1
|
YUAN C, XU Q, NING Y, XIA Q. Potential mechanisms implied in tick infection by arboviruses and their transmission to vertebrate hosts. Integr Zool 2025; 20:315-330. [PMID: 39016029 PMCID: PMC11897945 DOI: 10.1111/1749-4877.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Ticks can transmit many pathogens, including arboviruses, to their vertebrate hosts. Arboviruses must overcome or evade defense mechanisms during their passage from the tick gut to the hemolymph, salivary glands, and the feeding site in the host skin. This review summarizes current knowledge of defense mechanisms in specific tick tissues and at the feeding site in the host skin. We discuss the possible roles of these defense mechanisms in viral infection and transmission. The responses of tick salivary proteins to arbovirus infection are also discussed. This review provides information that may help accelerate research on virus-tick interactions.
Collapse
Affiliation(s)
- Chuanfei YUAN
- NHC Key Laboratory of Tropical Disease Control, School of Tropical MedicineHainan Medical UniversityHaikouChina
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Qiong XU
- NHC Key Laboratory of Tropical Disease Control, School of Tropical MedicineHainan Medical UniversityHaikouChina
| | - Yunjia NING
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
- Hubei Jiangxia LaboratoryWuhanChina
| | - Qianfeng XIA
- NHC Key Laboratory of Tropical Disease Control, School of Tropical MedicineHainan Medical UniversityHaikouChina
| |
Collapse
|
2
|
Hu JQ, Wang CC, Ma RX, Qi SQ, Fu W, Zhong J, Cao C, Zhang XL, Liu GH, Gao YD. Co-exposure to polyethylene microplastics and house dust mites aggravates airway epithelial barrier dysfunction and airway inflammation via CXCL1 signaling pathway in a mouse model. Int Immunopharmacol 2025; 146:113921. [PMID: 39732106 DOI: 10.1016/j.intimp.2024.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Environmental pollutants have been found to contribute to the development and acute exacerbation of asthma. Microplastics (MPs) have received widespread attention as an emerging global pollutant. Airborne MPs can cause various adverse health effects. Due to their hydrophobicity, MPs can act as a carrier for other pollutants, pathogens, and allergens. This carrier effect of MPs may adsorb allergens and thus make the body exposed to MPs and a large number of allergens simultaneously. We hypothesized that co-exposure to inhaled MPs and aeroallergens may promote the development of airway inflammation of asthma by disrupting the airway epithelial barrier. METHODS The effects of co-exposure to Polyethylene microplastics (PE-MPs) and allergens on allergic airway inflammation and airway epithelial barrier were examined in a mouse model of asthma. The mice were divided into four groups: (i) Control group, treated only with PBS; (ii) MP group, exposed to PE-MPs and PBS; (iii) HDM group, mice were sensitized and challenged with HDM, and intranasally treated with PBS; (iv) HDM + MP group, mice were sensitized and challenged with HDM, and intranasally treated with PE-MPs. Histology and ELISA assays were used to evaluate the severity of airway inflammation. FITC-dextran permeability assay, immunofluorescence assay, and RT-PCR were used to evaluate the airway epithelial barrier function and the expression of relevant molecules. Transcriptomics analysis with lung tissue sequencing was conducted to identify possible pathways responsible for the effects of PE-MPs. RESULTS Co-exposure of mice to PE-MPs and HDM induced a higher degree of inflammatory cell infiltration, bronchial goblet cell hyperplasia, collagen deposition, allergen sensitization, and Th2 immune bias than exposure to HDM alone. Co-exposure to PE-MPs and HDM aggravated oxidative stress injury in the lung and the production of cytokine IL-33 in the BALF. In addition, co-exposure of mice to PE-MPs and HDM resulted in a more pronounced decrease in the expression of relevant molecules of the airway epithelial barrier and more significant increase in the permeability of airway epithelia. Lung tissue transcriptomics analysis revealed that PE-MPs exposure was associated with CXCL1 signaling and neutrophil activation. CONCLUSION Co-exposure to MPs and HDM may promote airway inflammation and airway epithelial barrier disruption and induce immune responses characterized by CXCL1 signaling and neutrophilic inflammation.
Collapse
Affiliation(s)
- Jia-Qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chang-Chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ru-Xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shi-Quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Allergy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
3
|
Dib L, Boucheikhchoukh M, Mechouk N, Culda CA, Bouattour A, Benakhla A, Leulmi H. New Record of Rhipicephalus fulvus (Neumann, 1913) from Goats and Sheep in Northeastern Algeria After more than a Century. Acta Parasitol 2025; 70:8. [PMID: 39775132 DOI: 10.1007/s11686-024-00951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Tick diversity in Algeria has garnered increasing interest due to its implications for animal health and zoonotic diseases. Recent reports of abnormal ulcerative lesions in goats and sheep in the Cheria region of northeastern Algeria have raised concerns about a potential association with tick infestations. The aim of this study is to hypothesize the potential involvement of ticks in these unusual lesions. MATERIALS AND METHODS A total of 52 tick specimens were collected from the affected animals, comprising 24 adult males, 24 adult females, and four engorged females. A morphological examination was performed to identify the tick species. RESULTS The morphological analysis identified the non-engorged ticks as Rhipicephalus fulvus. The observed ulcerative lesions were likely caused by reactions to the tick's saliva. Notably, this finding marks the first recorded presence of R. fulvus in Algeria since its original description by Neumann in 1913. CONCLUSION Identifying R. fulvus highlights its reemergence in the region and suggests a potential impact on livestock health. This discovery underscores the need for enhanced tick surveillance and further studies to understand the tick's origin, distribution, and role in animal health.
Collapse
Affiliation(s)
- Loubna Dib
- Department of Veterinary Sciences, Chadli Bendjedid El Tarf University, El Tarf, 36000, Algeria
- Biodiversity and Ecosystems Pollution Laboratory, Faculty of Life and Nature Sciences, Chadli Bendjedid El Tarf University, El Tarf, 36000, Algeria
| | - Mehdi Boucheikhchoukh
- Department of Veterinary Sciences, Chadli Bendjedid El Tarf University, El Tarf, 36000, Algeria.
- Biodiversity and Ecosystems Pollution Laboratory, Faculty of Life and Nature Sciences, Chadli Bendjedid El Tarf University, El Tarf, 36000, Algeria.
| | - Noureddine Mechouk
- Ecology of Terrestrial and Aquatics Systems Laboratory (EcoSTAq), Department of Biology, Faculty of Science, Badji Mokhtar University, Annaba, 23200, Algeria
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, Cluj- Napoca, 400372, Romania
| | - Carla Andrea Culda
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, 400372, Romania
| | - Ali Bouattour
- Laboratory of Viruses, Vectors and Hosts (LR20IPT02), Pasteur Institute of Tunis, Tunis El Manar University, Tunis, 1002, Tunisia
| | - Ahmed Benakhla
- Department of Veterinary Sciences, Chadli Bendjedid El Tarf University, El Tarf, 36000, Algeria
| | - Hamza Leulmi
- Aix Marseille University, IRD, VITROME, Marseille, 13005, France
| |
Collapse
|
4
|
Wang Y, Ling L, Jiang L, Marin-Lopez A. Research progress toward arthropod salivary protein vaccine development for vector-borne infectious diseases. PLoS Negl Trop Dis 2024; 18:e0012618. [PMID: 39636798 PMCID: PMC11620354 DOI: 10.1371/journal.pntd.0012618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Hematophagous arthropods, including mosquitoes, ticks, and flies, are responsible for the transmission of several pathogens to vertebrates on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. In general, attempts to develop vaccines for pathogens transmitted by arthropods have met with moderate success, with few vaccine candidates currently developed. Nowadays, there are vaccine candidates under clinical trials, including different platforms, like mRNA, DNA, recombinant viral vector-based, virus-like particles (VLPs), inactivated-virus, live-attenuated virus, peptide and protein-based vaccines, all of them based on the presentation of pathogen antigens to the host immune system. A new approach to prevent VBDs has arose during the last decades, based on the design of vaccines that target vector-derived antigens. The salivary secretions of arthropods, in addition of causing allergic reactions and harbor pathogens, are also involved in the transmission and infection establishment in the host, altering its immune responses. In this review, we summarize the achievements in the arthropod salivary-based vaccine development for different vector-borne infectious diseases. This provides a rationale for creating vaccines against different types of arthropod salivary proteins, such as mosquitoes, ticks, and sand flies. Using salivary proteins of clinically important vectors might contribute to achieve protection against and control multiple arthropod-borne infection diseases.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Inspection and Quarantine, Shanghai Customs College, Shanghai, China
| | - Lin Ling
- Department of Inspection and Quarantine, Shanghai Customs College, Shanghai, China
| | - Lijie Jiang
- Department of Inspection and Quarantine, Shanghai Customs College, Shanghai, China
| | - Alejandro Marin-Lopez
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
5
|
Gao X, Tian Y, Liu ZL, Li D, Liu JJ, Yu GX, Duan DY, Peng T, Cheng TY, Liu L. Tick salivary protein Cystatin: structure, anti-inflammation and molecular mechanism. Ticks Tick Borne Dis 2024; 15:102289. [PMID: 38070274 DOI: 10.1016/j.ttbdis.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
Ticks are blood-sucking ectoparasites that secrete immunomodulatory substances in saliva to hosts during engorging. Cystatins, a tick salivary protein and natural inhibitor of Cathepsins, are attracting growing interest globally because of the immunosuppressive activities and the feasibility as an antigen for developing anti-tick vaccines. This review outlines the classification and the structure of tick Cystatins, and focuses on the anti-inflammatory effects and molecular mechanisms. Tick Cystatins can be divided into four families based on structures and cystatin 1 and cystatin 2 are the most abundant. They are injected into hosts during blood feeding and effectively mitigate the host inflammatory response. Mechanically, tick Cystatins exert anti-inflammatory properties through the inhibition of TLR-NF-κb, JAK-STAT and p38 MAPK signaling pathways. Further investigations are crucial to confirm the reduction of inflammation in other cell types like neutrophils and mast cells, and fully elucidate the underlying mechanism (like the structural mechanism) to make Cystatin a potential candidate for the development of novel anti-inflammation agents.
Collapse
Affiliation(s)
- Xin Gao
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Tian
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Ling Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Dan Li
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jia-Jun Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Guang-Xu Yu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - De-Yong Duan
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tao Peng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lei Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
7
|
Abbas MN, Jmel MA, Mekki I, Dijkgraaf I, Kotsyfakis M. Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. Int J Mol Sci 2023; 24:4969. [PMID: 36902400 PMCID: PMC10003026 DOI: 10.3390/ijms24054969] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ticks can seriously affect human and animal health around the globe, causing significant economic losses each year. Chemical acaricides are widely used to control ticks, which negatively impact the environment and result in the emergence of acaricide-resistant tick populations. A vaccine is considered as one of the best alternative approaches to control ticks and tick-borne diseases, as it is less expensive and more effective than chemical controls. Many antigen-based vaccines have been developed as a result of current advances in transcriptomics, genomics, and proteomic techniques. A few of these (e.g., Gavac® and TickGARD®) are commercially available and are commonly used in different countries. Furthermore, a significant number of novel antigens are being investigated with the perspective of developing new anti-tick vaccines. However, more research is required to develop new and more efficient antigen-based vaccines, including on assessing the efficiency of various epitopes against different tick species to confirm their cross-reactivity and their high immunogenicity. In this review, we discuss the recent advancements in the development of antigen-based vaccines (traditional and RNA-based) and provide a brief overview of recent discoveries of novel antigens, along with their sources, characteristics, and the methods used to test their efficiency.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ingrid Dijkgraaf
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
8
|
Bensaoud C, Tenzer S, Poplawski A, Medina JM, Jmel MA, Voet H, Mekki I, Aparicio-Puerta E, Cuveele B, Distler U, Marini F, Hackenberg M, Kotsyfakis M. Quantitative proteomics analysis reveals core and variable tick salivary proteins at the tick-vertebrate host interface. Mol Ecol 2022; 31:4162-4175. [PMID: 35661311 DOI: 10.1111/mec.16561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Few studies have examined tick proteomes, how they adapt to their environment, and their roles in the parasite-host interactions that drive tick infestation and pathogen transmission. Here we used a proteomics approach to screen for biologically and immunologically relevant proteins acting at the tick-host interface during tick feeding and, as proof of principle, measured host antibody responses to some of the discovered candidates. We used a label-free quantitative proteomic workflow to study salivary proteomes of (i) wild Ixodes ricinus ticks fed on different hosts; (ii) wild or laboratory ticks fed on the same host; and (iii) adult ticks co-fed with nymphs. Our results reveal high and stable expression of several protease inhibitors and other tick-specific proteins under different feeding conditions. Most pathways functionally enriched in sialoproteomes were related to proteolysis, endopeptidase, and amine-binding activities. The generated catalog of tick salivary proteins enabled the selection of six candidate secreted immunogenic peptides for rabbit immunizations, three of which induced strong and durable antigen-specific antibody responses in rabbits. Furthermore, rabbits exposed to ticks mounted immune responses against the candidate peptides/proteins, confirming their expression at the tick-vertebrate interface. Our approach provides insights into tick adaptation strategies to different feeding conditions and promising candidates for developing anti-tick vaccines or markers of exposure of vertebrate hosts to tick bites.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento s/n, Granada, Spain
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia
| | - Hanne Voet
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia.,University of Antwerp, Wilrijk, Belgium
| | - Imen Mekki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Ernesto Aparicio-Puerta
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento s/n, Granada, Spain
| | - Brent Cuveele
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia.,University of Antwerp, Wilrijk, Belgium
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento s/n, Granada, Spain
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Budweis, Czechia
| |
Collapse
|
9
|
Abbas MN, Chlastáková A, Jmel MA, Iliaki-Giannakoudaki E, Chmelař J, Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front Cell Infect Microbiol 2022; 12:892770. [PMID: 35711658 PMCID: PMC9195624 DOI: 10.3389/fcimb.2022.892770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | | | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| |
Collapse
|
10
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Hromníková D, Furka D, Furka S, Santana JAD, Ravingerová T, Klöcklerová V, Žitňan D. Prevention of tick-borne diseases: challenge to recent medicine. Biologia (Bratisl) 2022; 77:1533-1554. [PMID: 35283489 PMCID: PMC8905283 DOI: 10.1007/s11756-021-00966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Abstract Ticks represent important vectors and reservoirs of pathogens, causing a number of diseases in humans and animals, and significant damage to livestock every year. Modern research into protection against ticks and tick-borne diseases focuses mainly on the feeding stage, i.e. the period when ticks take their blood meal from their hosts during which pathogens are transmitted. Physiological functions in ticks, such as food intake, saliva production, reproduction, development, and others are under control of neuropeptides and peptide hormones which may be involved in pathogen transmission that cause Lyme borreliosis or tick-borne encephalitis. According to current knowledge, ticks are not reservoirs or vectors for the spread of COVID-19 disease. The search for new vaccination methods to protect against ticks and their transmissible pathogens is a challenge for current science in view of global changes, including the increasing migration of the human population. Highlights • Tick-borne diseases have an increasing incidence due to climate change and increased human migration • To date, there is no evidence of transmission of coronavirus COVID-19 by tick as a vector • To date, there are only a few modern, effective, and actively- used vaccines against ticks or tick-borne diseases • Neuropeptides and their receptors expressed in ticks may be potentially used for vaccine design
Collapse
Affiliation(s)
- Dominika Hromníková
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Daniel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Samuel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Julio Ariel Dueñas Santana
- Chemical Engineering Department, University of Matanzas, Km 3 Carretera a Varadero, 44740 Matanzas, CU Cuba
| | - Táňa Ravingerová
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Vanda Klöcklerová
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
12
|
Neelakanta G, Sultana H. Tick Saliva and Salivary Glands: What Do We Know So Far on Their Role in Arthropod Blood Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2022; 11:816547. [PMID: 35127563 PMCID: PMC8809362 DOI: 10.3389/fcimb.2021.816547] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Ticks are blood-sucking arthropods that have developed myriad of strategies to get a blood meal from the vertebrate host. They first attach to the host skin, select a bite site for a blood meal, create a feeding niche at the bite site, secrete plethora of molecules in its saliva and then starts feeding. On the other side, host defenses will try to counter-attack and stop tick feeding at the bite site. In this constant battle between ticks and the host, arthropods successfully pacify the host and completes a blood meal and then replete after full engorgement. In this review, we discuss some of the known and emerging roles for arthropod components such as cement, salivary proteins, lipocalins, HSP70s, OATPs, and extracellular vesicles/exosomes in facilitating successful blood feeding from ticks. In addition, we discuss how tick-borne pathogens modulate(s) these components to infect the vertebrate host. Understanding the biology of arthropod blood feeding and molecular interactions at the tick-host interface during pathogen transmission is very important. This information would eventually lead us in the identification of candidates for the development of transmission-blocking vaccines to prevent diseases caused by medically important vector-borne pathogens.
Collapse
|
13
|
Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021; 11:769574. [PMID: 34722347 PMCID: PMC8548845 DOI: 10.3389/fcimb.2021.769574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
To feed successfully, ticks must bypass or suppress the host’s defense mechanisms, particularly the immune system. To accomplish this, ticks secrete specialized immunomodulatory proteins into their saliva, just like many other blood-sucking parasites. However, the strategy of ticks is rather unique compared to their counterparts. Ticks’ tendency for gene duplication has led to a diverse arsenal of dozens of closely related proteins from several classes to modulate the immune system’s response. Among these are chemokine-binding proteins, complement pathways inhibitors, ion channels modulators, and numerous poorly characterized proteins whose functions are yet to be uncovered. Studying tick immunomodulatory proteins would not only help to elucidate tick-host relationships but would also provide a rich pool of potential candidates for the development of immunomodulatory intervention drugs and potentially new vaccines. In the present review, we will attempt to summarize novel findings on the salivary immunomodulatory proteins of ticks, focusing on biomolecular targets, structure-activity relationships, and the perspective of their development into therapeutics.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
14
|
The Brilliance of Borrelia: Mechanisms of Host Immune Evasion by Lyme Disease-Causing Spirochetes. Pathogens 2021; 10:pathogens10030281. [PMID: 33801255 PMCID: PMC8001052 DOI: 10.3390/pathogens10030281] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments.
Collapse
|
15
|
Strong interactions between Salp15 homologues from the tick I. ricinus and distinct types of the outer surface OspC protein from Borrelia. Ticks Tick Borne Dis 2020; 12:101630. [PMID: 33401196 DOI: 10.1016/j.ttbdis.2020.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Ticks belonging to the genus Ixodes are parasites feeding on vertebrate blood and vectors for many pathogenic microbes, including Borrelia burgdorferi sensu lato spirochetes, the causative agent of Lyme borreliosis. The tick saliva contains a mixture of bioactive molecules showing a wide range of properties for efficient engorgement. One of the most extensively studied components of tick saliva is a 15-kDa salivary gland protein (Salp15) from Ixodes scapularis. This multifunctional protein suppresses the immune response of hosts through pleiotropic action on a few crucial defense pathways. Salp15 and its homologue from I. ricinus Iric1 have been also shown to bind to Borrelia burgdorferi sensu stricto outer surface protein C (OspC) permitting the spirochetes to evade antibody-mediated killing in the human host. Further studies revealed that Salp15 and Iric1 protected B. burgdorferi s. s. and B. garinii expressing OspC against the complement system. OspC is the most variable protein on the outer surface of Borrelia, which in addition to Salp15 can also bind other ligands, such as plasminogen, fibrinogen, fibronectin or complement factor 4. So far several OspC variants produced by B. burgdorferi s. l. spirochetes were shown to be capable of binding Salp15 or its homologue, but the protection against borreliacidal antibodies has only been proven in the case of B. burgdorferi s. s. The question of Salp15 contribution to Borrelia survival during the infection has been comprehensively studied during the last decades. In contrast, the organization of the OspC-Salp15 complex has been poorly explored. This report describes the binding between three Salp15 homologues from the tick Ixodes ricinus (Iric1, Iric2 and Iric3) and OspC from four B. burgdorferi sensu lato strains in terms of the binding parameters, analyzed with two independent biophysical methods - Microscale thermophoresis (MST) and Biolayer interferometry (BLI). The results of both experiments show a binding constant at the nanomolar level, which indicates very strong interactions. While the Iric1-OspC binding has been reported before, we show in this study that also Iric2 and Iric3 are capable of OspC binding with high affinity. This observation suggests that these two Salp15 homologues might be used by B. burgdorferi s. l. in a way analogous to Iric1. A comparison of the results from the two methods let us propose that N-terminal immobilization of OspC significantly increases the affinity between the two proteins. Finally, our results indicate that the Iric binding site is located in close proximity of the OspC epitopes recognized by human antibodies, which may have important biological and medical implications.
Collapse
|
16
|
Aounallah H, Bensaoud C, M'ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front Immunol 2020; 11:583845. [PMID: 33072132 PMCID: PMC7538779 DOI: 10.3389/fimmu.2020.583845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.
Collapse
Affiliation(s)
- Hajer Aounallah
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia.,Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Youmna M'ghirbi
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Jindr Ich Chmelar
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|