1
|
Hesnard L, Thériault C, Cahuzac M, Durette C, Vincent K, Hardy MP, Lanoix J, Lavallée GO, Humeau J, Thibault P, Perreault C. Immunogenicity of Non-Mutated Ovarian Cancer-Specific Antigens. Curr Oncol 2024; 31:3099-3121. [PMID: 38920720 PMCID: PMC11203340 DOI: 10.3390/curroncol31060236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Epithelial ovarian cancer (EOC) has not significantly benefited from advances in immunotherapy, mainly because of the lack of well-defined actionable antigen targets. Using proteogenomic analyses of primary EOC tumors, we previously identified 91 aberrantly expressed tumor-specific antigens (TSAs) originating from unmutated genomic sequences. Most of these TSAs derive from non-exonic regions, and their expression results from cancer-specific epigenetic changes. The present study aimed to evaluate the immunogenicity of 48 TSAs selected according to two criteria: presentation by highly prevalent HLA allotypes and expression in a significant fraction of EOC tumors. Using targeted mass spectrometry analyses, we found that pulsing with synthetic TSA peptides leads to a high-level presentation on dendritic cells. TSA abundance correlated with the predicted binding affinity to the HLA allotype. We stimulated naïve CD8 T cells from healthy blood donors with TSA-pulsed dendritic cells and assessed their expansion with two assays: MHC-peptide tetramer staining and TCR Vβ CDR3 sequencing. We report that these TSAs can expand sizeable populations of CD8 T cells and, therefore, represent attractive targets for EOC immunotherapy.
Collapse
Affiliation(s)
- Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Maxime Cahuzac
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Gabriel Ouellet Lavallée
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Juliette Humeau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
- Department of Chemistry, University of Montreal, Montreal, QC H2V 0B3, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
- Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
2
|
Martin PJ, Levine DM, Storer BE, Zheng X, Jain D, Heavner B, Norris BM, Geraghty DE, Spellman SR, Sather CL, Wu F, Hansen JA. A Model of Minor Histocompatibility Antigens in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:782152. [PMID: 34868058 PMCID: PMC8636906 DOI: 10.3389/fimmu.2021.782152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Minor histocompatibility antigens (mHAg) composed of peptides presented by HLA molecules can cause immune responses involved in graft-versus-host disease (GVHD) and graft-versus-leukemia effects after allogeneic hematopoietic cell transplantation (HCT). The current study was designed to identify individual graft-versus-host genomic mismatches associated with altered risks of acute or chronic GVHD or relapse after HCT between HLA-genotypically identical siblings. Our results demonstrate that in allogeneic HCT between a pair of HLA-identical siblings, a mHAg manifests as a set of peptides originating from annotated proteins and non-annotated open reading frames, which i) are encoded by a group of highly associated recipient genomic mismatches, ii) bind to HLA allotypes in the recipient, and iii) evoke a donor immune response. Attribution of the immune response and consequent clinical outcomes to individual peptide components within this set will likely differ from patient to patient according to their HLA types.
Collapse
Affiliation(s)
- Paul J. Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - David M. Levine
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Barry E. Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Ben Heavner
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Brandon M. Norris
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN, United States
| | - Cassie L. Sather
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Feinan Wu
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - John A. Hansen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
3
|
Kovalchik KA, Ma Q, Wessling L, Saab F, Despault J, Kubiniok P, Hamelin DJ, Faridi P, Li C, Purcell AW, Jang A, Paramithiotis E, Tognetti M, Reiter L, Bruderer R, Lanoix J, Bonneil É, Courcelles M, Thibault P, Caron E, Sirois I. MhcVizPipe: A Quality Control Software for Rapid Assessment of Small- to Large-Scale Immunopeptidome Data Sets. Mol Cell Proteomics 2021; 21:100178. [PMID: 34798331 PMCID: PMC8717601 DOI: 10.1016/j.mcpro.2021.100178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometry (MS)-based immunopeptidomics is maturing into an automatized, high-throughput technology, producing small- to large-scale datasets of clinically relevant MHC class I- and II-associated peptides. Consequently, the development of quality control (QC) and quality assurance (QA) systems capable of detecting sample and/or measurement issues is important for instrument operators and scientists in charge of downstream data interpretation. Here, we created MhcVizPipe (MVP), a semi-automated QC software tool that enables rapid and simultaneous assessment of multiple MHC class I and II immunopeptidomic datasets generated by MS, including datasets generated from large sample cohorts. In essence, MVP provides a rapid and consolidated view of sample quality, composition and MHC-specificity to greatly accelerate the 'pass-fail' QC decision-making process toward data interpretation. MVP parallelizes the use of well-established immunopeptidomic algorithms (NetMHCpan, NetMHCIIpan and GibbsCluster) and rapidly generates organized and easy-to-understand reports in HTML format. The reports are fully portable and can be viewed on any computer with a modern web browser. MVP is intuitive to use and will find utility in any specialized immunopeptidomic laboratory and proteomics core facility that provides immunopeptidomic services to the community.
Collapse
Affiliation(s)
| | - Qing Ma
- School of Electrical Engineering and Computer Science, Faculty of Engineering, University of Ottawa, ON K1N 6N5, Canada
| | - Laura Wessling
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Frederic Saab
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Jérôme Despault
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - David J Hamelin
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Pouya Faridi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chen Li
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anne Jang
- CellCarta, Montreal, QC H2X 3Y7, Canada
| | | | | | - Lukas Reiter
- Biognosys, Wagistrasse 21, 8952 Schlieren, Switzerland
| | | | - Joël Lanoix
- Institute of Research in Immunology and Cancer, Montreal, QC H3T 1J4, Canada
| | - Éric Bonneil
- Institute of Research in Immunology and Cancer, Montreal, QC H3T 1J4, Canada
| | - Mathieu Courcelles
- Institute of Research in Immunology and Cancer, Montreal, QC H3T 1J4, Canada
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer, Montreal, QC H3T 1J4, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada.
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
4
|
Ehx G, Larouche JD, Durette C, Laverdure JP, Hesnard L, Vincent K, Hardy MP, Thériault C, Rulleau C, Lanoix J, Bonneil E, Feghaly A, Apavaloaei A, Noronha N, Laumont CM, Delisle JS, Vago L, Hébert J, Sauvageau G, Lemieux S, Thibault P, Perreault C. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 2021; 54:737-752.e10. [PMID: 33740418 DOI: 10.1016/j.immuni.2021.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/24/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.
Collapse
Affiliation(s)
- Grégory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Caroline Rulleau
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nandita Noronha
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Céline M Laumont
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Sébastien Delisle
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Josée Hébert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
5
|
Sobhani I, Rotkopf H, Khazaie K. Bacteria-related changes in host DNA methylation and the risk for CRC. Gut Microbes 2020; 12:1800898. [PMID: 32931352 PMCID: PMC7575230 DOI: 10.1080/19490976.2020.1800898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer deaths in men and women combined. Colon-tumor growth is multistage and the result of the accumulation of spontaneous mutations and epigenetic events that silence tumor-suppressor genes and activate oncogenes. Environmental factors are primary contributors to these somatic gene alterations, which account for the increase in incidence of CRC in western countries. In recent decades, gut microbiota and their metabolites have been recognized as essential contributing factors to CRC, and now serve as biomarkers for the diagnosis and prognosis of CRC. In the present review, we highlight holistic approaches to understanding how gut microbiota contributes to CRC. We particularly focus herein on bacteria-related changes in host DNA methylation and the risk for CRC.
Collapse
Affiliation(s)
- Iradj Sobhani
- Head of the Department of Gastroenterology, Consultant in GI Oncology, Hopital Henri Mondor, APHP. Créteil-France; Head of the Research Team EC2M3, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Hugo Rotkopf
- Department of Gastroenterology Hospital Henri Mondor, APHP. Créteil-France; Member of Research Team EC2M3, Université Paris-Est Créteil (UPEC). Créteil, France
| | | |
Collapse
|
6
|
Apavaloaei A, Hardy MP, Thibault P, Perreault C. The Origin and Immune Recognition of Tumor-Specific Antigens. Cancers (Basel) 2020; 12:E2607. [PMID: 32932620 PMCID: PMC7565792 DOI: 10.3390/cancers12092607] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
The dominant paradigm holds that spontaneous and therapeutically induced anti-tumor responses are mediated mainly by CD8 T cells and directed against tumor-specific antigens (TSAs). The presence of specific TSAs on cancer cells can only be proven by mass spectrometry analyses. Bioinformatic predictions and reverse immunology studies cannot provide this type of conclusive evidence. Most TSAs are coded by unmutated non-canonical transcripts that arise from cancer-specific epigenetic and splicing aberrations. When searching for TSAs, it is therefore important to perform mass spectrometry analyses that interrogate not only the canonical reading frame of annotated exome but all reading frames of the entire translatome. The majority of aberrantly expressed TSAs (aeTSAs) derive from unstable short-lived proteins that are good substrates for direct major histocompatibility complex (MHC) I presentation but poor substrates for cross-presentation. This is an important caveat, because cancer cells are poor antigen-presenting cells, and the immune system, therefore, depends on cross-presentation by dendritic cells (DCs) to detect the presence of TSAs. We, therefore, postulate that, in the untreated host, most aeTSAs are undetected by the immune system. We present evidence suggesting that vaccines inducing direct aeTSA presentation by DCs may represent an attractive strategy for cancer treatment.
Collapse
Affiliation(s)
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; (A.A.); (M.-P.H.)
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; (A.A.); (M.-P.H.)
| |
Collapse
|