions with EGFR, promoting cell surface clustering of TRAIL molecules and improving TRAIL engagement with death receptors (DRs). This sustained interaction significantly amplifies TRAIL-mediated apoptotic cancer cell death signaling, effectively overcoming both TRAIL and EGFR-TKI resistance in NSCLC cells. Our findings suggest that dual ligand-displaying protein nanoparticles targeting DRs and EGFR represent a promising therapeutic strategy to potentiate TRAIL efficacy and circumvent EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Yunjung Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiwoo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Bin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Diane Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Lee CE, Noh KM, Kim S, Hong J, Kim K. Recent Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Engineering Strategies for Precise Strike Therapy against Tumor. Biomater Res 2025; 29:0170. [PMID: 40110051 PMCID: PMC11922527 DOI: 10.34133/bmr.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025] Open
Abstract
Effective drug delivery relies on the selection of suitable carriers, which is crucial for protein-based therapeutics such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). One of the key advantages of TRAIL is its ability to selectively induce apoptosis in cancer cells excluding healthy tissues by binding to death receptors DR4 and DR5, which are highly expressed in various cancer cells. Despite this promise, the clinical application of TRAIL has been limited by its short half-life, limited stability, and inefficient delivery to tumor sites. To overcome currently available clinical and engineering approaches, a series of sophisticated strategies is required: (a) the design of biomaterial-mediated carriers for enhanced targeting efficacy, particularly via optimizing selected materials, composition, formulation, and surface modulation. Moreover, (b) development of genetically modified cellular products for augmented TRAIL secretion toward tumor microenvironments and (c) cell surface engineering techniques for TRAIL immobilization onto infusible cell populations are also discussed in the present review. Among these approaches, living cell-based carriers offer the distinct advantage of systemically administered TRAIL-functionalized cells capturing circulating tumor cells in the bloodstream, thereby preventing secondary tumor formation. This review provides insight into the development of novel TRAIL delivery platforms, discusses considerations for clinical translation, and suggests future directions and complementary strategies to advance the field of TRAIL-based cancer therapeutics.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jiyeon Hong
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
4
|
Lai J, Chen L, Li Q, Zhao G, Li X, Guo D, Chen Z, Zhang Y, Fan J, Zhao H, Liang J, Tian L, Chen X, Lin J, Chen Q. tRNA methyltransferase DNMT2 promotes hepatocellular carcinoma progression and enhances Bortezomib resistance through inhibiting TNFSF10. Cell Signal 2025; 127:111533. [PMID: 39617358 DOI: 10.1016/j.cellsig.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
The tRNA methyltransferase DNMT2 (TRDMT1) plays a crucial role in various biological functions; however, its role in cancer, particularly in liver cancer, remains incompletely understood. In this study, we demonstrate that high DNMT2 expression is negatively correlated with prognosis in clinical liver cancer patients. A series of in vitro and in vivo experiments showed that DNMT2 promotes the proliferation, colony formation, and metastasis of hepatocellular carcinoma cells. We identified the pro-apoptotic gene TNFSF10 (TRAIL) as a downstream target of DNMT2, regulated by the N6-methyladenosine (m6A) demethylase FTO. Epigenetically, DNMT2 deletion increased FTO expression, leading to a reduction in m6A methylation levels. FTO upregulated TNFSF10 expression, significantly reducing the proliferation and metastasis of DNMT2-deficient hepatocellular carcinoma cells. Furthermore, DNMT2 deletion was shown to significantly upregulate chemokine expression in tumors. Finally, we demonstrated that the NF-κB inhibitor Bortezomib further enhances DNMT2 deletion-induced apoptosis in hepatocellular carcinoma cells. This study reveals DNMT2's role in liver cancer and presents a new therapeutic target for future treatments.
Collapse
Affiliation(s)
- Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Guangjian Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Xinxin Li
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dong Guo
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Yong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Jiadi Liang
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ling Tian
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaolan Chen
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
5
|
Asadi M, Zafari V, Sadeghi-Mohammadi S, Shanehbandi D, Mert U, Soleimani Z, Caner A, Zarredar H. The role of tumor microenvironment and self-organization in cancer progression: Key insights for therapeutic development. BIOIMPACTS : BI 2024; 15:30713. [PMID: 40256216 PMCID: PMC12008505 DOI: 10.34172/bi.30713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction The tumor microenvironment (TME) plays a pivotal role in cancer progression, influencing tumor initiation, growth, invasion, metastasis, and response to therapies. This study explores the dynamic interactions within the TME, particularly focusing on self-organization-a process by which tumor cells and their microenvironment reciprocally shape one another, leading to cancer progression and resistance. Understanding these interactions can reveal new prognostic markers and therapeutic targets within the TME, such as extracellular matrix (ECM) components, immune cells, and cytokine signaling pathways. Methods A comprehensive search method was employed to investigate the current academic literature on TME, particularly focusing on self-organization in the context of cancer progression and resistance across the PubMed, Google Scholar, and Science Direct databases. Results Recent studies suggest that therapies that disrupt TME self-organization could improve patient outcomes by defeating drug resistance and increasing the effectiveness of conventional therapy. Additionally, this research highlights the essential of understanding the biophysical properties of the TME, like cytoskeletal alterations, in the development of more effective malignancy therapy. Conclusion This review indicated that targeting the ECM and immune cells within the TME can improve therapy effectiveness. Also, by focusing on TME self-organization, we can recognize new therapeutic plans to defeat drug resistance.
Collapse
Affiliation(s)
- Milad Asadi
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Venus Zafari
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ufuk Mert
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Zahra Soleimani
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayşe Caner
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Minnaar CA, Szigeti GP, Szasz A. The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology. Cancers (Basel) 2024; 16:3908. [PMID: 39682096 DOI: 10.3390/cancers16233908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Modulated electro-hyperthermia (mEHT) is unique due to its combination of thermal and non-thermal effects. METHOD This report summarizes the literature on the effects of mEHT observed in vitro and in vivo. RESULTS The thermal and electrical heterogeneity of tissues allows the radiofrequency signal to selectively target malignant tissue. The applied modulation appears to activate various apoptotic pathways, predominantly leading to immunogenic cell death (ICD). ICD promotes the release of damage-associated molecular patterns, potentially producing tumour-specific antigen-presenting cells. This abscopal-type effect may target distant metastases while treating the primary tumour locally. This immune memory effect is like vaccination mechanisms. CONCLUSIONS The application of mEHT has the potential to expand from local to systemic disease, enabling the simultaneous treatment of micro- and macro-metastases.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Gyula Peter Szigeti
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
- MedTech Innovation and Education Center, University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| | - Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
7
|
Horozoglu C, Yildiz A, Sonmez D, Demirkol S, Yildiz Y, Arikan S, Yaylim I. TRAIL C1595T Variant Critically Alters the Level of sTRAIL in Terms of Histopathological Parameters in Colorectal Cancer. Indian J Clin Biochem 2024; 39:593-599. [PMID: 39346710 PMCID: PMC11436522 DOI: 10.1007/s12291-023-01146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/21/2023] [Indexed: 10/01/2024]
Abstract
TRAIL, a member of the TNF family, is expressed in tumor and tumor surrounding tissue in many solid organ cancers. While the induction of tumor-specific apoptosis in correlation with cytokine stimulation may cause anti-tumoral effects, the pro-tumorigenic effects of its expression by tumor surrounding tissue members have been reported in the literature. In our study, it was aimed to evaluate the effect of the gene variant of TRAIL on soluble levels in patients with colorectal cancer (CRC) on the molecular pathological axis. TRAIL C1595 gene variant PCR-RFLP and sTRAIL levels were determined by ELISA in age and sex adjusted CRC and control groups. It was determined that CT carriage was high in patients without perineural invasion and sTRAIL levels were approximately 2.72 times lower than CC in patients with CT in this group (p < 0.05). Similarly, sTRAIL level was found to be high in patients with CC genotype in CRC without lymph node metastas. It was determined that CT carriage was high in patients without perineural invasion and sTRAIL levels were approximately 2.49 times lower than CC in patients with CT in this group.is (p < 0.05). We think that TRAIL C1595T in CRC can change sTRAIL levels in the clinicopathological axis in advanced stages such as metastasis and invasion, but both are not independent risk factors.
Collapse
Affiliation(s)
- Cem Horozoglu
- Faculty of Medicine, Halic University, Istanbul, 34060 Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Asli Yildiz
- Faculty of Medicine, Biruni University, Istanbul, 34010 Turkey
| | - Dilara Sonmez
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, 34093 Turkey
| | - Seyda Demirkol
- Department of Molecular Biology and Genetics, Faculty of Engineering Natural Science, Biruni University, Istanbul, 34010 Turkey
| | - Yemliha Yildiz
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34396 Turkey
| | - Soykan Arikan
- Department of General Surgery, Basaksehir Cam and Sakura City Hospital, Istanbul, 34480 Turkey
| | - Ilhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, 34093 Turkey
| |
Collapse
|
8
|
Habibizadeh M, Lotfollahzadeh S, Mahdavi P, Mohammadi S, Tavallaei O. Nanoparticle-mediated gene delivery of TRAIL to resistant cancer cells: A review. Heliyon 2024; 10:e36057. [PMID: 39247341 PMCID: PMC11379606 DOI: 10.1016/j.heliyon.2024.e36057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as APO2L, has emerged as a highly potential anticancer agent because of its capacity to effectively trigger apoptosis in tumor cells by specifically binding to either of its death receptors (DR4 or DR5) while having no adverse effects on normal cells. Nevertheless, its practical use has been hindered by its inefficient pharmacokinetics characteristics, the challenges involved in its administration and delivery to targeted cells, and the resistance exhibited by most cancer cells towards TRAIL. Gene therapy, as a promising approach would be able to potentially circumvent TRAIL-based cancer therapy challenges mainly through localized TRAIL expression and generating a bystander impact. Among different strategies, using nanoparticles in TRAIL gene delivery allows for precise targeting, and overcoming TRAIL resistance by combination therapy. In this review, we go over potential mechanisms by which cancer cells achieve resistance to TRAIL and provide an overview of different carriers for delivering of the TRAIL gene to resistant cancer cells, focusing on different types of nanoparticles utilized in this context. We will also explore the challenges, and investigate future perspectives of this nanomedicine approach for cancer therapy.
Collapse
Affiliation(s)
- Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Lotfollahzadeh
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL-induced cytokine production via NFKB2 pathway promotes neutrophil chemotaxis and immune suppression in triple negative breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604341. [PMID: 39091795 PMCID: PMC11291031 DOI: 10.1101/2024.07.19.604341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown modulatory mechanisms responsible for the lack of TRAIL activity in patients. Here, we hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. To test this, we performed an RNAseq analysis of MDA-MB-231 cells treated with TRAIL, followed by validation in additional TNBC cell lines. TRAIL significantly induces expression of multiple cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, the induction of these cytokines was predominantly mediated by death receptor 5, caspase 8 (but not caspase 8 enzymatic activity), and the non-canonical NFKB2 pathway. The cytokines produced by the TRAIL-treated TNBC cells enhanced chemotaxis of healthy human donor isolated neutrophils. In vivo , TRAIL treated TNBC murine xenograft tumors showed activation of the NFKB2 pathway, elevated production of CXCLs and IL-6, and increased neutrophil recruitment into the tumors. Moreover, donor isolated neutrophils preincubated in supernatants from TRAIL-treated TNBC cells exhibited impaired cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies with these neutrophils confirmed their suppressive effect on T cell proliferation and an increase in Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and immune suppression.
Collapse
|
10
|
Luo C, He S, Shi F, Zhou J, Shang L. The Role of TRAIL Signaling in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:521. [PMID: 39056714 PMCID: PMC11274015 DOI: 10.3390/biology13070521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Cancer continues to pose a significant threat to global health, with its status as a leading cause of death remaining unchallenged. Within the realm of cancer research, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stands out as a critical player, having been identified in the 1990s as the tenth member of the TNF family. This review examines the pivotal role of TRAIL in cancer biology, focusing on its ability to induce apoptosis in malignant cells through both endogenous and exogenous pathways. We provide an in-depth analysis of TRAIL's intracellular signaling and intercellular communication, underscoring its potential as a selective anticancer agent. Additionally, the review explores TRAIL's capacity to reshape the tumor microenvironment, thereby influencing cancer progression and response to therapy. With an eye towards future developments, we discuss the prospects of harnessing TRAIL's capabilities for the creation of tailored, precision-based cancer treatments, aiming to enhance efficacy and improve patient survival rates.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| | - Li Shang
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/Xiangya Hospital, Central South University, Changsha 410078, China; (C.L.); (J.Z.)
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; (S.H.); (F.S.)
| |
Collapse
|
11
|
Sun C, Wang S, Ma Z, Zhou J, Ding Z, Yuan G, Pan Y. Neutrophils in glioma microenvironment: from immune function to immunotherapy. Front Immunol 2024; 15:1393173. [PMID: 38779679 PMCID: PMC11109384 DOI: 10.3389/fimmu.2024.1393173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Glioma is a malignant tumor of the central nervous system (CNS). Currently, effective treatment options for gliomas are still lacking. Neutrophils, as an important member of the tumor microenvironment (TME), are widely distributed in circulation. Recently, the discovery of cranial-meningeal channels and intracranial lymphatic vessels has provided new insights into the origins of neutrophils in the CNS. Neutrophils in the brain may originate more from the skull and adjacent vertebral bone marrow. They cross the blood-brain barrier (BBB) under the action of chemokines and enter the brain parenchyma, subsequently migrating to the glioma TME and undergoing phenotypic changes upon contact with tumor cells. Under glycolytic metabolism model, neutrophils show complex and dual functions in different stages of cancer progression, including participation in the malignant progression, immune suppression, and anti-tumor effects of gliomas. Additionally, neutrophils in the TME interact with other immune cells, playing a crucial role in cancer immunotherapy. Targeting neutrophils may be a novel generation of immunotherapy and improve the efficacy of cancer treatments. This article reviews the molecular mechanisms of neutrophils infiltrating the central nervous system from the external environment, detailing the origin, functions, classifications, and targeted therapies of neutrophils in the context of glioma.
Collapse
Affiliation(s)
- Chao Sun
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Siwen Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhen Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Jinghuan Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zilin Ding
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Yuan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yawen Pan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
12
|
De Wilt L, Sobocki BK, Jansen G, Tabeian H, de Jong S, Peters GJ, Kruyt F. Mechanisms underlying reversed TRAIL sensitivity in acquired bortezomib-resistant non-small cell lung cancer cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:12. [PMID: 38835345 PMCID: PMC11149110 DOI: 10.20517/cdr.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 06/06/2024]
Abstract
Aim: The therapeutic targeting of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors in cancer, including non-small cell lung cancer (NSCLC), is a widely studied approach for tumor selective apoptotic cell death therapy. However, apoptosis resistance is often encountered. The main aim of this study was to investigate the apoptotic mechanism underlying TRAIL sensitivity in three bortezomib (BTZ)-resistant NSCLC variants, combining induction of both the intrinsic and extrinsic pathways. Methods: Sensitivity to TRAIL in BTZ-resistant variants was determined using a tetrazolium (MTT) and a clonogenic assay. A RT-qPCR profiling mRNA array was used to determine apoptosis pathway-specific gene expression. The expression of these proteins was determined through ELISA assays and western Blotting, while apoptosis (sub-G1) and cytokine expression were determined using flow cytometry. Apoptotic genes were silenced by specific siRNAs. Lipid rafts were isolated with fractional ultracentrifugation. Results: A549BTZR (BTZ-resistant) cells were sensitive to TRAIL in contrast to parental A549 cells, which are resistant to TRAIL. TRAIL-sensitive H460 cells remained equally sensitive for TRAIL as H460BTZR. In A549BTZR cells, we identified an increased mRNA expression of TNFRSF11B [osteoprotegerin (OPG)] and caspase-1, -4 and -5 mRNAs involved in cytokine activation and immunogenic cell death. Although the OPG, interleukin-6 (IL-6), and interleukin-8 (IL-8) protein levels were markedly enhanced (122-, 103-, and 11-fold, respectively) in the A549BTZR cells, this was not sufficient to trigger TRAIL-induced apoptosis in the parental A549 cells. Regarding the extrinsic apoptotic pathway, the A549BTZR cells showed TRAIL-R1-dependent TRAIL sensitivity. The shift of TRAIL-R1 from non-lipid into lipid rafts enhanced TRAIL-induced apoptosis. In the intrinsic apoptotic pathway, a strong increase in the mRNA and protein levels of the anti-apoptotic myeloid leukemia cell differentiation protein (Mcl-1) and B-cell leukemia/lymphoma 2 (Bcl-2) was found, whereas the B-cell lymphoma-extra large (Bcl-xL) expression was reduced. However, the stable overexpression of Bcl-xL in the A549BTZR cells did not reverse the TRAIL sensitivity in the A549BTZR cells, but silencing of the BH3 Interacting Domain Death Agonist (BID) protein demonstrated the importance of the intrinsic apoptotic pathway, regardless of Bcl-xL. Conclusion: In summary, increased sensitivity to TRAIL-R1 seems predominantly related to the relocalization into lipid rafts and increased extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Leonie De Wilt
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
- Authors contributed equally
| | - Bartosz Kamil Sobocki
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk 80-210, Poland
- Authors contributed equally
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Hessan Tabeian
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, the Netherlands
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk 80-210, Poland
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| |
Collapse
|
13
|
Sittiju P, Wudtiwai B, Chongchai A, Hajitou A, Kongtawelert P, Pothacharoen P, Suwan K. Bacteriophage-based particles carrying the TNF-related apoptosis-inducing ligand (TRAIL) gene for targeted delivery in hepatocellular carcinoma. NANOSCALE 2024; 16:6603-6617. [PMID: 38470366 PMCID: PMC10977282 DOI: 10.1039/d3nr05660k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The TRAIL (Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand) is a promising candidate for cancer treatment due to its unique ability to selectively induce programmed cell death, or apoptosis, in cancer cells while sparing healthy ones. This selectivity arises from the preferential binding of the TRAIL to death receptors on cancer cells, triggering a cascade of events that lead to their demise. However, significant limitations in using the TRAIL for cancer treatment are the administration of the TRAIL protein that can potentially lead to tissue toxicity (off-target) and the short half-life of the TRAIL in the body which may necessitate frequent and sustained administration; these can pose logistical challenges for long-term treatment regimens. We have devised a novel approach for surmounting these limitations by introducing the TRAIL gene directly into cancer cells, enabling them to produce the TRAIL locally and subsequently trigger apoptosis. A novel gene delivery system such as a bacteriophage-based particle TPA (transmorphic phage/AAV) was utilized to address these limitations. TPA is a hybrid M13 filamentous bacteriophage particle encapsulating a therapeutic gene cassette with inverted terminal repeats (ITRs) from adeno-associated viruses (AAVs). The particle also showed a tumour targeting ligand, CDCRGDCFC (RGD4C), on its capsid (RGD4C.TPA) to target the particle to cancer cells. RGD4C selectively binds to αvβ3 and αvβ5 integrins overexpressed on the surface of most of the cancer cells but is barely present on normal cells. Hepatocellular carcinoma (HCC) was chosen as a model because it has one of the lowest survival rates among cancers. We demonstrated that human HCC cell lines (Huh-7 and HepG2) express αvβ5 integrin receptors on their surface. These HCC cells also express death receptors and TRAIL-binding receptors. We showed that the targeted TPA particle carrying the transmembrane TRAIL gene (RGD4C.TPA-tmTRAIL) selectively and efficiently delivered the tmTRAIL gene to HCC cells resulting in the production of tmTRAIL from transduced cells and subsequently induced apoptotic death of HCC cells. This tumour-targeted particle can be an excellent candidate for the targeted gene therapy of HCC.
Collapse
Affiliation(s)
- Pattaralawan Sittiju
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Aitthiphon Chongchai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Amin Hajitou
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Keittisak Suwan
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
14
|
Asadi M, Zarredar H, Zafari V, Soleimani Z, Saeedi H, Caner A, Shanehbandi D. Immune Features of Tumor Microenvironment: A Genetic Spotlight. Cell Biochem Biophys 2024; 82:107-118. [PMID: 37870699 DOI: 10.1007/s12013-023-01192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
A tumor represents a highly intricate tissue entity, characterized by an exceptionally complex microenvironment that starkly contrasts with the typical physiological surroundings of healthy tissues. Within this tumor microenvironment (TME), every component and factor assume paramount importance in the progression of malignancy and exerts a pivotal influence on a patient's clinical outcome. One of the remarkable aspects of the TME is its remarkable heterogeneity, not only across different types of cancers but even within the same histological category of tumors. In-depth research has illuminated the intricate interplay between specific immune cells and molecules and the dynamic characteristics of the TME. Recent investigations have yielded compelling evidence that several mutations harbored by tumor cells possess the capacity to instigate substantial alterations in the TME. These mutations, often acting as drivers of tumorigenesis, can orchestrate a cascade of events that remodel the TME, thereby influencing crucial aspects of cancer behavior, including its invasiveness, immune evasion, and response to therapies. It is within this nuanced context that the present study endeavors to provide a concise yet comprehensive summary of how specific mutations, within the genetic landscape of cancer cells, can instigate profound changes in TME features. By elucidating the intricate relationship between genetic mutations and the TME, this research aims to contribute to a deeper understanding of cancer biology. Ultimately, the knowledge gained from this study holds the potential to inform the development of more targeted and effective treatments, thereby offering new hope to patients grappling with the complexities of cancer.
Collapse
Affiliation(s)
- Milad Asadi
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Zahra Soleimani
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayse Caner
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey.
- The University of Texas, MD Anderson Cancer Center, Houston, USA.
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
15
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Pandey R, Bisht P, Wal P, Murti K, Ravichandiran V, Kumar N. SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects. Mini Rev Med Chem 2024; 24:1334-1352. [PMID: 38275029 DOI: 10.2174/0113895575269644231120104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION SMAC mimetics acts in a restorative way in the prevention of lung cancer.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| |
Collapse
|
17
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
18
|
Caldiran F, Berkel C, Yilmaz E, Kucuk B, Cacan AH, Citli S, Canpolat E, Cacan E. Combination treatment of bortezomib and epirubicin increases the expression of TNFRSF10 A/B, and induces TRAIL-mediated cell death in colorectal cancer cells. Biochem Biophys Res Commun 2023; 675:33-40. [PMID: 37451215 DOI: 10.1016/j.bbrc.2023.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Colorectal cancer is one of the most common cancers worldwide, affecting the colon and rectum. A major problem in the treatment of colorectal cancer is acquired chemoresistance, including resistance against death receptor-induced apoptosis. Therefore, investigating new biomarkers for the treatment of the disease and sensitization strategies against TRAIL might be of high clinical importance. TNFRSF10A/B are known as death receptors for TRAIL-induced apoptotic cell death. In this study, we used multiple bioinformatic tools and experimental analyses to investigate the role of TRAIL receptors TNFRSF10A and TNFRSF10B in colorectal cancer. We also identified the potential effect of bortezomib and epirubicin in the induction of TRAIL-mediated apoptotic cell death. Here, we showed that TNFRSF10 A/B expressions are upregulated in various tumor types, including COAD, and its high expression is decreased with the different clinicopathological parameters in COAD. We also found an association between TNFRSF10 A/B expression and tumor molecular subtypes. We further detected the association between the expression of TNFRSF10 A/B and immune cell tumor infiltration, including B cells, CD8+ T cells, neutrophils and dendritic cells. In addition, we showed that combining bortezomib and epirubicin treatment leads to the upregulation of TNFRSF10 A/B in colorectal cancer cells in vitro. The increase in the expression of death receptors was correlated with higher active caspase-3 levels following the incubation of cells with recombinant TRAIL protein, which is a ligand for TNFRSF10 A/B receptors. Our results suggest that TNFRSF10 A/B may be a marker to differentiate tumor molecular subtypes in colorectal cancer. The expression of TNFRSF10 A/B may be associated with the recruitment of immune cells into tumors and the development of tumor suppression. The combination of bortezomib and epirubicin treatment might sensitize colorectal cancer cells to TRAIL-induced apoptosis via the upregulation of death receptor.
Collapse
Affiliation(s)
- Feyzanur Caldiran
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkiye
| | - Caglar Berkel
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkiye
| | - Esra Yilmaz
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkiye
| | - Burak Kucuk
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkiye
| | - Aslihan Hatun Cacan
- Tokat Gaziosmanpasa University, Department of Medical Services and Techniques, Erbaa, Tokat, Turkiye
| | - Senol Citli
- Recep Tayyip Erdogan University, Faculty of Medicine, Department of Medical Genetics, Rize, Turkiye
| | - Emel Canpolat
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkiye
| | - Ercan Cacan
- Tokat Gaziosmanpasa University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Tokat, Turkiye.
| |
Collapse
|
19
|
Gunalp S, Helvaci DG, Oner A, Bursalı A, Conforte A, Güner H, Karakülah G, Szegezdi E, Sag D. TRAIL promotes the polarization of human macrophages toward a proinflammatory M1 phenotype and is associated with increased survival in cancer patients with high tumor macrophage content. Front Immunol 2023; 14:1209249. [PMID: 37809073 PMCID: PMC10551148 DOI: 10.3389/fimmu.2023.1209249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Background TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can either induce cell death or activate survival pathways after binding to death receptors (DRs) DR4 or DR5. TRAIL is investigated as a therapeutic agent in clinical trials due to its selective toxicity to transformed cells. Macrophages can be polarized into pro-inflammatory/tumor-fighting M1 macrophages or anti-inflammatory/tumor-supportive M2 macrophages and an imbalance between M1 and M2 macrophages can promote diseases. Therefore, identifying modulators that regulate macrophage polarization is important to design effective macrophage-targeted immunotherapies. The impact of TRAIL on macrophage polarization is not known. Methods Primary human monocyte-derived macrophages were pre-treated with either TRAIL or with DR4 or DR5-specific ligands and then polarized into M1, M2a, or M2c phenotypes in vitro. The expression of M1 and M2 markers in macrophage subtypes was analyzed by RNA sequencing, qPCR, ELISA, and flow cytometry. Furthermore, the cytotoxicity of the macrophages against U937 AML tumor targets was assessed by flow cytometry. TCGA datasets were also analyzed to correlate TRAIL with M1/M2 markers, and the overall survival of cancer patients. Results TRAIL increased the expression of M1 markers at both mRNA and protein levels while decreasing the expression of M2 markers at the mRNA level in human macrophages. TRAIL also shifted M2 macrophages towards an M1 phenotype. Our data showed that both DR4 and DR5 death receptors play a role in macrophage polarization. Furthermore, TRAIL enhanced the cytotoxicity of macrophages against the AML cancer cells in vitro. Finally, TRAIL expression was positively correlated with increased expression of M1 markers in the tumors from ovarian and sarcoma cancer patients and longer overall survival in cases with high, but not low, tumor macrophage content. Conclusions TRAIL promotes the polarization of human macrophages toward a proinflammatory M1 phenotype via both DR4 and DR5. Our study defines TRAIL as a new regulator of macrophage polarization and suggests that targeting DRs can enhance the anti-tumorigenic response of macrophages in the tumor microenvironment by increasing M1 polarization.
Collapse
Affiliation(s)
- Sinem Gunalp
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Derya Goksu Helvaci
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| | - Aysenur Oner
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | | | - Alessandra Conforte
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Hüseyin Güner
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Türkiye
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Eva Szegezdi
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Duygu Sag
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Genomic Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| |
Collapse
|
20
|
Yi X, Li J, Zheng X, Xu H, Liao D, Zhang T, Wei Q, Li H, Peng J, Ai J. Construction of PANoptosis signature: Novel target discovery for prostate cancer immunotherapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:376-390. [PMID: 37547288 PMCID: PMC10400972 DOI: 10.1016/j.omtn.2023.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
PANoptosis pathway gene sets encompassing pyroptosis, apoptosis, and necroptosis were identified from the MSigDB database. We analyzed the perturbations and crosstalk in the PANoptosis pathway in prostate adenocarcinoma (PRAD), including gene mutation, transcription, methylation, and clinical features. By constructing a PANoptosis signature, we accurately predicted the prognosis and immunotherapeutic response of PRAD patients. We further explored the molecular features and immunological roles of the signature, dividing patients into high- and low-score groups. Notably, the high-score group correlated with better survival outcomes and immunotherapeutic responses, as well as a higher mutation frequency and enrichment score in the PANoptosis and HALLMARK pathways. The PANoptosis signature also enhanced overall antitumor immunity, promoted immune cell infiltration, upregulated immune checkpoint regulators, and revealed the cold tumor characteristics of PRAD. We also identified potential drug targets based on the PANoptosis signature. These findings lead the way in identifying novel prognostic markers and therapeutic targets for patients with PRAD.
Collapse
Affiliation(s)
- Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Dazhou Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Tianyi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| |
Collapse
|
21
|
Li F, Gong J, Shi T, Ren X, Cui X, Xiao L, Liu J, Qiu F. The design and straightforward synthesis of multifunctional DNA microgels for the improved targeted delivery of antitumor drugs. Int J Pharm 2023; 643:123242. [PMID: 37467815 DOI: 10.1016/j.ijpharm.2023.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Multifunctional drug delivery platforms represent ideal approaches to reliably targeting pharmacological agents of interest to the complex tumor microenvironment (TME), yet the complicated synthesis processes, high costs, and toxicities associated with these agents have hindered their clinical application to date. In this study, the properties of the TME are leveraged to develop a multifunctional pNAB/AS DNA microgel that is able to actively target tumors. This microgel is generated by a straightforward one-step free radical precipitation polymerization procedure, exhibiting extremely high drug encapsulation efficiency (∼90%), and is responsive to three environmental stimuli including temperature, reduction, and an acidic pH while showing minimal drug leakage under physiological conditions. Through a synergistic combination of appropriate size and aptamer recognition, this microgel is able to reliably facilitate intratumoral drug accumulation and nuclear drug delivery. Critically, pNAB/AS-Dox treatment is associated with specific antitumor activity in vitro and in vivo while retaining a good biosafety profile and causing lower levels of off-target toxicity as compared to free drug treatment. Together, these findings emphasize the potential value of this multifunctional pNAB/AS DNA microgel as a platform amenable to targeted drug delivery to the TME, providing a foundation for further efforts to readily develop multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jianing Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Shi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyi Cui
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Li Xiao
- Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
22
|
Pimentel JM, Zhou JY, Wu GS. The Role of TRAIL in Apoptosis and Immunosurveillance in Cancer. Cancers (Basel) 2023; 15:2752. [PMID: 37345089 DOI: 10.3390/cancers15102752] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that selectively induces apoptosis in tumor cells without harming normal cells, making it an attractive agent for cancer therapy. TRAIL induces apoptosis by binding to and activating its death receptors DR4 and DR5. Several TRAIL-based treatments have been developed, including recombinant forms of TRAIL and its death receptor agonist antibodies, but the efficacy of TRAIL-based therapies in clinical trials is modest. In addition to inducing cancer cell apoptosis, TRAIL is expressed in immune cells and plays a critical role in tumor surveillance. Emerging evidence indicates that the TRAIL pathway may interact with immune checkpoint proteins, including programmed death-ligand 1 (PD-L1), to modulate PD-L1-based tumor immunotherapies. Therefore, understanding the interaction between TRAIL and the immune checkpoint PD-L1 will lead to the development of new strategies to improve TRAIL- and PD-L1-based therapies. This review discusses recent findings on TRAIL-based therapy, resistance, and its involvement in tumor immunosurveillance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
23
|
Kourko O, Hawke LG, Ormiston ML, Gee K. IFN-β activates cytotoxic function of human natural killer cells toward IL-27 and poly(I:C) stimulated PC3 and DU145 cells. Cell Immunol 2023; 387:104718. [PMID: 37068442 DOI: 10.1016/j.cellimm.2023.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
Natural killer (NK) cell phenotype and function are altered in patients with prostate cancer, and increased NK cell activity is associated with a better prognosis in patients with disease. For patients with advanced stage prostate cancer, immunotherapies are a promising approach when standard treatment options have been exhausted. With the rapid emergence of NK cell-based therapies, it is important to understand the mechanisms by which NK cells can be triggered to kill cancer cells that have developed immune-evasive strategies. Altering the cytokine profiles of advanced prostate cancer cells may be an area to explore when considering ways in which NK cell activation can be modulated. We have previously demonstrated that combining the cytokine, IL-27, with TLR3 agonist, poly(I:C), changes cytokine secretion in the advanced prostate cancer models, PC3 and DU145 cells. Herein, we extend our previous work to study the effect of primary human NK cells on prostate cancer cell death in an in vitro co-culture model. Stimulating PC3 and DU145 cells with IL-27 and poly(I:C) induced IFN-β secretion, which was required for activation of primary human NK cells to kill these stimulated prostate cancer cells. PC3 cells were more sensitized to NK cell-mediated killing when compared to DU145 cells, which was attributed to differential levels of IFN-β produced in response to stimulation with IL-27 and poly(I:C). IFN-β increased granzyme B secretion and membrane-bound TRAIL expression by co-cultured NK cells. We further demonstrated that these NK cells killed PC3 cells in a partially TRAIL-dependent manner. This work provides mechanistic insight into how the cytotoxic function of NK cells can be improved to target cancer cells.
Collapse
Affiliation(s)
- Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Lindsey G Hawke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mark L Ormiston
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
24
|
Abstract
Cancer is still a serious health problem globally. Conventional therapies have adverse effects, which affect human life quality. Tumor microenvironment (TME), also known as surrounding stroma, has a contributory role in cancer development. Understanding the interaction between TME and cancer progression is a challenge and helps to develop new therapeutic strategies that neutralize the tracks taken by cancer cells to grow, spread, and resist therapy. Therefore, targeting TME components may be effective in improving tumor therapy. Using nanotechnology for drug delivery is of great interest, where it overcomes some obstacles such as solubility and absorption of drugs and delivering them to the appropriate place of action. The main target of nanotechnology for drug delivery is the ability to differentiate between normal and cancer cells. It can be concluded that TME is an important complementary strategy for the development of anticancer drugs. Multitargeted therapy has better efficient potential than individual therapy against cancer.
Collapse
|
25
|
Casari G, Dall'Ora M, Melandri A, Masciale V, Chiavelli C, Prapa M, Neri G, Spano MC, Murgia A, D'Esposito A, Baschieri MC, Ceccherelli GB, Dominici M, Grisendi G. Impact of soluble tumor necrosis factor-related apoptosis-inducing ligand released by engineered adipose mesenchymal stromal cells on white blood cells. Cytotherapy 2023; 25:605-614. [PMID: 37012089 DOI: 10.1016/j.jcyt.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND AIMS The proapoptotic protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is physiologically expressed by immune cells and performs regulatory functions in infections, autoimmune diseases and cancer, where it acts as a tumor suppressor. Adipose-derived mesenchymal stromal cells (AD-MSCs) also may play immunomodulatory roles in both primary and acquired immune responses. We have previously demonstrated the efficacy of an anticancer gene therapy based on AD-MSC engineered to secrete a soluble TRAIL variant (sTRAIL) against pancreatic cancer. However, the impact of AD-MSC sTRAIL on leukocyte subsets has been not yet considered also to predict a possible immunotoxicity profile in the clinical translation of this cell-based anticancer strategy. METHODS Monocytes, polymorphonuclear cells and T lymphocytes were freshly isolated from the peripheral blood of healthy donors. Immunophenotype and functional (DR4 and DR5) and decoy (DcR1 and DcR2) TRAIL receptors were tested by flow cytometry. The viability of white blood cells treated with sTRAIL released by gene-modified AD-MSC or co-cultured with AD-MSC sTRAIL was then evaluated by both metabolic assays and flow cytometry. In addition, cytokine profile in co-cultures was analyzed by multiplex enzyme-linked immunosorbent assay. RESULTS Monocytes and polymorphonuclear cells showed high positivity for DR5 and DcR2, respectively, whereas T cells revealed negligible expression of all TRAIL receptors. Irrespective of TRAIL receptors' presence on the cell membrane, white blood cells were refractory to the proapoptotic effect displayed by sTRAIL secreted by gene-modified AD-MSC, and direct cell-to-cell contact with AD-MSC sTRAIL had negligible impact on T-cell and monocyte viability. Cytokine crosstalk involving interleukin 10, tumor necrosis factor alpha, and interferon gamma secreted by T lymphocytes and vascular endothelial growth factor A and interleukin 6 released by AD-MSC was highlighted in T-cell and AD-MSC sTRAIL co-cultures. CONCLUSIONS In summary, this study demonstrates the immunological safety and thus the clinical feasibility of an anticancer approach based on AD-MSC expressing the proapoptotic molecule sTRAIL.
Collapse
Affiliation(s)
- Giulia Casari
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona, Italy
| | | | - Aurora Melandri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Chiavelli
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Department of Medical Technical Sciences, Universiteti Barleti, Tirana, Albania
| | - Giovanni Neri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Alba Murgia
- Technopole of Mirandola TPM, Mirandola, Modena, Italy
| | - Angela D'Esposito
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Maria Cristina Baschieri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; EVOTEC (Modena) Srl, Medolla, Modena, Italy.
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
26
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
27
|
Targeting TRAIL Death Receptors in Triple-Negative Breast Cancers: Challenges and Strategies for Cancer Therapy. Cells 2022; 11:cells11233717. [PMID: 36496977 PMCID: PMC9739296 DOI: 10.3390/cells11233717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells via death receptor (DR) activation with little toxicity to normal cells or tissues. The selectivity for activating apoptosis in cancer cells confers an ideal therapeutic characteristic to TRAIL, which has led to the development and clinical testing of many DR agonists. However, TRAIL/DR targeting therapies have been widely ineffective in clinical trials of various malignancies for reasons that remain poorly understood. Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers. Targeting the TRAIL DR pathway has shown notable efficacy in a subset of TNBC in preclinical models but again has not shown appreciable activity in clinical trials. In this review, we will discuss the signaling components and mechanisms governing TRAIL pathway activation and clinical trial findings discussed with a focus on TNBC. Challenges and potential solutions for using DR agonists in the clinic are also discussed, including consideration of the pharmacokinetic and pharmacodynamic properties of DR agonists, patient selection by predictive biomarkers, and potential combination therapies. Moreover, recent findings on the impact of TRAIL treatment on the immune response, as well as novel strategies to address those challenges, are discussed.
Collapse
|
28
|
Xie F, Huang X, He C, Wang R, Li S. An Inflammatory Response-Related Gene Signature Reveals Distinct Survival Outcome and Tumor Microenvironment Characterization in Pancreatic Cancer. Front Mol Biosci 2022; 9:876607. [PMID: 35755810 PMCID: PMC9216734 DOI: 10.3389/fmolb.2022.876607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Desmoplasia or rich fibrotic stroma is a typical property of pancreatic cancer (PC), with a significant impact on tumor progression, metastasis, and chemotherapy response. Unusual inflammatory responses are considered to induce fibrosis of tissue, but the expression and clinical significance of inflammatory response-related genes in PC have not been clearly elucidated. Methods: Prognosis-related differentially expressed genes (DEGs) between tumor and normal tissues were identified by comparing the transcriptome data of PC samples based on The Cancer Genome Atlas (TCGA) portal and the Genotype Tissue Expression (GTEx) databases. Samples from the ArrayExpress database were used as an external validation cohort. Results: A total of 27 inflammatory response-related DEGs in PC were identified. Least absolute shrinkage and selection operator (LASSO) analysis revealed three core genes that served as an inflammatory response gene signature (IRGS), and a risk score was calculated. The diagnostic accuracy of the IRGS was validated in the training (n = 176) and validation (n = 288) cohorts, which reliably predicted the overall survival (OS) and disease-free survival (DFS) of patients with PC. Furthermore, multivariate analysis identified the risk score as an independent risk factor for OS and DFS. The comprehensive results suggested that a high IRGS score was correlated with decreased CD8+ T-cell infiltration, increased M2 macrophage infiltration, increased occurrence of stroma-activated molecular subtype and hypoxia, enriched myofibroblast-related signaling pathways, and greater benefit from gemcitabine. Conclusion: The IRGS was able to promisingly distinguish the prognosis, the tumor microenvironment characteristics, and the benefit from chemotherapy for PC.
Collapse
Affiliation(s)
- Fengxiao Xie
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chaobin He
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruiqi Wang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shengping Li
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
29
|
Optimized Heterologous Expression and Efficient Purification of a New TRAIL-Based Antitumor Fusion Protein SRH-DR5-B with Dual VEGFR2 and DR5 Receptor Specificity. Int J Mol Sci 2022; 23:ijms23115860. [PMID: 35682540 PMCID: PMC9180153 DOI: 10.3390/ijms23115860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022] Open
Abstract
In the last two decades, bifunctional proteins have been created by genetic and protein engineering methods to increase therapeutic effects in various diseases, including cancer. Unlike conventional small molecule or monotargeted drugs, bifunctional proteins have increased biological activity while maintaining low systemic toxicity. The recombinant anti-cancer cytokine TRAIL has shown a limited therapeutic effect in clinical trials. To enhance the efficacy of TRAIL, we designed the HRH–DR5-B fusion protein based on the DR5-selective mutant variant of TRAIL fused to the anti-angiogenic synthetic peptide HRHTKQRHTALH. Initially low expression of HRH–DR5-B was enhanced by the substitution of E. coli-optimized codons with AT-rich codons in the DNA sequence encoding the first 7 amino acid residues of the HRH peptide. However, the HRH–DR5-B degraded during purification to form two adjacent protein bands on the SDS-PAGE gel. The replacement of His by Ser at position P2 immediately after the initiator Met dramatically minimized degradation, allowing more than 20 mg of protein to be obtained from 200 mL of cell culture. The resulting SRH–DR5-B fusion bound the VEGFR2 and DR5 receptors with high affinity and showed increased cytotoxic activity in 3D multicellular tumor spheroids. SRH–DR5-B can be considered as a promising candidate for therapeutic applications.
Collapse
|
30
|
Feng X, Li F, Zhang L, Liu W, Wang X, Zhu R, Qiao ZA, Yu B, Yu X. TRAIL-modified, doxorubicin-embedded periodic mesoporous organosilica nanoparticles for targeted drug delivery and efficient antitumor immunotherapy. Acta Biomater 2022; 143:392-405. [PMID: 35259519 DOI: 10.1016/j.actbio.2022.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022]
Abstract
Traditional anticancer treatments directly target tumor cells. In contrast, cancer immunotherapy fortifies host immunity. Nanoparticles that incorporate both immunomodulatory and chemotherapeutic agents regulate the tumor microenvironment by activating immune cells and enhancing antitumor immunity. Nanoparticle-based cancer immunotherapy has received considerable attention and has been extensively studied in recent years. In this study, we developed a targeted drug delivery system to enhance immunotherapeutic efficacy and overcome drug resistance by inducing tumor apoptosis and immunogenic cell death (ICD), and activating immune cells. Periodic mesoporous organosilica nanoparticles (PMOs) bore tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on their surfaces, and their inner cores were loaded with doxorubicin (DOX). TRAIL enhanced the nanoparticle-targeting capacity and worked synergistically with DOX against breast cancer cells in vitro and in vivo. Furthermore, we revealed for the first time the ability of PMOs to activate dendritic cells (DCs) and elevate ICD levels of DOX in vitro, and TRAIL further enhances the immunomodulatory function of PMOs. Systemic exposure to DOX@PMO-hT induced an immune response, activated DCs and CD4+ and CD8+ T cells, and significantly suppressed tumor growth in a 4T1-bearing immunocompetent mouse model. Overall, our study demonstrates that TRAIL-modified, DOX-embedded PMO nanoparticles represent a good candidate for tumor-targeted immunotherapy, which has relatively superior therapeutic efficacy and highly promising future application prospects. STATEMENT OF SIGNIFICANCE: This study revealed for the first time the ability of PMOs to elevate ICD levels and activate DCs in vitro. The results explained the immunomodulatory function of PMOs and demonstrated the synergistic effects of TRAIL and DOX in triple-negative breast cancer. In addition, immunomodulatory effects of the drug delivery vectors constructed in this study were verified in vivo.
Collapse
|
31
|
Liu J, Hong M, Li Y, Chen D, Wu Y, Hu Y. Programmed Cell Death Tunes Tumor Immunity. Front Immunol 2022; 13:847345. [PMID: 35432318 PMCID: PMC9005769 DOI: 10.3389/fimmu.2022.847345] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
The demise of cells in various ways enables the body to clear unwanted cells. Studies over the years revealed distinctive molecular mechanisms and functional consequences of several key cell death pathways. Currently, the most intensively investigated programmed cell death (PCD) includes apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis, and autophagy, which has been discovered to play crucial roles in modulating the immunosuppressive tumor microenvironment (TME) and determining clinical outcomes of the cancer therapeutic approaches. PCD can play dual roles, either pro-tumor or anti-tumor, partly depending on the intracellular contents released during the process. PCD also regulates the enrichment of effector or regulatory immune cells, thus participating in fine-tuning the anti-tumor immunity in the TME. In this review, we focused primarily on apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis, and autophagy, discussed the released molecular messengers participating in regulating their intricate crosstalk with the immune response in the TME, and explored the immunological consequence of PCD and its implications in future cancer therapy developments.
Collapse
Affiliation(s)
- Jing Liu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Minjing Hong
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yijia Li
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Dan Chen
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Yu A, Li Y, Li I, Ozawa MG, Yeh C, Chiou AE, Trope WL, Taylor J, Shrager J, Plevritis SK. Reconstructing codependent cellular cross-talk in lung adenocarcinoma using REMI. SCIENCE ADVANCES 2022; 8:eabi4757. [PMID: 35302849 PMCID: PMC8932661 DOI: 10.1126/sciadv.abi4757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Cellular cross-talk in tissue microenvironments is fundamental to normal and pathological biological processes. Global assessment of cell-cell interactions (CCIs) is not yet technically feasible, but computational efforts to reconstruct these interactions have been proposed. Current computational approaches that identify CCI often make the simplifying assumption that pairwise interactions are independent of one another, which can lead to reduced accuracy. We present REMI (REgularized Microenvironment Interactome), a graph-based algorithm that predicts ligand-receptor (LR) interactions by accounting for LR dependencies on high-dimensional, small-sample size datasets. We apply REMI to reconstruct the human lung adenocarcinoma (LUAD) interactome from a bulk flow-sorted RNA sequencing dataset, then leverage single-cell transcriptomics data to increase the cell type resolution and identify LR prognostic signatures among tumor-stroma-immune subpopulations. We experimentally confirmed colocalization of CTGF:LRP6 among malignant cell subtypes as an interaction predicted to be associated with LUAD progression. Our work presents a computational approach to reconstruct interactomes and identify clinically relevant CCIs.
Collapse
Affiliation(s)
- Alice Yu
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Yuanyuan Li
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Irene Li
- Cancer Biology Interdepartmental, Program Stanford University, Stanford, CA, USA
| | | | - Christine Yeh
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Aaron E. Chiou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Winston L. Trope
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Jonathan Taylor
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Joseph Shrager
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Sylvia K. Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Wahiduzzaman M, Liu Y, Huang T, Wei W, Li Y. Cell-cell communication analysis for single-cell RNA sequencing and its applications in carcinogenesis and COVID-19. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Yu DL, Lou ZP, Ma FY, Najafi M. The interactions of paclitaxel with tumour microenvironment. Int Immunopharmacol 2022; 105:108555. [PMID: 35121223 DOI: 10.1016/j.intimp.2022.108555] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
Abstract
Today, it is well-known that the interactions and secretion within the tumour are crucial to consider for cancer therapy. Some novel cancer therapy modalities such as immunotherapy or tumour vaccination therapy work based on the control of interactions within the tumour microenvironment (TME). It has been revealed that anti-cancer drugs or radiotherapy can modulate some interactions in favour of cancer therapy. However, they may induce some mechanisms to increase the resistance of cancer cells to therapy. Paclitaxel is known as the first approved herbal derived chemotherapy drug. Although the main known anti-cancer effect of paclitaxel is the inhibition of the cell cycle, today, it has been well known that paclitaxel may suppress the tumour via modulating several interactions in TME. Furthermore, paclitaxel may increase the expression of some tumour resistance drivers. This review aims to discuss the interactions within TME following treatment with paclitaxel. The effects of paclitaxel on the anti-tumour immunity, immunosuppressive cells, hypoxia, and also angiogenesis will be discussed. The targeting of these interactions may be interesting to increase therapy efficiency using the combination modalities.
Collapse
Affiliation(s)
- Ding-Li Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| | - Zhi-Ping Lou
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China
| | - Feng-Yun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
35
|
Bozkurt E, Düssmann H, Salvucci M, Cavanagh BL, Van Schaeybroeck S, Longley DB, Martin SJ, Prehn JHM. TRAIL signaling promotes entosis in colorectal cancer. J Cell Biol 2021; 220:212649. [PMID: 34546352 PMCID: PMC8563286 DOI: 10.1083/jcb.202010030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Entosis is a form of nonphagocytic cell-in-cell (CIC) interaction where a living cell enters into another. Tumors show evidence of entosis; however, factors controlling entosis remain to be elucidated. Here, we find that besides inducing apoptosis, TRAIL signaling is a potent activator of entosis in colon cancer cells. Initiation of both apoptosis and entosis requires TRAIL receptors DR4 and DR5; however, induction of apoptosis and entosis diverges at caspase-8 as its structural presence is sufficient for induction of entosis but not apoptosis. Although apoptosis and entosis are morphologically and biochemically distinct, knockout of Bax and Bak, or inhibition of caspases, also inhibits entotic cell death and promotes survival and release of inner cells. Analysis of colorectal cancer tumors reveals a significant association between TRAIL signaling and CIC structures. Finally, the presence of CIC structures in the invasive front regions of colorectal tumors shows a strong correlation with adverse patient prognosis.
Collapse
Affiliation(s)
- Emir Bozkurt
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balcova, Izmir, Turkey
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
36
|
Tufano M, Cesaro E, Martinelli R, Pacelli R, Romano S, Romano MF. FKBP51 Affects TNF-Related Apoptosis Inducing Ligand Response in Melanoma. Front Cell Dev Biol 2021; 9:718947. [PMID: 34589486 PMCID: PMC8473884 DOI: 10.3389/fcell.2021.718947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022] Open
Abstract
Melanoma is one of the most immunogenic tumors and has the highest potential to elicit specific adaptive antitumor immune responses. Immune cells induce apoptosis of cancer cells either by soluble factors or by triggering cell-death pathways. Melanoma cells exploit multiple mechanisms to escape immune system tumoricidal control. FKBP51 is a relevant pro-oncogenic factor of melanoma cells supporting NF-κB-mediated resistance and cancer stemness/invasion epigenetic programs. Herein, we show that FKBP51-silencing increases TNF-related apoptosis-inducing ligand (TRAIL)-R2 (DR5) expression and sensitizes melanoma cells to TRAIL-induced apoptosis. Consistent with the general increase in histone deacetylases, as by the proteomic profile, the immune precipitation assay showed decreased acetyl-Yin Yang 1 (YY1) after FKBP51 depletion, suggesting an impaired repressor activity of this transcription factor. ChIP assay supported this hypothesis. Compared with non-silenced cells, a reduced acetyl-YY1 was found on the DR5 promoter, resulting in increased DR5 transcript levels. Using Crispr/Cas9 knockout (KO) melanoma cells, we confirmed the negative regulation of DR5 by FKBP51. We also show that KO cells displayed reduced levels of acetyl-EP300 responsible for YY1 acetylation, along with reduced acetyl-YY1. Reconstituting FKBP51 levels contrasted the effects of KO on DR5, acetyl-YY1, and acetyl-EP300 levels. In conclusion, our finding shows that FKBP51 reduces DR5 expression at the transcriptional level by promoting YY1 repressor activity. Our study supports the conclusion that targeting FKBP51 increases the expression level of DR5 and sensitivity to TRAIL-induced cell death, which can improve the tumoricidal action of immune cells.
Collapse
Affiliation(s)
- Martina Tufano
- Dipartimento di Medicina Molecolaree Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Elena Cesaro
- Dipartimento di Medicina Molecolaree Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rosanna Martinelli
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Università degli Studi di Salerno, Baronissi, Italy
| | - Roberto Pacelli
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Simona Romano
- Dipartimento di Medicina Molecolaree Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Dipartimento di Medicina Molecolaree Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
37
|
Hijaze N, Ledersnaider M, Simanovich E, Kassem S, Rahat MA. Inducing regulated necrosis and shifting macrophage polarization with anti-EMMPRIN antibody (161-pAb) and complement factors. J Leukoc Biol 2021; 110:343-356. [PMID: 33205451 PMCID: PMC8359428 DOI: 10.1002/jlb.3a0520-333r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/02/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of solid tumors is often hindered by an immunosuppressive tumor microenvironment (TME) that prevents effector immune cells from eradicating tumor cells and promotes tumor progression, angiogenesis, and metastasis. Therefore, targeting components of the TME to restore the ability of immune cells to drive anti-tumoral responses has become an important goal. One option is to induce an immunogenic cell death (ICD) of tumor cells that would trigger an adaptive anti-tumoral immune response. Here we show that incubating mouse renal cell carcinoma (RENCA) and colon carcinoma cell lines with an anti-extracellular matrix metalloproteinase inducer polyclonal antibody (161-pAb) together with complement factors can induce cell death that inhibits caspase-8 activity and enhances the phosphorylation of receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase-like domain (MLKL). This regulated necrotic death releases high levels of dsRNA molecules to the conditioned medium (CM) relative to the necrotic death of tumor cells induced by H2 O2 or the apoptotic death induced by etoposide. RAW 264.7 macrophages incubated with the CM derived from these dying cells markedly enhanced the secretion of IFNβ, and enhanced their cytotoxicity. Furthermore, degradation of the dsRNA in the CM abolished the ability of RAW 264.7 macrophages to secrete IFNβ, IFNγ-induced protein 10 (IP-10), and TRAIL. When mice bearing RENCA tumors were immunized with the 161-pAb, their lysates displayed elevated levels of phosphorylated RIPK3 and MLKL, as well as increased concentrations of dsRNA, IFNβ, IP-10, and TRAIL. This shows that an antigen-targeted therapy using an antibody and complement factors that triggers ICD can shift the mode of macrophage activation by triggering regulated necrotic death of tumor cells.
Collapse
Affiliation(s)
- Nizar Hijaze
- Department of Internal Medicine ACarmel Medical CenterHaifaIsrael
| | | | | | - Sameer Kassem
- Department of Internal Medicine ACarmel Medical CenterHaifaIsrael
- Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Michal A. Rahat
- Immunotherapy LaboratoryCarmel Medical CenterHaifaIsrael
- Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
38
|
Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:pharmaceutics13071062. [PMID: 34371753 PMCID: PMC8309156 DOI: 10.3390/pharmaceutics13071062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
39
|
Quiroz-Reyes AG, Delgado-Gonzalez P, Islas JF, Gallegos JLD, Martínez Garza JH, Garza-Treviño EN. Behind the Adaptive and Resistance Mechanisms of Cancer Stem Cells to TRAIL. Pharmaceutics 2021; 13:1062. [DOI: https:/doi.org/10.3390/pharmaceutics13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. TRAIL has been widely studied as a novel strategy for tumor elimination, as cancer cells overexpress TRAIL death receptors, inducing apoptosis and inhibiting blood vessel formation. However, cancer stem cells (CSCs), which are the main culprits responsible for therapy resistance and cancer remission, can easily develop evasion mechanisms for TRAIL apoptosis. By further modifying their properties, they take advantage of this molecule to improve survival and angiogenesis. The molecular mechanisms that CSCs use for TRAIL resistance and angiogenesis development are not well elucidated. Recent research has shown that proteins and transcription factors from the cell cycle, survival, and invasion pathways are involved. This review summarizes the main mechanism of cell adaption by TRAIL to promote response angiogenic or pro-angiogenic intermediates that facilitate TRAIL resistance regulation and cancer progression by CSCs and novel strategies to induce apoptosis.
Collapse
|
40
|
Deng XX, Jiao YN, Hao HF, Xue D, Bai CC, Han SY. Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10 / STAT3 / PD-L1 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:113978. [PMID: 33716082 DOI: 10.1016/j.jep.2021.113978] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triple-negative breast cancer (TNBC) is the most aggressive and the worst prognosis breast cancer with limited treatment options. Taraxacum mongolicum (also called dandelion) is a traditional Chinese medicine has been used to treat mastitis, breast abscess, and hyperplasia of mammary glands since ancient times. In modern pharmacological research, dandelion has been proven with anti-breast cancer activities. We previously reported that dandelion extract could induce apoptosis in TNBC cells. However, its anti-tumor effects and mechanisms in the tumor microenvironment have not yet been elucidated. AIM OF THE STUDY Tumor-associated macrophages (TAMs) play an important role in regulating the interaction between tumor cells and the immune system. The present study aimed to investigate the effects and mechanisms of dandelion extract on TNBC cells under the microenvironment of TAMs, as well as its influence on the polarization of M2 macrophages. MATERIALS AND METHODS M2 macrophages were induced by phorbol-12-myristate 13-acetate (PMA) and interleukin 4 (IL-4), and verified by flow cytometry, quantitative RT-PCR (qRT-PCR), Western blotting, and ELISA. MDA-MB-231 and MDA-MB-468 TNBC cells were co-cultured with the supernatant of M2 macrophage which providing the TAMs microenvironment. The antitumor activity of dandelion extract in TNBC cells was evaluated by MTT assay. The invasive and migratory capacity of TNBC cells was measured by transwell assays. The expression of protein and gene was assessed by Western blotting and qRT-PCR, respectively. RESULTS TAMs microenvironment promoted the proliferation, migration, and invasion of TNBC cells. However, dandelion extract inhibited the malignant property of MDA-MB-231 and MDA-MB-468 cells induced by TAMs. Both of TAMs and IL-10 caused STAT3 activation and PD-L1 higher expression, the immunosuppressive molecules in TNBC cells, and this effect can be attenuated by IL-10 neutralizing antibody. Dandelion extract exerted inhibition on STAT3 and PD-L1 in TNBC cells under TAMs microenvironment. Furthermore, in M2 macrophages, dandelion extract remarkably promoted the expression of M1-like marker TNF-α, IL-8, and iNOS, but reduced M2-like marker IL-10, CD206, Arginase-1, and TGF-β. CONCLUSION Dandelion extract inhibited the proliferation, migration and invasion of TNBC cells in TAMs microenvironment through suppressing IL-10/STAT3/PD-L1 immunosuppressive signaling pathway. Furthermore, dandelion extract promoted the polarization of macrophages from M2 to M1 phenotype. Thus, our results indicated that dandelion may serve as a promising therapeutic strategy for TNBC by modulating tumor immune microenvironment.
Collapse
Affiliation(s)
- Xin-Xin Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China; Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, 750004, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Dong Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China.
| | - Chang-Cai Bai
- Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, 750004, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China.
| |
Collapse
|
41
|
Wang Y, Zhang H, Wang Z, Wei Y, Wang M, Liu M, Wang X, Jiang Y, Shi G, Zhao D, Yang Z, Ren Z, Li J, Zhang Z, Wang Z, Zhang B, Zong B, Lou X, Liu C, Wang Z, Zhang H, Tao N, Li X, Zhang X, Guo Y, Ye Y, Qi Y, Li H, Wang M, Guo R, Cheng G, Li S, Zhang J, Liu G, Chai L, Lou Q, Li X, Cui X, Gao E, Dong Z, Hu Y, Chen YH, Ma Y. Blocking the death checkpoint protein TRAIL improves cardiac function after myocardial infarction in monkeys, pigs, and rats. Sci Transl Med 2021; 12:12/540/eaaw3172. [PMID: 32321866 DOI: 10.1126/scitranslmed.aaw3172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 06/26/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide for which there is no cure. Although cardiac cell death is a well-recognized pathological mechanism of MI, therapeutic blockade of cell death to treat MI is not straightforward. Death receptor 5 (DR5) and its ligand TRAIL [tumor necrosis factor (TNF)-related apoptosis-inducing ligand] are up-regulated in MI, but their roles in pathological remodeling are unknown. Here, we report that blocking TRAIL with a soluble DR5 immunoglobulin fusion protein diminished MI by preventing cardiac cell death and inflammation in rats, pigs, and monkeys. Mechanistically, TRAIL induced the death of cardiomyocytes and recruited and activated leukocytes, directly and indirectly causing cardiac injury. Transcriptome profiling revealed increased expression of inflammatory cytokines in infarcted heart tissue, which was markedly reduced by TRAIL blockade. Together, our findings indicate that TRAIL mediates MI directly by targeting cardiomyocytes and indirectly by affecting myeloid cells, supporting TRAIL blockade as a potential therapeutic strategy for treating MI.
Collapse
Affiliation(s)
- Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Meichen Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xuance Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China.,Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Yinan Jiang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Gongning Shi
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Dongmei Zhao
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Zhengyan Yang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhenkai Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhenfeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Bei Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Beibei Zong
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xueke Lou
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Chengguo Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zihui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Hao Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Ningya Tao
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xuefang Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xingkun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yafei Guo
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yang Ye
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yu Qi
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Man Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Rongxin Guo
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Guanchang Cheng
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Guangchao Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China.
| |
Collapse
|
42
|
Chiu LC, Lin SM, Lo YL, Kuo SCH, Yang CT, Hsu PC. Immunotherapy and Vaccination in Surgically Resectable Non-Small Cell Lung Cancer (NSCLC). Vaccines (Basel) 2021; 9:689. [PMID: 34201650 PMCID: PMC8310081 DOI: 10.3390/vaccines9070689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Early-stage NSCLC (stages I and II, and some IIIA diseases) accounts for approximately 30% of non-small cell lung cancer (NSCLC) cases, with surgery being its main treatment modality. The risk of disease recurrence and cancer-related death, however, remains high among NSCLC patients after complete surgical resection. In previous studies on the long-term follow-up of post-operative NSCLC, the results showed that the five-year survival rate was about 65% for stage IB and about 35% for stage IIIA diseases. Platinum-based chemotherapy with or without radiation therapy has been used as a neoadjuvant therapy or post-operative adjuvant therapy in NSCLC, but the improvement of survival is limited. Immune checkpoint inhibitors (ICIs) have effectively improved the 5-year survival of advanced NSCLC patients. Cancer vaccination has also been explored and used in the prevention of cancer or reducing disease recurrence in resected NSCLC. Here, we review studies that have focused on the use of immunotherapies (i.e., ICIs and vaccination) in surgically resectable NSCLC. We present the results of completed clinical trials that have used ICIs as neoadjuvant therapies in pre-operative NSCLC. Ongoing clinical trials investigating ICIs as neoadjuvant and adjuvant therapies are also summarized.
Collapse
Affiliation(s)
- Li-Chung Chiu
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Thoracic Medicine, New Taipei Municipal Tu Cheng Hospital, New Taipei City 23652, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Shu-Min Lin
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yu-Lun Lo
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Scott Chih-Hsi Kuo
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Cheng-Ta Yang
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Department of Internal Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan City 33378, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ping-Chih Hsu
- Division of Thoracic Medicine, Department of Internal Medicine, College of Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (L.-C.C.); (S.-M.L.); (Y.-L.L.); (S.C.-H.K.); (C.-T.Y.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
43
|
Ang AD, Vissers MCM, Burgess ER, Currie MJ, Dachs GU. Gene and Protein Expression Is Altered by Ascorbate Availability in Murine Macrophages Cultured under Tumour-Like Conditions. Antioxidants (Basel) 2021; 10:antiox10030430. [PMID: 33799728 PMCID: PMC7998289 DOI: 10.3390/antiox10030430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 01/01/2023] Open
Abstract
Tumour-associated macrophages (TAMs) are ubiquitously present in tumours and commonly associated with poor prognosis. In immune cells, ascorbate affects epigenetic regulation, differentiation and phenotype via its co-factor activity for the 2-oxoglutarate dependent dioxygenase enzymes. Here, we determined the effect of ascorbate on TAM development in response to tumour microenvironmental cues. Naïve murine bone marrow monocytes were cultured with Lewis Lung Carcinoma conditioned media (LLCM) or macrophage colony-stimulating factor (MCSF) to encourage the development into tumour-associated macrophages. Cells were stimulated with hypoxia (1% O2), with or without ascorbate (500 µM) supplementation. Cells and media were harvested for gene, cell surface marker and protein analyses. LLCM supported bone marrow monocyte growth with >90% of cells staining CD11b+F4/80+, indicative of monocytes/macrophages. LLCM-grown cells showed increased expression of M2-like and TAM genes compared to MCSF-grown cells, which further increased with hypoxia. In LLCM-grown cells, ascorbate supplementation was associated with increased F4/80 cell surface expression, and altered gene expression and protein secretion. Our study shows that ascorbate modifies monocyte phenotype when grown under tumour microenvironmental conditions, but this was not clearly associated with either a pro- or anti-tumour phenotype, and reflects a complex and nuanced response of macrophages to ascorbate. Overall, ascorbate supplementation clearly has molecular consequences for TAMs, but functional and clinical consequences remain unknown.
Collapse
Affiliation(s)
- Abel D. Ang
- Mackenzie Cancer Research Group, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand; (A.D.A.); (E.R.B.); (M.J.C.)
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand;
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand; (A.D.A.); (E.R.B.); (M.J.C.)
| | - Margaret J. Currie
- Mackenzie Cancer Research Group, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand; (A.D.A.); (E.R.B.); (M.J.C.)
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand; (A.D.A.); (E.R.B.); (M.J.C.)
- Correspondence:
| |
Collapse
|
44
|
Qin R, Cao L, Ye C, Wang J, Sun Z. A novel prognostic prediction model based on seven immune-related RNAs for predicting overall survival of patients in early cervical squamous cell carcinoma. BMC Med Genomics 2021; 14:49. [PMID: 33588862 PMCID: PMC7885601 DOI: 10.1186/s12920-021-00885-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In this study, we aimed to mine immune-related RNAs expressed in early cervical squamous cell carcinoma to construct prognostic prediction models. METHODS The RNA sequencing data of 309 cervical squamous cell carcinoma (CSCC) cases, including data of individuals with available clinical information, were obtained from The Cancer Genome Atlas (TCGA) database. We included 181 early-stage CSCC tumor samples with clinical survival and prognosis information (training dataset). Then, we downloaded the GSE44001 gene expression profile data from the National Center for Biotechnology Information Gene Expression Omnibus (validation dataset). Gene ontology annotation and the Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to analyze the biological functions of differentially expressed immune-related genes (DEIRGs). We established protein-protein interactions and competing endogenous RNA networks using Cytoscape. Using the Kaplan-Meier method, we evaluated the association between the high- and low-risk groups and the actual survival and prognosis information. Our univariate and multivariate Cox regression analyses screened for independent prognostic factors. RESULTS We identified seven prognosis-related signature genes (RBAKDN, CXCL2, ZAP70, CLEC2D, CD27, KLRB1, VCAM1), the expression of which was markedly associated with overall survival (OS) in CSCC patients. Also, the risk score of the seven-gene signature discripted superior ability to categorize CSCC patients into high-risk and low-risk groups, with a observablydifferent OS in the training and validation datasets. We screened two independent prognostic factors (Pathologic N and prognostic score model status) that correlated significantly by univariate and multivariate Cox regression analyses in the TCGA dataset. To further explore the potential mechanism of immune-related genes, we observed associated essential high-risk genes with a cytokine-cytokine receptor interaction. CONCLUSIONS This study established an immune-related RNA signature, which provided a reliable prognostic tool and may be of great significance for determining immune-related biomarkers in CSCC.
Collapse
Affiliation(s)
- Rui Qin
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China
| | - Lu Cao
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China
| | - Cong Ye
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China
| | - Junrong Wang
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China.
| | - Ziqian Sun
- Department of Obstetrics and Gynecology, The Third Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033, People's Republic of China.
| |
Collapse
|
45
|
Chen S. Identification of SARS-CoV-2 Proteins Binding Human mRNAs As a Novel Signature Predicting Overall Survival in Hepatocellular Carcinoma. DNA Cell Biol 2020; 40:359-372. [PMID: 33290144 DOI: 10.1089/dna.2020.6278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the virus causing coronavirus disease 2019 (COVID-19), has been confirmed in cancers through binding specific mRNAs to invade human cells. Therefore, the aim of this study described here was to develop and validate novel SARS-CoV-2 proteins binding human mRNAs (SPBRs) signature to predict overall survival (OS) in hepatocellular carcinoma (HCC). Using multivariate Cox regression analysis, a set of SPBRs was identified to establish a multigene signature in the Cancer Genome Atlas repositories cohort. Furthermore, a nomogram was established based on the signature and clinical risk factors to improve risk stratification for individual patients. External validation was performed in the International Cancer Genome Consortium (ICGC) cohort. A six-SPBR signature was built to classify patients into two risk groups using a risk score with different OS in two cohorts (all p < 0.0001). Multivariate regression analysis demonstrated the signature was an independent predictor of HCC. Moreover, the signature presented an excellent diagnostic power in differentiating HCC and normal tissues. Gene set enrichment analysis demonstrated that high-risk group was closely enriched in cell cycle, DNA replication, microRNAs in cancer, and cytokine-cytokine receptor interaction. The novel signature demonstrated great clinical value in predicting the OS for patients with HCC, and will provide a good reference between cancer research and SARS-CoV-2 and help individualized treatment in HCC.
Collapse
Affiliation(s)
- Shimin Chen
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Taihe Country, Taihe, China
| |
Collapse
|
46
|
Deng D, Shah K. TRAIL of Hope Meeting Resistance in Cancer. Trends Cancer 2020; 6:989-1001. [PMID: 32718904 PMCID: PMC7688478 DOI: 10.1016/j.trecan.2020.06.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis selectively via its interaction with the death receptors TRAILR1/DR4 and TRAILR2/DR5 in a wide range of cancers, while sparing normal cells. Despite its tremendous potential for cancer therapeutics, the translation of TRAIL into the clinic has been confounded by TRAIL-resistant cancer populations. We discuss different molecular mechanisms underlying TRAIL-mediated apoptosis and resistance to TRAIL. We also discuss the successes and failures of recent preclinical and clinical studies of TRAIL-induced apoptosis, and current attempts to overcome TRAIL resistance, and we provide a perspective for improving the prospects of future clinical implementation.
Collapse
Affiliation(s)
- David Deng
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
47
|
Zheng P, Li W. Crosstalk Between Mesenchymal Stromal Cells and Tumor-Associated Macrophages in Gastric Cancer. Front Oncol 2020; 10:571516. [PMID: 33163402 PMCID: PMC7581781 DOI: 10.3389/fonc.2020.571516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) consisting of distinct cell types including stromal cells and immune cells has recently emerged as a pivotal player in tumor development and progression. Mesenchymal stromal cells (MSCs) and tumor-associated macrophages (TAMs) are two representative cells in the TME with plastic properties. This review will focus on the evolution of phenotypes and functions of either MSCs or TAMs, which is “educated” by the TME, as well as interactions between MSCs and TAMs contributing to the distinct stages of tumor biology in gastric cancer. MSCs exert immunoregulatory effects on macrophages and polarize them toward M2-like TAMs, via cell–cell contact and paracrine or extracellular vesicle (EV) transfer mechanism. In turn, M2-TAMs modulate the transition of “naive” MSCs into tumor-derived MSCs, which possess a more potent pro-tumor role than the parent. Moreover, the cross talk between MSCs and TAMs could contribute to cancer biology by inducing the EMT process, metastasis, immune invasion, and immunotherapy resistance in cancer cells. However, molecular mechanisms underlying interactions between MSCs and TAMs in gastric cancer progression need to be thoroughly elucidated, which may provide attractive targets for making promising novel strategies for gastric cancer therapy.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
48
|
Chen WC, Hu G, Hazlehurst LA. Contribution of the bone marrow stromal cells in mediating drug resistance in hematopoietic tumors. Curr Opin Pharmacol 2020; 54:36-43. [PMID: 32898723 PMCID: PMC7770000 DOI: 10.1016/j.coph.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
The bone marrow microenvironment (BMM) provides input via production of cytokines, chemokines, extracellular matrixes in the context of lower oxygen levels that influences self-renewal, survival, differentiation, progression, and therapeutic resistance of multiple myeloma and leukemic cells. Within the context of the BMM, tumor cells are supported by osteoblasts, bone marrow stromal cells (BMSCs), fibroblasts, myeloid cells, endothelial cells and blood vessels, as well as extracellular matrix (ECM) that contribute to tumor progression. Environmental mediated-drug resistance (EM-DR) contains cell adhesion-mediated drug resistance (CAM-DR) and soluble factor-mediated drug resistance (SM-DR) that contributes to de novo drug resistance. In this review, we focus on the crosstalk between the BMM and tumor cells as well as mechanisms underlying the BMM contributing to drug resistance in hematologic malignancies.
Collapse
Affiliation(s)
- Wei-Chih Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA; Cancer Center, West Virginia University, Morgantown, WV 26506 USA
| | - Gangqing Hu
- Cancer Center, West Virginia University, Morgantown, WV 26506 USA; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506 USA
| | - Lori A Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA; Cancer Center, West Virginia University, Morgantown, WV 26506 USA.
| |
Collapse
|
49
|
Zhou H, Zhang H, Shi M, Wang J, Huang Z, Shi J. A robust signature associated with patient prognosis and tumor immune microenvironment based on immune-related genes in lung squamous cell carcinoma. Int Immunopharmacol 2020; 88:106856. [PMID: 32777677 DOI: 10.1016/j.intimp.2020.106856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is one common type of lung cancer. Immune-related genes (IRGs) are closely associated with cancer prognosis. This study aims to screen the key genes associated with LUSC and establish an immune-related prognostic model. METHODS Based on the Cancer Genome Atlas (TCGA) database, we screened the differentially expressed genes (DEGs) between LUSC and normal samples. Intersecting the DEGs with the immune-related genes (IRGs), we obtained the differentially expressed IRGs (DEIRGs). Univariate as well as multivariate Cox regression analyses were performed to identify the survival-associated IRGs and establish an immune-related prognostic model. The relationship between the prognostic model and tumor-infiltrating immune cells was analyzed by TIMER and CIBERSORT. RESULTS A total of 229 DEIRGs were screened, and 14 IRGs associated with survival were identified using univariate Cox analysis. Among the 14 IRGs, six genes were selected out using Lasso and multivariate Cox analyses, and they were used to build the prognostic model. Further analysis indicated that overall survival (OS) of high-risk groups was lower than that of low-risk groups. High risk score was independently related to worse OS. Moreover, the risk score was positively correlated with several immune infiltration cells. Finally, the efficacy of the prognostic model was validated by another independent cohort GSE73403. CONCLUSION The DEIRGs described in the study may have the potential to be the prognostic molecular markers for LUSC. In addition, the risk score model could predict the OS and provides more information for the immunotherapy of patients with LUSC.
Collapse
MESH Headings
- Biomarkers, Tumor/immunology
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Correlation of Data
- Databases, Genetic
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- MicroRNAs/immunology
- MicroRNAs/metabolism
- Prognosis
- Protein Interaction Maps/immunology
- RNA, Long Noncoding/immunology
- RNA, Long Noncoding/metabolism
- Risk Factors
- Survival Analysis
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Hao Zhou
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Muqi Shi
- Medical College of Nantong University, Nantong 226001, Jiangsu, China
| | - Jinjie Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Zhanghao Huang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
50
|
Liang L, Cheng C, Hu G, Wang X, Liu J, Yan Z, Zeng W, Xia Y. TWEAK Promotes the Proliferation of Squamous Cell Carcinoma Cells Through Activating cIAP1 Signals. Front Oncol 2020; 10:439. [PMID: 32351884 PMCID: PMC7174721 DOI: 10.3389/fonc.2020.00439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies showed that tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) induces the proliferation of squamous cell carcinoma (SCC) cells. However, the precise mechanism underlying such effect of TWEAK remains unclear. This study was designed to elucidate the role of cellular inhibitor of apoptosis 1 (cIAP1) in TWEAK-induced proliferation of SCC cells. Human SCC cells (SCC-13, A431, and SCC-9) were cultured in vitro, receiving the stimulation of TWEAK or TNF-related apoptosis-inducing ligand (TRAIL). We found that TWEAK induced cytoplasmic cIAP1 importation and RIP1 ubiquitination in cells, followed by the activation of canonical nuclear factor kappa B signals. MV1, a cIAP1 inhibitor, abrogated TWEAK-induced proliferation of these cells. Moreover, the interaction between TWEAK and its receptor, fibroblast growth factor-inducible 14 (Fn14), enhanced the expression of TRAIL receptor types 3 and 4 (TRAIL-R3/4). Furthermore, the transfection of TRAIL-R3/4 siRNA abrogated the promotion effect of TWEAK on SCC-13 cell proliferation and cIAP1 expression. Therefore, TWEAK/Fn14 interaction promotes the proliferation of SCC cells through activating cIAP1 signals. Targeting the downstream cIAP1 signals might attenuate the effect of TWEAK on SCC cells.
Collapse
Affiliation(s)
- Lili Liang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Dermatology, The Affiliated Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuantao Cheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuening Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhu Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|