1
|
Long Y, Li X, Liu Y, Zhang M, Feng F. Inhibition of YAP can down-regulate NLRP3 inflammasome and improve anti-tuberculosis drug-induced liver injury. Xenobiotica 2025:1-9. [PMID: 40288888 DOI: 10.1080/00498254.2025.2497050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Yes-associated protein (YAP) is a core effector molecule in the Hippo signalling pathway, but its role in antituberculosis drug-induced liver injury (ADLI) is unclear. We aimed to explore the regulatory effects of YAP on the NLRP3 inflammasome in ADLI and its potential hepatoprotective effects.An ADLI animal model was established. Various indicators of experimental animals were detected at 0, 7, 14, and 21 days. On day 7, HE staining observed liver tissue, and liver index, ALT, and AST levels confirmed the ADLI model. YAP's mRNA and protein levels were examined, YAP inhibitor effects were observed, and NLRP3 inflammasome, inflammation, and oxidative stress indicators were analysed.It was found that the mRNA and protein levels of YAP increased during ADLI and then decreased due to the action of YAP inhibitors. YAP caused an elevation in NLRP3 inflammasome indicators, as well as increased expression of inflammation and oxidative stress. After feeding with YAP inhibitors, these indicators were reduced.The results suggest that targeting YAP may be a novel therapeutic strategy for alleviating antituberculosis drug-induced liver injury.
Collapse
Affiliation(s)
- Yifei Long
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xueying Li
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yue Liu
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Mi Zhang
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Fumin Feng
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China
| |
Collapse
|
2
|
Zhang J, Liu J, Liu Z, Guo L, Liu X. M2 macrophages-derived exosomal MDH1 drives lung adenocarcinoma progression via the Hippo/YAP signaling. Pathol Res Pract 2025; 269:155902. [PMID: 40090126 DOI: 10.1016/j.prp.2025.155902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/09/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Exosomes are released by most cell types, including tumor-associated macrophages (TAMs), transfer diverse macromolecules and participate in intercellular communication in cancer. However, whether M2-polarized TAMs (M2-TAMs)-derived exosomes (M2-exos) transmit the oncogenic protein malate dehydrogenase 1 (MDH1) to reprogram lung adenocarcinoma (LUAD) cancer cells is unknown. METHODS THP-1-differentiated macrophages were co-cultured with A549 cells to generate TAMs (M0-TAMs and M2-TAMs). Exosomes (M0-exos and M2-exos) were isolated from the co-culture supernatant and characterized. Xenograft studies were used to explore the effect of M2-exos-derived MDH1 on tumor growth. Expression analysis was performed by quantitative PCR, immunoblot and immunohistochemistry (IHC). Cell phenotype changes were detected by CCK-8, EdU, colony formation, wound-healing and transwell assays. RESULTS Bioinformatics analyses confirmed that MDH1 was overexpressed in human LUAD and high MDH1 expression was associated with poor prognosis. MDH1 depletion resulted in the in vitro suppression of LUAD cell growth, migration and invasiveness. M2-exos contained and transferred MDH1 into LUAD cells to upregulate MDH1 level in these cells. M2-exos-derived MDH1 enhanced the growth of A549 xenograft tumors in vivo and activated the Hippo/YAP pathway in vitro. Furthermore, Yes-associated protein (YAP) depletion could abrogate M2-exos-induced enhancements in these malignant phenotypes of A549 and HCC827 LUAD cells. CONCLUSION These findings demonstrate that exosomal MDH1 derived from M2-TAMs enhance LUAD cell growth and metastasis by activating the Hippo/YAP signaling, uncovering a novel exosomal mechanism of crosstalk between tumor microenvironment and LUAD cells.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, Xi'an International Medical Center Hospital, Xi'an 710100, China
| | - Jinpeng Liu
- Department of Oncology, Xi'an International Medical Center Hospital, Xi'an 710100, China
| | - Zhuixing Liu
- Department of Oncology, Xi'an International Medical Center Hospital, Xi'an 710100, China
| | - Lihong Guo
- Department of Oncology, Xi'an International Medical Center Hospital, Xi'an 710100, China
| | - Xueqin Liu
- Department of Oncology, Xi'an International Medical Center Hospital, Xi'an 710100, China.
| |
Collapse
|
3
|
Wang Y, Lan Q, Li F, Xiong J, Xie H, Gong S, Yao M, Lv L, Qin S, Xin W, Zhang A, Zhou S, Huang Y, Zhao J. Macrophage-Derived Type 1 IFN, Renal Tubular Epithelial Cell Polyploidization, and AKI-to-CKD Transition. J Am Soc Nephrol 2025; 36:766-780. [PMID: 39665291 PMCID: PMC12059107 DOI: 10.1681/asn.0000000577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024] Open
Abstract
Key Points Macrophage-derived IFN-β contributes to tubular epithelial cell polyploidization after AKI. IFN-β induced tubular epithelial cell polyploidization by regulating inorganic pyrophosphatase-mediated yes-associated protein (YAP) dephosphorylation. Delayed blockade of the IFN-β response attenuated persistent polyploidization and kidney fibrosis. Background AKI is recognized as a common risk factor of CKD. Renal tubular epithelial cell polyploidization after AKI is closely associated with maladaptive repair, while the regulatory and molecular mechanisms remain poorly understood. In this study, we set out to investigate the mechanism of tubular epithelial cell polyploidization and their role in AKI-to-CKD transition. Methods The change characters of polyploid tubular epithelial cells and macrophages after AKI were detected by flow cytometry and immunofluorescence. The underlying mechanism was explored by RNA-sequencing analysis, immunofluorescence, and Western blot. The role of tubular epithelial cell polyploidization in AKI-to-CKD transition was evaluated by transgenic mice and drug interventions. Results We discovered that tubular epithelial cells underwent polyploidization after AKI, and polyploid tubular epithelial cells exhibited greater fibrotic phenotypes than nonpolyploid cells. Furthermore, we revealed an upregulated IFN-β response feature within tubular epithelial cells after AKI and identified that macrophage-derived IFN-β bound to IFN-I receptor 1 of tubular epithelial cells and induced their polyploidization. Mechanistically, IFN-β , secreted by macrophages through activation of the cyclic guanosine monophosphate-AMP synthase-stimulator of IFN genes pathway, acted on tubular epithelial cells and facilitated inorganic pyrophosphatase binding to yes-associated protein (YAP), which mediated YAP dephosphorylation and subsequent nuclear translocation, culminating in p21 expression and polyploidization. Importantly, delayed blockade of the IFN-β response and pharmacological inhibition of stimulator of IFN genes or YAP activation on day 4 after AKI significantly attenuated persistent tubular epithelial cell polyploidization and AKI-induced kidney fibrosis. Conclusions Macrophage-derived IFN-β contributed to tubular epithelial cell polyploidization by regulating inorganic pyrophosphatase/YAP signaling pathway–mediated p21 expression and further promoted AKI-to-CKD transition.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qigang Lan
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fugang Li
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hailun Xie
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuiqin Gong
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengying Yao
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liangjing Lv
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shaozong Qin
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wang Xin
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Aihong Zhang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Siyan Zhou
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Shao C, Chen H, Liu T, Pan C. The Hippo pathway in bone and cartilage: implications for development and disease. PeerJ 2025; 13:e19334. [PMID: 40292098 PMCID: PMC12024444 DOI: 10.7717/peerj.19334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Bone is the main structure of the human body; it mainly plays a supporting role and participates in metabolic processes. The Hippo signaling pathway is composed of a series of protein kinases, including the mammalian STE20-like kinase MST1/2 and the large tumor suppressor LATS1/2, which are widely involved in pathophysiological processes, including cell proliferation, differentiation, apoptosis and death, especially those related to biomechanical transduction in vivo. However, the role of it in regulating skeletal system development and the evolution of bone-related diseases remains poorly understood. The pathway can intervene in and regulate the physiological activities of bone-related cells such as osteoclasts and chondrocytes through its own or other bone-related signaling pathways, such as the Wnt pathway, the Notch pathway, and receptor activator of nuclear factor-κB ligand (RANKL), thereby affecting the occurrence and development of bone diseases. This article discusses the role of the Hippo signaling pathway in bone development and disease to provide new insights into the treatment of bone-related diseases by targeting the Hippo signaling pathway.
Collapse
Affiliation(s)
- Chenwei Shao
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hao Chen
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Tingting Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Chun Pan
- Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. High dose methylprednisolone mediates YAP/TAZ-TEAD in vocal fold fibroblasts with macrophages. Sci Rep 2025; 15:11005. [PMID: 40164663 PMCID: PMC11958790 DOI: 10.1038/s41598-025-95459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The pro-fibrotic effects of glucocorticoids may lead to a suboptimal therapeutic response for vocal fold (VF) pathology. Targeting macrophage-fibroblast interactions is an interesting therapeutic strategy; macrophages alter their phenotype to mediate both inflammation and fibrosis. In the current study, we investigated concentration-dependent effects of methylprednisolone on the fibrotic response, with an emphasis on YAP/TAZ-TEAD signaling, and inflammatory gene expression in VF fibroblasts in physical contact with macrophages. We sought to provide foundational data to optimize therapeutic strategies for millions of patients with voice/laryngeal disease-related disability. Following induction of inflammatory (M(IFN/LPS)) and fibrotic (M(TGF)) phenotypes, THP-1-derived macrophages were seeded onto HVOX vocal fold fibroblasts. Cells were co-cultured ± 0.3-3000 nM methylprednisolone ± 3 µM verteporfin, a YAP/TAZ inhibitor. Inflammatory (CXCL10, TNF, PTGS2) and fibrotic genes (ACTA2, CCN2, COL1A1) in fibroblasts were analyzed by real-time polymerase chain reaction after cell sorting. Ser211-phosphorylated glucocorticoid receptor (S211-pGR) was assessed by Western blotting. Nuclear localization of S211-pGR and YAP/TAZ was analyzed by immunocytochemistry. Methylprednisolone decreased TNF and PTGS2 in fibroblasts co-cultured with M(IFN/LPS) macrophages and increased ACTA2 and CCN2 in fibroblasts co-cultured with M(IFN/LPS) and M(TGF). Lower concentrations were required to decrease TNF and PTGS2 expression and to increase S211-pGR than to increase ACTA2 and CCN2 expression and nuclear localization of S211-pGR. Methylprednisolone also increased YAP/TAZ nuclear localization. Verteporfin attenuated upregulation of CCN2, but not PTGS2 downregulation. High concentration methylprednisolone induced nuclear localization of S211-pGR and upregulated fibrotic genes mediated by YAP/TAZ activation.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Renjie Bing
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Gary J Gartling
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Ryan C Branski
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA.
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, 435 East 30th Street, Room 1011, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Gutiérrez-Rojas C, Córdova-Casanova A, Faundez-Contreras J, Cruz-Soca M, Gallardo FS, Bock-Pereda A, Casar JC, Barton ER, Brandan E. Dysregulated ATX-LPA and YAP/TAZ signaling in dystrophic Sgcd -/- mice with early fibrosis and inflammation. Skelet Muscle 2025; 15:6. [PMID: 40050938 PMCID: PMC11884125 DOI: 10.1186/s13395-025-00375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/13/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Sarcoglycanopathies are muscle dystrophies caused by mutations in the genes encoding sarcoglycans (α, β, γ, and δ) that can destabilize the dystrophin-associated glycoprotein complex at the sarcolemma, leaving muscle fibers vulnerable to damage after contraction, followed by inflammatory and fibrotic responses and resulting in muscle weakness and atrophy. Two signaling pathways have been implicated in fibrosis and inflammation in various tissues: autotaxin/lysophosphatidic acid (ATX-LPA) and yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ). LPA, synthesized by ATX, can act as a pleiotropic molecule due to its multiple receptors. Two Hippo pathway effectors, YAP/TAZ, can be dephosphorylated by LPA and translocated to the nucleus. They induce several target genes, such as CCN2/CTGF, involved in fibrosis and inflammation. However, no detailed characterization of these processes or whether these pathways change early in the development of sarcoglycanopathy has been evaluated in skeletal muscle. METHODS Using the δ-sarcoglycan knockout mouse model (Sgcd-/-), we investigated components of these pathways, inflammatory and fibrotic markers, and contractile properties of different skeletal muscles (triceps-TR, gastrocnemius-GST, diaphragm-DFG, tibialis anterior-TA, and extensor digitorum longus-EDL) at one and two months of age. RESULTS We found that Sgcd-/- mice show early dystrophic features (fiber damage/necrosis, centrally nucleated fibers, inflammatory infiltrate, and regenerated fibers) followed by later fiber size reduction in TR, GST, and DFG. These changes are concomitant with an early inflammatory and fibrotic response in these muscles. Sgcd-/- mice also have early impaired force generation in the TA and EDL, and resistance to mechanical damage in the EDL. In addition, an early dysregulation of the ATX-LPA axis and the YAP/TAZ signaling pathway in the TR, GST, and DFG was observed in these mice. CONCLUSIONS The ATX-LPA axis and the YAP/TAZ signaling pathway, which are involved in inflammation and fibrosis, are dysregulated in skeletal muscle from an early age in Sgcd-/- mice. These changes are concomitant with a fibrotic and inflammatory response in these mice. Unraveling the role of the LPA axis and YAP/TAZ in sarcoglycanopathy holds great promise for improving our understanding of disease pathogenesis and identifying novel therapeutic targets for this currently incurable group of muscle disorders.
Collapse
Affiliation(s)
- Cristian Gutiérrez-Rojas
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2340025, Valparaíso, Chile.
- Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile.
| | | | - Jennifer Faundez-Contreras
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510602, Santiago, Chile
| | - Meilyn Cruz-Soca
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
| | - Felipe S Gallardo
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
| | - Alexia Bock-Pereda
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Elisabeth R Barton
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Enrique Brandan
- Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510602, Santiago, Chile.
| |
Collapse
|
7
|
Lopez K, Deng JJ, Xu Y, Sharkey FE, Wang P, Liu J. Exploring the role of YAP1 and TAZ in pancreatic acinar cells and the therapeutic potential of VT-104 in pancreatic inflammation. JOURNAL OF PANCREATOLOGY 2025; 8:32-40. [PMID: 40123617 PMCID: PMC11925344 DOI: 10.1097/jp9.0000000000000170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/05/2024] [Indexed: 03/25/2025] Open
Abstract
Background Increasing evidence has linked the Hippo pathway with the fibroinflammatory diseases. However, the detailed roles of key hippo components in pancreatic inflammatory diseases still remain unclear. Methods A series of genetic knockout mice were generated targeting the key components of Hippo pathway to examine the individual effects of YAP1 and TAZ on pancreatic inflammation. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and immunofluorescence staining were performed to evaluate the pancreas tissue from mice with various genotypes. The therapeutic potential of a recently developed YAP1/TAZ inhibitor VT-104 was also evaluated in our mouse model. Results Mice with acinar-specific knockout of YAP1/TAZ did not exhibit any histological abnormalities in the pancreas. LATS1/2 deficiency induced acinar to ductal metaplasia, immune cell infiltration, and fibroblast activation, which were rescued by the homozygous knockout YAP1, but not TAZ. Additionally, treatment with VT-104 also decreased pathological alterations induced by deletions of LATS1 and LATS2 in acinar cells. Conclusion Our findings highlight the critical role of YAP1 in modulating pancreatic inflammation and demonstrate that VT-104 holds therapeutic potential to mitigate pancreatitis-associated pathological manifestations. Further exploration is necessary to unravel the underlying mechanisms and translate these insights into clinical applications.
Collapse
Affiliation(s)
- Kevin Lopez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Janice J. Deng
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Yi Xu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Francis E. Sharkey
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Jun Liu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
8
|
Hu Y, Rodiger J, Liu Y, Gao C, Liu Y, Qadiri M, Veal A, Bulyk ML, Perrimon N. TF2TG: an online resource mining the potential gene targets of transcription factors in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638157. [PMID: 39990429 PMCID: PMC11844531 DOI: 10.1101/2025.02.13.638157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sequence-specific transcription factors (TFs) are key regulators of many biological processes, controlling the expression of their target genes through binding to the cis- regulatory regions such as promoters and enhancers. Each TF has unique DNA binding site motifs, and large-scale experiments have been conducted to characterize TF-DNA binding preferences. However, no comprehensive resource currently integrates these datasets for Drosophila. To address this need, we developed TF2TG ("transcription factor to target gene"), a comprehensive resource that combines both in vitro and in vivo datasets to link transcription factors (TFs) to their target genes based on TF-DNA binding preferences along with the protein-protein interaction data, tissue-specific transcriptomic data, and chromatin accessibility data. Although the genome offers numerous potential binding sites for each TF, only a subset is actually bound in vivo, and of these, only a fraction is functionally relevant. For instance, some TFs bind to their specific sites due to synergistic interactions with other factors nearby. This integration provides users with a comprehensive list of potential candidates as well as aids users in ranking candidate genes and determining condition-specific TF binding for studying transcriptional regulation in Drosophila.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chenxi Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Mujeeb Qadiri
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Austin Veal
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02138, USA
| |
Collapse
|
9
|
Tamburri S, Zucchelli C, Matafora V, Zapparoli E, Jevtic Z, Farris F, Iannelli F, Musco G, Bachi A. SP140 represses specific loci by recruiting polycomb repressive complex 2 and NuRD complex. Nucleic Acids Res 2025; 53:gkae1215. [PMID: 39718989 PMCID: PMC11879014 DOI: 10.1093/nar/gkae1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
SP140, a lymphocytic-restricted protein, is an epigenetic reader working as a corepressor of genes implicated in inflammation and orchestrating macrophage transcriptional programs to maintain cellular identity. Reduced SP140 expression is associated both to autoimmune diseases and blood cancers. However, the molecular mechanisms that link SP140 altered protein levels to detrimental effects on the immune response and cellular growth, as well as the interactors through which SP140 promotes gene silencing, remain elusive. In this work, we have applied a multi-omics approach (i.e. interactomics, ChIP-seq and proteomics) in two Burkitt lymphoma cell lines to identify both interactors and target genes of endogenous SP140. We found that SP140 interacts with the PRC2 and NuRD complexes, and we showed that these interactions are functional as SP140 directs H3K27me3 deposition and NuRD binding on a set of target genes implicated in cellular growth and leukemia progression.
Collapse
Affiliation(s)
- Simone Tamburri
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Vittoria Matafora
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Zivojin Jevtic
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Francesco Farris
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Fabio Iannelli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 16039 Milano, Italy
| |
Collapse
|
10
|
Ye R, Wei Y, Li J, Zhong Y, Chen X, Li C. Plasma-derived extracellular vesicles prime alveolar macrophages for autophagy and ferroptosis in sepsis-induced acute lung injury. Mol Med 2025; 31:40. [PMID: 39901167 PMCID: PMC11792199 DOI: 10.1186/s10020-025-01111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) is a severe complication of sepsis and the leading cause of mortality. Although the role of alveolar macrophages (AMs) in stabilizing pulmonary homeostasis is well established, the effects of circulating extracellular vesicles (EVs) on AMs remain largely unknown. In this study, an investigation was conducted to map the miRNA and protein expression profiles of EVs derived from septic plasma. Notably, EV-based panels (miR-122-5p, miR-125b-5p, miR-223-3p, OLFM4, and LCN2) have been found to be associated with the severity or prognosis of sepsis, with promising AUC values. Moreover, the levels of LCN2, miR-122-5p, and miR-223-3p were identified as independent predictors of septic ARDS. The in vitro coculture results revealed that the effects of LPS-EVs from the plasma of sepsis-induced acute lung injury (ALI), which carry pro-inflammatory EVs, were partly mediated by miR-223-3p, as evidenced by the promotion of inflammation, autophagy and ferroptosis in AMs. Mechanistically, the upregulation of miR-223-3p in LPS-EVs triggers autophagy and ferroptosis in AMs by activating Hippo signaling via the targeting of MEF2C. In vivo, the inhibition of miR-223-3p effectively mitigated LPS-EV-induced inflammation and AM death in the lungs, as well as histological lesions. Overall, miR-223-3p in LPS-EVs contributes to sepsis-induced ALI by priming AMs for autophagy and ferroptosis through the MEF2C/Hippo signaling pathway. These findings suggest a novel mechanism of plasma-AM interaction in sepsis-induced ALI, offering a plausible strategy for assessing septic progression and treating lung injury.
Collapse
Affiliation(s)
- Rongzong Ye
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yating Wei
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jingwen Li
- Guangxi Medical University, Nanning, 530021, China
| | - Yu Zhong
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiukai Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, China.
| | - Chaoqian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
11
|
Tong W, Zhu L, Han P, Bai Y, Wang T, Chen D, Li Z, Chi H, Deng X, Zhang Y, Shen Z. TWEAK is an activator of Hippo-YAP signaling protecting against hepatic Ischemia/ reperfusion injury. Int Immunopharmacol 2024; 143:113567. [PMID: 39500083 DOI: 10.1016/j.intimp.2024.113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) represents a formidable complication commonly linked with hemorrhagic shock, liver resection, and transplantation. This study aims to elucidate the role of Tumor Necrosis Factor-like Weak Inducer of Apoptosis (TWEAK) in the pathogenesis of hepatic I/R injury and to delineate the underlying mechanisms involved. Utilizing a hypoxia-reoxygenation model in human liver organoids (HLOs) alongside a murine model of warm ischemia-reperfusion injury, we systematically investigated the interplay between TWEAK, its receptor Fn14, and the HIPPO signaling pathway. Our findings indicate that TWEAK pretreatment significantly mitigates IRI in murine livers as well as hypoxia/reoxygenation injury in HLOs. Notably, administration of adeno-associated virus (AAV) to knock down Fn14 abrogated the protective effects of TWEAK in the murine model. Transcriptome sequencing analysis revealed that the interaction between TWEAK and Fn14 enhances cellular resistance to IRI by activating the HIPPO signaling pathway. Overall, TWEAK emerges as a promising therapeutic target for mitigating hepatic I/R injury, potentially improving outcomes in liver transplantation.
Collapse
Affiliation(s)
- Wen Tong
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Liuyang Zhu
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Pinsheng Han
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China
| | - Tianze Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Zhongmin Li
- Department of Hepatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hao Chi
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Xiyue Deng
- The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Zhongyang Shen
- Organ Transplantation Centre, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
12
|
Hu C, Francisco J, Del Re DP, Sadoshima J. Decoding the Impact of the Hippo Pathway on Different Cell Types in Heart Failure. Circ J 2024; 89:6-15. [PMID: 38644191 DOI: 10.1253/circj.cj-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.
Collapse
Affiliation(s)
- Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| |
Collapse
|
13
|
Xi Y, Li J, Wu Z, Ma Y, Li J, Yang Z, Wang F, Yang D, Jiang Y, Yi Q, Huang S. Yorkie negatively regulates the Crustin expression during molting in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105242. [PMID: 39128619 DOI: 10.1016/j.dci.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Molting is a key biological process of crustaceans, which is mainly regulated by 20-hydroxyecdyone (20E). The molting cycle could be divided into three main stages including pre-molt, post-molt and inter-molt stages. The mechanism of immune regulation during molting process still requires further exploration. Yorkie (Yki) is a pivotal transcription factor in the Hippo signaling pathway, and it plays an essential role in regulating cell growth and immune response. In the present study, a Yki gene was identified from Eriocheir sinensis (designed as EsYki), and the regulatory role of EsYki in controlling the expression of antimicrobial peptide genes throughout the molting process was investigated. The mRNA expression level of EsYki was higher at the pre-molt stage compared to the post-molt stage and inter-molt stage. Following the injection of 20E, there was a notable and consistent rise in the EsYki mRNA expression in haemocytes. The increase was observed from 3 h to 48 h with the maximum level at 12 h. And the phosphorylation of Yki in the haemocytes was also significantly up-regulated at 3 h post 20E injection. Moreover, the levels of EsYki mRNA expression at three molting stages were significantly increased post Aeromonas hydrophila stimulation. The maximum level was detected at post-molt stage following A. hydrophila stimulation, while the lowest level was observed at inter-molt stage. The expression pattern of EsCrus was in contrast to EsCrus. After EsYki mRNA transcripts were inhibited by Yki inhibitor (CA3), the mRNA expression levels of EsCrus1 and EsCrus2 following A. hydrophila stimulation were significantly elevated. Furthermore, the phosphorylation level of NF-κB was also increased following the inhibition of Yki. Collectively, our findings indicated that EsYki could be induced by 20E and has a suppressive effect on the expression of EsCrus via inhibiting NF-κB during molting process. This research contributes to the understanding of the immunological regulation mechanism during molting process in crustaceans.
Collapse
Affiliation(s)
- Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
14
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zhou Q, Cai B, Liu K, Chen H. EIF4A3-Induced Upregulation of hsa_circ_0049396 Attenuates the Tumorigenesis of Nasopharyngeal Carcinoma by Regulating the Hippo-YAP Pathway. DNA Cell Biol 2024; 43:510-519. [PMID: 39133108 DOI: 10.1089/dna.2024.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Circular RNAs (circRNAs) and eukaryotic translation initiation factor 4A3 (EIF4A3) have been reported to participate in the pathogenesis of nasopharyngeal carcinoma (NPC), but their mechanism has not been fully understood. This research aimed to confirm the role and regulatory mechanism of hsa_circ_0049396 interacting with EIF4A3 in NPC tumorigenesis. Quantitative real time polymerase chain reaction (qRT-PCR) was executed to detect the levels of hsa_circ_0049396 and EIF4A3. Cell function experiments and nude mice xenograft assay were used to confirm the role of hsa_circ_0049396 in NPC. The regulatory effect of EIA4A3 on hsa_circ_0049396 was determined by circInteractome prediction, RNA binding protein immunoprecipitation (RIP) assay, and qRT-PCR. In addition, the Hippo-YAP pathway-related proteins and EIF4A3 protein were detected by western blotting. hsa_circ_0049396 was proved to be downregulated in NPC samples, and its low expression indicated the poor prognosis of NPC. After upregulating hsa_circ_0049396 in NPC cells, the proliferation, migration, invasion, and tumor growth in vivo were suppressed by inhibiting the Hippo-YAP pathway. Moreover, EIF4A3 bound to the flanking regions of the hsa_circ_0049396 to enhance hsa_circ_0049396 expression in NPC cells. hsa_circ_0049396 mediated by EIF4A3 in NPC can attenuate NPC tumorigenesis by inhibiting the Hippo-YAP pathway. This finding may provide a potential early diagnostic biomarker or drug target to improve the precision medicine approaches of NPC.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Otolaryngology Head and Neck Surgery, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Binlin Cai
- Department of Otolaryngology Head and Neck Surgery, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Kun Liu
- Department of Otolaryngology Head and Neck Surgery, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hongxin Chen
- Department of Otolaryngology Head and Neck Surgery, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Guo ZF, Tongmuang N, Li C, Zhang C, Hu L, Capreri D, Zuo MX, Summer R, Sun J. Inhibiting endothelial cell Mst1 attenuates acute lung injury in mice. JCI Insight 2024; 9:e178208. [PMID: 39253972 PMCID: PMC11385092 DOI: 10.1172/jci.insight.178208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
Lung endothelium plays a pivotal role in the orchestration of inflammatory responses to acute pulmonary insults. Mammalian sterile 20-like kinase 1 (Mst1) is a serine/threonine kinase that has been shown to play an important role in the regulation of apoptosis, stress responses, and organ growth. This study investigated the role of Mst1 in lung endothelial activation and acute lung injury (ALI). We found that Mst1 was significantly activated in inflamed lung endothelial cells (ECs) and mouse lung tissues. Overexpression of Mst1 promoted nuclear factor κ-B (NF-κB) activation through promoting JNK and p38 activation in lung ECs. Inhibition of Mst1 by either its dominant negative form (DN-Mst1) or its pharmacological inhibitor markedly attenuated cytokine-induced expression of cytokines, chemokines, and adhesion molecules in lung ECs. Importantly, in a mouse model of lipopolysaccharide-induced (LPS-induced) ALI, both deletion of Mst1 in lung endothelium and treatment of WT mice with a pharmacological Mst1 inhibitor significantly protected mice from LPS-induced ALI. Together, our findings identified Mst1 kinase as a key regulator in controlling lung EC activation and suggest that therapeutic strategies aimed at inhibiting Mst1 activation might be effective in the prevention and treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Zhi-Fu Guo
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai
| | - Nopprarat Tongmuang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chao Li
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chen Zhang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Louis Hu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Capreri
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mei-Xing Zuo
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ross Summer
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Prencipe G, Cerveró-Varona A, Perugini M, Sulcanese L, Iannetta A, Haidar-Montes AA, Stöckl J, Canciello A, Berardinelli P, Russo V, Barboni B. Amphiregulin orchestrates the paracrine immune-suppressive function of amniotic-derived cells through its interplay with COX-2/PGE 2/EP4 axis. iScience 2024; 27:110508. [PMID: 39156643 PMCID: PMC11326934 DOI: 10.1016/j.isci.2024.110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
The paracrine crosstalk between amniotic-derived membranes (AMs)/epithelial cells (AECs) and immune cells is pivotal in tissue healing following inflammation. Despite evidence collected to date, gaps in understanding the underlying molecular mechanisms have hindered clinical applications. The present study represents a significant step forward demonstrating that amphiregulin (AREG) orchestrates the native immunomodulatory functions of amniotic derivatives via the COX-2/PGE2/EP4 axis. The results highlight the immunosuppressive efficacy of PGE2-dependent AREG release, dampening PBMCs' activation, and NFAT pathway in Jurkat reporter cells via TGF-β signaling. Moreover, AREG emerges as a key protein mediator by attenuating acute inflammatory response in Tg(lysC:DsRed2) zebrafish larvae. Notably, the interplay of diverse COX-2/PGE2 pathway activators enables AM/AEC to adapt rapidly to external stimuli (LPS and/or stretching) through a responsive positive feedback loop on the AREG/EGFR axis. These findings offer valuable insights for developing innovative cell-free therapies leveraging the potential of amniotic derivatives in immune-mediated diseases and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Iannetta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Arlette Alina Haidar-Montes
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
18
|
Xu D, Qu X, Yang T, Sheng M, Bian X, Zhan Y, Tian Y, Lin Y, Jin Y, Wang X, Ke M, Jiang L, Li C, Xia Q, Farmer DG, Ke B. The Foxo1-YAP-Notch1 axis reprograms STING-mediated innate immunity in NASH progression. Exp Mol Med 2024; 56:1843-1855. [PMID: 39122845 PMCID: PMC11372114 DOI: 10.1038/s12276-024-01280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/10/2024] [Accepted: 04/21/2024] [Indexed: 08/12/2024] Open
Abstract
Innate immune activation is critical for initiating hepatic inflammation during nonalcoholic steatohepatitis (NASH) progression. However, the mechanisms by which immunoregulatory molecules recognize lipogenic, fibrotic, and inflammatory signals remain unclear. Here, we show that high-fat diet (HFD)-induced oxidative stress activates Foxo1, YAP, and Notch1 signaling in hepatic macrophages. Macrophage Foxo1 deficiency (Foxo1M-KO) ameliorated hepatic inflammation, steatosis, and fibrosis, with reduced STING, TBK1, and NF-κB activation in HFD-challenged livers. However, Foxo1 and YAP double knockout (Foxo1/YAPM-DKO) or Foxo1 and Notch1 double knockout (Foxo1/Notch1M-DKO) promoted STING function and exacerbated HFD-induced liver injury. Interestingly, Foxo1M-KO strongly reduced TGF-β1 release from palmitic acid (PA)- and oleic acid (OA)-stimulated Kupffer cells and decreased Col1α1, CCL2, and Timp1 expression but increased MMP1 expression in primary hepatic stellate cells (HSCs) after coculture with Kupffer cells. Notably, PA and OA challenge in Kupffer cells augmented LIMD1 and LATS1 colocalization and interaction, which induced YAP nuclear translocation. Foxo1M-KO activated PGC-1α and increased nuclear YAP activity, modulating mitochondrial biogenesis. Using chromatin immunoprecipitation (ChIP) coupled with massively parallel sequencing (ChIP-Seq) and in situ RNA hybridization, we found that NICD colocalizes with YAP and targets Mb21d1 (cGAS), while YAP functions as a novel coactivator of the NICD, which is crucial for reprogramming STING function in NASH progression. These findings highlight the importance of the macrophage Foxo1-YAP-Notch1 axis as a key molecular regulator that controls lipid metabolism, inflammation, and innate immunity in NASH.
Collapse
Affiliation(s)
- Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiaoye Qu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Yang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mingwei Sheng
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiyun Bian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yongqiang Zhan
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuanbang Lin
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuting Jin
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Wang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Longfeng Jiang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Changyong Li
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Douglas G Farmer
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. High-dose methylprednisolone mediates YAP/TAZ-TEAD in vocal fold fibroblasts with macrophages. RESEARCH SQUARE 2024:rs.3.rs-4626638. [PMID: 39070624 PMCID: PMC11276011 DOI: 10.21203/rs.3.rs-4626638/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The pro-fibrotic effects of glucocorticoids may lead to a suboptimal therapeutic response for vocal fold (VF) pathology. Targeting macrophage-fibroblast interactions is an interesting therapeutic strategy; macrophages alter their phenotype to mediate both inflammation and fibrosis. In the current study, we investigated concentration-dependent effects of methylprednisolone on the fibrotic response, with an emphasis on YAP/TAZ-TEAD signaling, and inflammatory gene expression in VF fibroblasts in physical contact with macrophages. We sought to provide foundational data to optimize therapeutic strategies for millions of patients with voice/laryngeal disease-related disability. Following induction of inflammatory (M(IFN/LPS)) and fibrotic (M(TGF)) phenotypes, THP-1-derived macrophages were seeded onto HVOX vocal fold fibroblasts. Cells were co-cultured +/-0.3-3000nM methylprednisolone +/- 3μM verteporfin, a YAP/TAZ inhibitor. Inflammatory (CXCL10, TNF, PTGS2) and fibrotic genes (ACTA2, CCN2, COL1A1) in fibroblasts were analyzed by real-time polymerase chain reaction after cell sorting. Ser211-phosphorylated glucocorticoid receptor (S211-pGR) was assessed by Western blotting. Nuclear localization of S211-pGR and YAP/TAZ was analyzed by immunocytochemistry. Methylprednisolone decreased TNF and PTGS2 in fibroblasts co-cultured with M(IFN/LPS) macrophages and increased ACTA2 and CCN2 in fibroblasts co-cultured with M(IFN/LPS) and M(TGF). Lower concentrations were required to decrease TNF and PTGS2 expression and to increase S211-pGR than to increase ACTA2 and CCN2 expression and nuclear localization of S211-pGR. Methylprednisolone also increased YAP/TAZ nuclear localization. Verteporfin attenuated upregulation of CCN2, but not PTGS2 downregulation. High concentration methylprednisolone induced nuclear localization of S211-pGR and upregulated fibrotic genes mediated by YAP/TAZ activation.
Collapse
|
20
|
Schmidt A, von Woedtke T, Weltmann KD, Bekeschus S. YAP/TAZ, beta-catenin, and TGFb pathway activation in medical plasma-induced wound healing in diabetic mice. J Adv Res 2024:S2090-1232(24)00270-4. [PMID: 38986808 DOI: 10.1016/j.jare.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Hippo is a signaling pathway that is evolutionarily conserved and plays critical roles in wound healing and tissue regeneration. Disruption of the transcriptional activity of both Hippo-associated factors, the yes-associated protein (YAP), and the transcriptional co-activator with PDZ binding motif (TAZ) has been associated with cardiovascular diseases, fibrosis, and cancer. This makes the Hippo pathway an appealing target for therapeutic interventions. OBJECTIVES Prior research has indicated that medical gas plasma promotes wound healing by delivering a combination of reactive species directly to the affected areas. However, the involvement of YAP/TAZ and other signaling pathways in diabetic wound healing remains unexplored. METHODS To this extent, ear wounds were generated and treated with gas plasma in streptozotocin (STZ)-induced diabetic mice. Transcriptome profiling at two wound healing stages (days 9 and 20 post-wounding) was performed in female and male mice. Additionally, we employed gene and protein expression analyses, utilizing immunohistological and -chemical staining of various targets as well as quantitative PCR and Western blot analysis. RESULTS Gas plasma treatment accelerated healing by increasing re-epithelialization and modifying extracellular matrix components. Transcriptomic profiling charting the major alterations in gene expression following plasma treatment was followed by a validation of several targets using transcriptional and translational quantification as well as localization analyses. CONCLUSION Our study evaluated the cellular regulation of essential targets of the Hippo and related pathways such as YAP/TAZ, β-catenin, tumor growth factor β, and oxidative stress signaling after plasma treatment. The activation of genes, pathways, and their regulators is an attractive therapeutic aim for a therapeutic intervention in dermal skin repair in diabetic diseases using medical gas plasmas.
Collapse
Affiliation(s)
- Anke Schmidt
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Department of Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany.
| |
Collapse
|
21
|
Feng P, Luo L, Yang Q, Meng W, Guan Z, Li Z, Sun G, Dong Z, Yang M. Hippo kinases Mst1 and Mst2 maintain NK cell homeostasis by orchestrating metabolic state and transcriptional activity. Cell Death Dis 2024; 15:430. [PMID: 38898027 PMCID: PMC11187177 DOI: 10.1038/s41419-024-06828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Natural killer (NK) cells play a crucial role in immune response against viral infections and tumors. However, further investigation is needed to better understand the key molecules responsible for determining the fate and function of NK cells. In this study, we made an important discovery regarding the involvement of the Hippo kinases Mst1 and Mst2 as novel regulators in maintaining mouse NK cell homeostasis. The presence of high Mst1 and Mst2 (Mst1/2) activity in NK cells is essential for their proper development, survival and function in a canonical Hippo signaling independent mode. Mechanistically, Mst1/2 induce cellular quiescence by regulating the processes of proliferation and mitochondrial metabolism, thereby ensuring the development and survival of NK cells. Furthermore, Mst1/2 effectively sense IL-15 signaling and facilitate the activation of pSTAT3-TCF1, which contributes to NK cell homeostasis. Overall, our investigation highlights the crucial role of Mst1/2 as key regulators in metabolic reprogramming and transcriptional regulation for mouse NK cell survival and function, emphasizing the significance of cellular quiescence during NK cell development and functional maturation.
Collapse
Affiliation(s)
- Peiran Feng
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Liang Luo
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital(Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
| | - Wanqing Meng
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zerong Guan
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhizhong Li
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zhongjun Dong
- The First Affiliated Hospital of Anhui Medical University and Institute for Clinical Immunology, Anhui Medical University, 230032, Anhui, China.
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital(Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University), Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Li X, Guo Z, Yang Y, Xiong Y, Zhang X, Qiao S, Wei K, Fang J, Ma Y. Neurofibromin 2 modulates Mammalian Ste2-like kinases1/2 and large tumor suppressor gene1 expression in A549 lung cancer cell line. Am J Transl Res 2024; 16:2571-2578. [PMID: 39006253 PMCID: PMC11236635 DOI: 10.62347/tpcm6776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 07/16/2024]
Abstract
AIM To explore the impact of up- or down-regulation of Neurofibromin 2 (NF2) on the expression of downstream Hippo pathway genes, large tumor suppressor gene1 (LATS1), and phosphorylation of Mammalian Ste2-like kinases1/2 (MST1/2), in lung cancer cells. METHODS A549 lung cancer cells were used. The NF2 was down-regulated by si-RNA interference and upregulated by lentiviral vector mediated overexpression. The LATS1 and MST1/2 expressions were evaluated by real-time PCR and western blot. RESULTS Down-regulation of NF2 decreased LATS1 and MST1/2 level (P<0.05). Overexpression of NF2 increased LATS1 (P<0.05) and Mammalian Ste2-like kinases1 (MST1) (P<0.05), suggesting LATS1 and MST1 are modulated by NF2 in a lung cancer cell line. CONCLUSIONS NF2 mediates the downstream LATS1 and MST1/2 expressions in a lung cancer cell line.
Collapse
Affiliation(s)
- Xu Li
- Department of Geriatrics, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Zaiqiang Guo
- Department of Gastroenterology, Capital Medical University Electric Power Teaching Hospital Beijing 100073, China
| | - Yang Yang
- Department of Gland Surgery, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Ying Xiong
- Department of Geriatrics, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Xia Zhang
- Department of General Internal Medicine, Northern Medical Branch of The PLA General Hospital Beijing 100094, China
| | - Shubin Qiao
- Department of Respiratory, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Ke Wei
- Department of Geriatrics, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Jin Fang
- Department of Preventive Care Center, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| | - Yonghuai Ma
- Department of Stomatology, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine Beijing 100072, China
| |
Collapse
|
23
|
Winters TA, Marzella L, Molinar-Inglis O, Price PW, Han NC, Cohen JE, Wang SJ, Fotenos AF, Sullivan JM, Esker JI, Lapinskas PJ, DiCarlo AL. Gastrointestinal Acute Radiation Syndrome: Mechanisms, Models, Markers, and Medical Countermeasures. Radiat Res 2024; 201:628-646. [PMID: 38616048 PMCID: PMC11658916 DOI: 10.1667/rade-23-00196.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
There have been a number of reported human exposures to high dose radiation, resulting from accidents at nuclear power plants (e.g., Chernobyl), atomic bombings (Hiroshima and Nagasaki), and mishaps in industrial and medical settings. If absorbed radiation doses are high enough, evolution of acute radiation syndromes (ARS) will likely impact both the bone marrow as well as the gastrointestinal (GI) tract. Damage incurred in the latter can lead to nutrient malabsorption, dehydration, electrolyte imbalance, altered microbiome and metabolites, and impaired barrier function, which can lead to septicemia and death. To prepare for a medical response should such an incident arise, the National Institute of Allergy and Infectious Diseases (NIAID) funds basic and translational research to address radiation-induced GI-ARS, which remains a critical and prioritized unmet need. Areas of interest include identification of targets for damage and mitigation, animal model development, and testing of medical countermeasures (MCMs) to address GI complications resulting from radiation exposure. To appropriately model expected human responses, it is helpful to study analogous disease states in the clinic that resemble GI-ARS, to inform on best practices for diagnosis and treatment, and translate them back to inform nonclinical drug efficacy models. For these reasons, the NIAID partnered with two other U.S. government agencies (the Biomedical Advanced Research and Development Authority, and the Food and Drug Administration), to explore models, biomarkers, and diagnostics to improve understanding of the complexities of GI-ARS and investigate promising treatment approaches. A two-day workshop was convened in August 2022 that comprised presentations from academia, industry, healthcare, and government, and highlighted talks from 26 subject matter experts across five scientific sessions. This report provides an overview of information that was presented during the conference, and important discussions surrounding a broad range of topics that are critical for the research, development, licensure, and use of MCMs for GI-ARS.
Collapse
Affiliation(s)
- Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Paul W. Price
- Office of Regulatory Affairs, DAIT, NIAID, NIH, Rockville, Maryland
| | - Nyun Calvin Han
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Jonathan E. Cohen
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Anthony F. Fotenos
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Julie M. Sullivan
- Center for Devices for Radiological Health (CDRH), FDA, Silver Spring, Maryland
| | - John I. Esker
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Paula J. Lapinskas
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
24
|
Liang H, Xu Y, Zhao J, Chen M, Wang M. Hippo pathway in non-small cell lung cancer: mechanisms, potential targets, and biomarkers. Cancer Gene Ther 2024; 31:652-666. [PMID: 38499647 PMCID: PMC11101353 DOI: 10.1038/s41417-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the primary contributor to cancer-related deaths globally, and non-small cell lung cancer (NSCLC) constitutes around 85% of all lung cancer cases. Recently, the emergence of targeted therapy and immunotherapy revolutionized the treatment of NSCLC and greatly improved patients' survival. However, drug resistance is inevitable, and extensive research has demonstrated that the Hippo pathway plays a crucial role in the development of drug resistance in NSCLC. The Hippo pathway is a highly conserved signaling pathway that is essential for various biological processes, including organ development, maintenance of epithelial balance, tissue regeneration, wound healing, and immune regulation. This pathway exerts its effects through two key transcription factors, namely Yes-associated protein (YAP) and transcriptional co-activator PDZ-binding motif (TAZ). They regulate gene expression by interacting with the transcriptional-enhanced associate domain (TEAD) family. In recent years, this pathway has been extensively studied in NSCLC. The review summarizes a comprehensive overview of the involvement of this pathway in NSCLC, and discusses the mechanisms of drug resistance, potential targets, and biomarkers associated with this pathway in NSCLC.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
25
|
Hu X, Yuan X, Zhang G, Song H, Ji P, Guo Y, Liu Z, Tian Y, Shen R, Wang D. The intestinal epithelial-macrophage-crypt stem cell axis plays a crucial role in regulating and maintaining intestinal homeostasis. Life Sci 2024; 344:122452. [PMID: 38462226 DOI: 10.1016/j.lfs.2024.122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
The intestinal tract plays a vital role in both digestion and immunity, making its equilibrium crucial for overall health. This equilibrium relies on the dynamic interplay among intestinal epithelial cells, macrophages, and crypt stem cells. Intestinal epithelial cells play a pivotal role in protecting and regulating the gut. They form vital barriers, modulate immune responses, and engage in pathogen defense and cytokine secretion. Moreover, they supervise the regulation of intestinal stem cells. Macrophages, serving as immune cells, actively influence the immune response through the phagocytosis of pathogens and the release of cytokines. They also contribute to regulating intestinal stem cells. Stem cells, known for their self-renewal and differentiation abilities, play a vital role in repairing damaged intestinal epithelium and maintaining homeostasis. Although research has primarily concentrated on the connections between epithelial and stem cells, interactions with macrophages have been less explored. This review aims to fill this gap by exploring the roles of the intestinal epithelial-macrophage-crypt stem cell axis in maintaining intestinal balance. It seeks to unravel the intricate dynamics and regulatory mechanisms among these essential players. A comprehensive understanding of these cell types' functions and interactions promises insights into intestinal homeostasis regulation. Moreover, it holds potential for innovative approaches to manage conditions like radiation-induced intestinal injury, inflammatory bowel disease, and related diseases.
Collapse
Affiliation(s)
- Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Guokun Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Haoyun Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Zihua Liu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu Province 73000, China
| | - Yixiao Tian
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
26
|
Li Y, Lin Z, Yu J, Liu Y, Li S, Huang Y, Ayodele Olaolu O, Fu Q. Neutrophil accumulation raises defence against Streptococcus equi ssp. zooepidemicus in the absence of Gasdermin D. Int Immunopharmacol 2024; 131:111891. [PMID: 38498953 DOI: 10.1016/j.intimp.2024.111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Streptococcus equi ssp. zooepidemicus (SEZ) predominantly acts as a zoonotic pathogen, capable of infecting a diverse range of animal species including human. Gasdermin D (GSDMD) exhibited comprehensive functions in host against different pathogenic microorganism. This study aimed to investigate the role of GSDMD in host against SEZ. Mice were administrated with SEZ via intranasal intubation for 24 h (3 × 106CFU), GSDMD protein expression significantly increased in the lung tissue of mice infected with SEZ. For further research on the role of GSDMD during SEZ infection, GSDMD-/- mice and WT mice were treated with SEZ via intranasal intubation for 24 h (3 × 106CFU). GSDMD-/- mice showed less severe lung tissue due to fewer bacteria colonization. Numerous neutrophils were recruited into lung tissues in GSDMD-/- mice, related to the release of CXCL1 and CXCL2 regulated by p65 phosphorylation. In further study, neutrophils of WT and GSDMD-/- mice were isolated and treated with SEZ (multiplicity of infection, MOI = 10, 4 h). The absence of GSDMD alleviated the death of neutrophils, in addition, GSDMD deficiency could promote translocation of p65 from the cytoplasm into the nucleus in neutrophil, which may contribute to the release of IL-1β and TNF-α. This study demonstrated a novel function of GSDMD in host immune response to SEZ invading, indicating that GSDMD deficiency ameliorated SEZ infection through enhancing neutrophil accumulation into infected site, and activating NF-κB pathway in neutrophil to release cytokines against SEZ. Our study suggested that inhibition of host GSDMD may be an effective method against SEZ.
Collapse
Affiliation(s)
- Yajuan Li
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China
| | - Zihua Lin
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Jingyu Yu
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China
| | - Oladejo Ayodele Olaolu
- Department of Animal Health Technology, Oyo State College of Agriculture and Technolog Igboor, Igboora, Nigeria
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China.
| |
Collapse
|
27
|
Ma W, Zhang J, Chen W, Liu N, Wu T. The histone lysine acetyltransferase KAT2B inhibits cholangiocarcinoma growth: evidence for interaction with SP1 to regulate NF2-YAP signaling. J Exp Clin Cancer Res 2024; 43:117. [PMID: 38641672 PMCID: PMC11027350 DOI: 10.1186/s13046-024-03036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
28
|
Hu Y, Zhong M, Lv Y, Zhao W, Qian B, Song J, Zhang Y. MST1/2 exerts a pivotal role in inducing neuroinflammation and Coxsackievirus-A10 replication by interacting with innate immunity. Virol J 2024; 21:89. [PMID: 38641810 PMCID: PMC11031903 DOI: 10.1186/s12985-024-02355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024] Open
Abstract
Coxsackievirus-A10 (CV-A10), responsible for the hand, foot and mouth disease (HFMD) pandemic, could cause serious central nervous system (CNS) complications. The underlying molecular basis of CV-A10 and host interactions inducing neuropathogenesis is still unclear. The Hippo signaling pathway, historically known for a dominator of organ development and homeostasis, has recently been implicated as an immune regulator. However, its role in host defense against CV-A10 has not been investigated. Herein, it was found that CV-A10 proliferated in HMC3 cells and promoted the release of inflammatory cytokines. Moreover, pattern recognition receptors (PRRs)-mediated pathways, including TLR3-TRIF-TRAF3-TBK1-NF-κB axis, RIG-I/MDA5-MAVS-TRAF3-TBK1-NF-κB axis and TLR7-MyD88-IRAK1/IRAK4-TRAF6-TAK1-NF-κB axis, were examined to be elevated under CV-A10 infection. Meanwhile, it was further uncovered that Hippo signaling pathway was inhibited in HMC3 cells with CV-A10 infection. Previous studies have been reported that there exist complex relations between innate immune and Hippo signaling pathway. Then, plasmids of knockdown and overexpression of MST1/2 were transfected into HMC3 cells. Our results showed that MST1/2 suppressed the levels of inflammatory cytokines via interacting with TBK1 and IRAK1, and also enhanced virus production via restricting IRF3 and IFN-β expressions. Overall, these data obviously pointed out that CV-A10 accelerated the formation of neuroinflammation by the effect of the Hippo pathway on the PRRs-mediated pathway, which delineates a negative immunoregulatory role for MST1/2 in CV-A10 infection and the potential for this pathway to be pharmacologically targeted to treat CV-A10.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Minigmei Zhong
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yaming Lv
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Baojiang Qian
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
29
|
Nahalka J. 1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit. Int J Mol Sci 2024; 25:4440. [PMID: 38674024 PMCID: PMC11049929 DOI: 10.3390/ijms25084440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic prompted rapid research on SARS-CoV-2 pathogenicity. Consequently, new data can be used to advance the molecular understanding of SARS-CoV-2 infection. The present bioinformatics study discusses the "spikeopathy" at the molecular level and focuses on the possible post-transcriptional regulation of the SARS-CoV-2 spike protein S1 subunit in the host cell/tissue. A theoretical protein-RNA recognition code was used to check the compatibility of the SARS-CoV-2 spike protein S1 subunit with mRNAs in the human transcriptome (1-L transcription). The principle for this method is elucidated on the defined RNA binding protein GEMIN5 (gem nuclear organelle-associated protein 5) and RNU2-1 (U2 spliceosomal RNA). Using the method described here, it was shown that 45% of the genes/proteins identified by 1-L transcription of the SARS-CoV-2 spike protein S1 subunit are directly linked to COVID-19, 39% are indirectly linked to COVID-19, and 16% cannot currently be associated with COVID-19. The identified genes/proteins are associated with stroke, diabetes, and cardiac injury.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia;
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
30
|
Huang HC, Wang TY, Rousseau J, Orlando M, Mungaray M, Michaud C, Plaisier C, Chen ZB, Wang KC. Biomimetic nanodrug targets inflammation and suppresses YAP/TAZ to ameliorate atherosclerosis. Biomaterials 2024; 306:122505. [PMID: 38359507 PMCID: PMC11479593 DOI: 10.1016/j.biomaterials.2024.122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Atherosclerosis, a chronic inflammatory disease, is the primary cause of myocardial infarction and ischemic stroke. Recent studies have demonstrated that dysregulation of yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding domain (TAZ) contributes to plaque development, making YAP/TAZ potential therapeutic targets. However, systemic modulation of YAP/TAZ expression or activities risks serious off-target effects, limiting clinical applicability. To address the challenge, this study develops monocyte membrane-coated nanoparticles (MoNP) as a targeted delivery system for activated and inflamed endothelium lining the plaque surface. The MoNP system is used to deliver verteporfin (VP), aimed at inhibiting YAP/TAZ specifically within arterial regions prone to atherosclerosis. The results reveal that MoNP significantly enhance payload delivery to inflamed endothelial cells (EC) while avoiding phagocytic cells. When administered in mice, MoNP predominantly accumulate in intima of the atheroprone artery. MoNP-mediated delivery of VP substantially reduces YAP/TAZ expression, thereby suppressing inflammatory gene expression and macrophage infiltration in cultured EC and mouse arteries exposed to atherogenic stimuli. Importantly, this targeted VP nanodrug effectively decreases plaque development in mice without causing noticeable histopathological changes in major organs. Collectively, these findings demonstrate a lesion-targeted and pathway-specific biomimetic nanodrug, potentially leading to safer and more effective treatments for atherosclerosis.
Collapse
Affiliation(s)
- Hui-Chun Huang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Ting-Yun Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Joshua Rousseau
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Mark Orlando
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Michelle Mungaray
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Chamonix Michaud
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Christopher Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
31
|
Li K, Liu L, Liu H, Liu Y, Xing J, Song J, Luo E. Hippo/YAP1 promotes osteoporotic mice bone defect repair via the activating of Wnt signaling pathway. Cell Signal 2024; 116:111037. [PMID: 38184268 DOI: 10.1016/j.cellsig.2024.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND This study is to investigate the role and mechanism of Hippo/YAP1 in the repair of osteoporotic bone defects in aged mice, both in vivo and in vitro. METHODS We investigated the expression differences of the Hippo signaling in young and aged individuals both in vivo and in vitro. By manipulating the expression of Lats1/2 and Yap1, we investigated the role of Hippo/YAP1 in regulating osteogenic differentiation in aged BMSCs. In vivo, by intervening in the local and systemic expression of Lats1/2 and Yap1 respectively, we sought to demonstrate whether Hippo/YAP1 promotes the repair of bone defects in aged osteoporotic conditions. Finally, we delved into the underlying mechanisms of Hippo/YAP1 in regulating osteogenic differentiation. RESULTS We observed differences in the expression of the Hippo signaling between young and aged individuals. After knocking out Lats1/2 in aged BMSCs, we observed that the upregulation of endogenous YAP1 promotes cellular osteogenic differentiation and proliferation capacity. Through interference with Yap1 expression, we provided strong evidence for the role of Hippo/YAP1 in promoting osteogenic differentiation in aged BMSCs. In vivo, we confirmed that Hippo/YAP1 promotes the repair of bone defects in aging osteoporosis. Moreover, we discovered an interaction relationship among YAP1, β-catenin, and TEAD1. CONCLUSION This study elucidates the role of Hippo/YAP1 in promoting the repair of osteoporotic bone defects in aged mice. Mechanistically, YAP1 functions by activating the Wnt/β-catenin pathway, and this process is not independent of TEAD1.
Collapse
Affiliation(s)
- Kehan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Center of Craniofacial Orthodontics, Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Disease; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Linan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Xing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
32
|
Liu Q, Lai G, Hu Y, Yang F, Zhang C, Le D, Deng F, Xing X, Tang B, Jie H, Liang Y, Lei E. CircRbms1 fosters MST1 mRNA and protein levels to motivate myocardial ischaemia-reperfusion injury via autophagic status. ESC Heart Fail 2024; 11:1205-1217. [PMID: 38288506 DOI: 10.1002/ehf2.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 03/28/2024] Open
Abstract
AIMS Acute myocardial infarction (MI) is a significant contributor to death in individuals diagnosed with coronary heart disease on a worldwide level. The specific mechanism by which circRbms1 contributes to the damage caused by myocardial ischaemia-reperfusion (I/R) is not well understood. The primary aim of this study was to examine the role of circRbms1 and its associated mechanisms in the setting of I/R injury. METHODS AND RESULTS An in vivo MI mice model and an in vitro MI cell model was established. The expression levels were detected using quantitative real-time PCR (qRT-PCR) and western blot. Cellular proliferation, apoptosis, pyroptosis, and autophagy were detected by immunostaining, immunohistochemistry, western blot, and transmission electron microscopy (TEM). Dual-luciferase reporter assay, RNA pull-down assay, and RIP assay were performed to validate the molecular interactions. CircRbms1 was up-regulated in A/R-induced HCMs and acted as a sponge for miR-142-3p, thereby targeting MST1. CircRbms1 could improve stability of MST1 by recruiting IGF2BP2 (all P < 0.05). CircRbms1 knockout reduced cell pyroptosis, improved autophagy and proliferation level in A/R-induced HCMs (all P < 0.05). CircRbms1 knockout alleviated cardiac dysfunction and cell pyroptosis and enhanced autophagy and proliferation in mice through the miR-142-3p/MST1 axis. CONCLUSIONS CircRbms1 inhibited the miR-142-3p/MST1 axis and played a protective role in myocardial I/R injury. It may provide a new therapeutic target for I/R heart injury.
Collapse
Affiliation(s)
- Qin Liu
- Department of Anesthesiology, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Guorong Lai
- Department of Pain Management, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanhui Hu
- Department of Anesthesiology, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fan Yang
- Department of Pain Management, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Zhang
- Department of Pain Management, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dongsheng Le
- Department of Pain Management, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fumou Deng
- Department of Anesthesiology, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xianliang Xing
- Department of Anesthesiology, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Binquan Tang
- Department of Anesthesiology, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Huanhuan Jie
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, China
| | - Yingping Liang
- Department of Pain Management, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Enjun Lei
- Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Zhao P, Li Y, Xu X, Yang H, Li X, Fu S, Guo Z, Zhang J, Li H, Tian J. Neutrophil extracellular traps mediate cardiomyocyte ferroptosis via the Hippo-Yap pathway to exacerbate doxorubicin-induced cardiotoxicity. Cell Mol Life Sci 2024; 81:122. [PMID: 38456997 PMCID: PMC10923748 DOI: 10.1007/s00018-024-05169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Doxorubicin-induced cardiotoxicity (DIC), which is a cardiovascular complication, has become the foremost determinant of decreased quality of life and mortality among survivors of malignant tumors, in addition to recurrence and metastasis. The limited ability to accurately predict the occurrence and severity of doxorubicin-induced injury has greatly hindered the prevention of DIC, but reducing the dose to mitigate side effects may compromise the effective treatment of primary malignancies. This has posed a longstanding clinical challenge for oncologists and cardiologists. Ferroptosis in cardiomyocytes has been shown to be a pivotal mechanism underlying cardiac dysfunction in DIC. Ferroptosis is influenced by multiple factors. The innate immune response, as exemplified by neutrophil extracellular traps (NETs), may play a significant role in the regulation of ferroptosis. Therefore, the objective of this study was to investigate the involvement of NETs in doxorubicin-induced cardiomyocyte ferroptosis and elucidate their regulatory role. This study confirmed the presence of NETs in DIC in vivo. Furthermore, we demonstrated that depleting neutrophils effectively reduced the occurrence of doxorubicin-induced ferroptosis and myocardial injury in DIC. Additionally, our findings showed the pivotal role of high mobility group box 1 (HMGB1) as a critical molecule implicated in DIC and emphasized its involvement in the modulation of ferroptosis subsequent to NETs inhibition. Mechanistically, we obtained preliminary evidence suggesting that doxorubicin-induced NETs could modulate yes-associated protein (YAP) activity by releasing HMGB1, which subsequently bound to toll like receptor 4 (TLR4) on the cardiomyocyte membrane, thereby influencing cardiomyocyte ferroptosis in vitro. Our findings suggest that doxorubicin-induced NETs modulate cardiomyocyte ferroptosis via the HMGB1/TLR4/YAP axis, thereby contributing to myocardial injury. This study offers a novel approach for preventing and alleviating DIC by targeting alterations in the immune microenvironment.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - You Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin City, Harbin, 150001, China
| | - Haobo Yang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - Xintong Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, 150001, China
| | - Shuai Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Zihong Guo
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jianing Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hairu Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
34
|
Zhang R, Zhan Y, Lang Z, Li Y, Zhang W, Zheng J. LncRNA-SNHG5 mediates activation of hepatic stellate cells by regulating NF2 and Hippo pathway. Commun Biol 2024; 7:266. [PMID: 38438584 PMCID: PMC10912598 DOI: 10.1038/s42003-024-05971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) is an oncogene found in various human cancers. However, it is unclear what role SNHG5 plays in activating hepatic stellate cells (HSCs) and liver fibrosis. In this study, SNHG5 was found to be upregulated in activated HSCs in vitro and in primary HSCs isolated from fibrotic liver in vivo, and inhibition of SNHG5 suppressed HSC activation. Notably, Neurofibromin 2 (NF2), the main activator for Hippo signalling, was involved in the effects of SNHG5 on HSC activation. The interaction between SNHG5 and NF2 protein was further confirmed, and preventing the combination of the two could effectively block the effects of SNHG5 inhibition on EMT process and Hippo signaling. Additionally, higher SNHG5 was found in chronic hepatitis B patients and associated with the fibrosis stage. Altogether, we demonstrate that SNHG5 could serve as an activated HSCs regulator via regulating NF2 and Hippo pathway.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yating Zhan
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yifei Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhi Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
35
|
Thongsa-Ad U, Wongpan A, Wongkummool W, Chaiwijit P, Uppakara K, Chaiyakitpattana G, Singpant P, Tong-Ngam P, Chukhan A, Pabuprappap W, Wongniam S, Suksamrarn A, Hongeng S, Anurathapan U, Kulkeaw K, Tubsuwan A, Bhukhai K. Improving hematopoietic differentiation from human induced pluripotent stem cells by the modulation of Hippo signaling with a diarylheptanoid derivative. Stem Cell Res Ther 2024; 15:60. [PMID: 38433217 PMCID: PMC10910864 DOI: 10.1186/s13287-024-03686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown. METHOD We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs). Flow cytometry and trypan blue exclusion analysis were used to identify nonadherent and adherent cells. Nonadherent cells were harvested to investigate the effect of ASPP 049 on multipotency using LTC-IC and CFU assays. Subsequently, the mechanism of action was explored through transcriptomic profiles, which were validated by qRT-PCR, immunoblotting, and immunofluorescence analysis. RESULT The supplementation of ASPP 049 increased the number of phenotypically defined primitive HSPCs (CD34+CD45+CD90+) two-fold relative to seeded hiPSC colonies, indicating enhanced HSC derivation from hiPSCs. Under ASPP 049-supplemented conditions, we observed elevated HSPC niches, including CD144+CD73- hemogenic- and CD144+CD73+ vascular-endothelial progenitors, during HSC differentiation. Moreover, harvested ASPP 049-treated cells exhibited improved self-renewal and a significantly larger proportion of different blood cell colonies with unbiased lineages, indicating enhanced HSC stemness properties. Transcriptomics and KEGG analysis of sorted CD34+CD45+ cells-related mRNA profiles revealed that the Hippo signaling pathway is the most significant in responding to WWTR1/TAZ, which correlates with the validation of the protein expression. Interestingly, ASPP 049-supplemented HSPCs upregulated 11 genes similarly to umbilical cord blood-derived HSPCs. CONCLUSION These findings suggest that ASPP 049 can improve HSC-generating protocols with proliferative potentials, self-renewal ability, unbiased differentiation, and a definable mechanism of action for the clinical perspective of hematopoietic regenerative medicine.
Collapse
Affiliation(s)
- Umnuaychoke Thongsa-Ad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anongnat Wongpan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Wasinee Wongkummool
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phaewa Chaiwijit
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kwanchanok Uppakara
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | | | - Passanan Singpant
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pirut Tong-Ngam
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Amnat Chukhan
- Prima Scientific, 147/170-171 Baromrajchonnee, Arunamarin, Bangkok, 10700, Thailand
| | - Wachirachai Pabuprappap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Sirapope Wongniam
- Center for Scientific Instrumentation and Platform Services Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Alisa Tubsuwan
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
36
|
Lei L, Huang Y, Shi L, Ye W, Lv X, Ying L, Yu X, Cheng SHC, Zheng Y. Palbociclib sensitizes ER-positive breast cancer cells to fulvestrant by promoting the ubiquitin-mediated degradation of ER-α via SNHG17/Hippo-YAP axis. Breast Cancer Res Treat 2024; 203:613-625. [PMID: 37924380 PMCID: PMC10806073 DOI: 10.1007/s10549-023-07138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/23/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE Endocrine therapy is the anti-tumor therapy for human breast cancer but endocrine resistance was a major burden. It has been reported that Palbociclib and fulvestrant can be used in combination for the treatment of patients who are experiencing endocrine resistance. However, the underlying mechanism is unclear. In this study, we aimed to investigate the mechanism by which Palbocicilib affected ER-positive breast cancer, combined with fulvestrant. METHODS We first detected the effect of palbociclib on cell survival, growth and cycle distribution separately by MTT, colony formation and flow cytometry. Then SNHG17 was screened as palbociclib-targeted LncRNA by LncRNA-seq, and the SNHG17-targeted mRNAs were selected by mRNA-seq for further determination. Subsequently, the underlying mechanism by which palbociclib promoted the cytotoxicity of fulvestrant was confirmed by qRT-PCR, western blot, and immunoprecipitation. Eventually, the xenograft model and immunohistochemistry experiments were used to validate the sensitization effect of palbociclib on fulvestrant and its mechanism in vivo. RESULTS Palbociclib significantly enhanced the cytotoxicity of fulvestrant in fulvestrant-resistant breast cancer cell lines. Interestingly, this might be related to the lncRNA SNHG17 and the Hippo signaling pathway. And our subsequent western blotting experiments confirmed that overexpressing SNHG17 induced the down-regulation of LATS1 and up-regulated YAP expression. Furthermore, we found that the increased sensitivity of breast cancer cells was closely associated with the LATS1-mediated degradation of ER-α. The following animal experiments also indicated that overexpressing SNHG17 obviously impaired the anti-cancer effect of co-treatment of palbociclib and fulvestrant accompanied by decreased LATS1 and increased ER-α levels. CONCLUSION Palbociclib might sensitize the cytotoxicity of fulvestrant in ER-positive breast cancer cells by down-regulating SNHG17 expression, and then resulted in the LATS1-inactivated oncogene YAP and LATS1-mediated degradation of ER-α.
Collapse
Affiliation(s)
- Lei Lei
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Yuan Huang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Lei Shi
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Weiwu Ye
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Xianmei Lv
- Department of Radiation Oncology, Jinhua People's Hospital, Jinhua, 321000, Zhejiang, China
| | - Lisha Ying
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xingfei Yu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Skye Hung-Chun Cheng
- Department of Radiation Oncology, Koo Foundation, Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Yabing Zheng
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
37
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
38
|
Yang Y, Zhou H, Huang X, Wu C, Zheng K, Deng J, Zheng Y, Wang J, Chi X, Ma X, Pan H, Shen R, Pan D, Liu B. Innate immune and proinflammatory signals activate the Hippo pathway via a Tak1-STRIPAK-Tao axis. Nat Commun 2024; 15:145. [PMID: 38168080 PMCID: PMC10761881 DOI: 10.1038/s41467-023-44542-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The Hippo pathway controls developmental, homeostatic and regenerative tissue growth, and is frequently dysregulated in various diseases. Although this pathway can be activated by innate immune/inflammatory stimuli, the underlying mechanism is not fully understood. Here, we identify a conserved signaling cascade that leads to Hippo pathway activation by innate immune/inflammatory signals. We show that Tak1, a key kinase in innate immune/inflammatory signaling, activates the Hippo pathway by inducing the lysosomal degradation of Cka, an essential subunit of the STRIPAK PP2A complex that suppresses Hippo signaling. Suppression of STRIPAK results in the activation of Hippo pathway through Tao-Hpo signaling. We further show that Tak1-mediated Hippo signaling is involved in processes ranging from cell death to phagocytosis and innate immune memory. Our findings thus reveal a molecular connection between innate immune/inflammatory signaling and the evolutionally conserved Hippo pathway, thus contributing to our understanding of infectious, inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Yinan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huijing Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiawei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengfang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kewei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jingrong Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiahui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaofeng Chi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
| | - Huimin Pan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rui Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bo Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
39
|
Yoshii H, Kajiya M, Yoshino M, Morimoto S, Horikoshi S, Tari M, Motoike S, Iwata T, Ouhara K, Ando T, Yoshimoto T, Shintani T, Mizuno N. Mechanosignaling YAP/TAZ-TEAD Axis Regulates the Immunomodulatory Properties of Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:347-361. [PMID: 37917410 DOI: 10.1007/s12015-023-10646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Mesenchymal stem cells (MSCs) have gained significant attention in cell therapies due to their multipotency and immunomodulatory capacities. The transcriptional co-activators YAP/TAZ, central to the mechanotransduction system in MSCs, dominantly direct MSCs lineage commitment. However, their role in immunomodulation remains elusive. Accordingly, this present study aimed to investigate the role of mechanotransducer YAP/TAZ and their binding target transcriptional factor, TEAD, in the immunomodulatory capacities of human bone marrow-derived MSCs. Reducing YAP/TAZ activity by altering the matrix stiffness, disrupting the F-actin integrity with chemical inhibitors, or using siRNAs increased the expression of immunomodulatory genes, such as TSG-6 and IDO, upon TNF-α stimulation. Similarly, transfection of TEAD siRNA also increased the immunomodulatory capacities in MSCs. RNA-seq analysis and inhibition assays demonstrated that the immunomodulatory capacities caused by YAP/TAZ-TEAD axis disruption were due to the NF-κB signaling pathway activation. Then, we also evaluated the in vivo anti-inflammatory efficacy of MSCs in a dextran sulfate sodium (DSS)-induced mice colitis model. The administration of human MSCs transfected with TEAD siRNA, which exhibited enhanced immunomodulatory properties in vitro, significantly ameliorated inflammatory bowel disease symptoms, such as body weight loss and acute colon inflammation, in the DSS-induced mice colitis model. Our findings underscore the mechanosignaling YAP/TAZ-TEAD axis as a regulator of MSCs immunomodulation. Targeting these signaling pathways could herald promising MSCs-based therapies for immune disorders.
Collapse
Affiliation(s)
- Hiroki Yoshii
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| | - Mai Yoshino
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Shin Morimoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Misako Tari
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Souta Motoike
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Toshinori Ando
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tetsuya Yoshimoto
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tomoaki Shintani
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
40
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
41
|
Guan J, Fan Y, Wang S, Zhou F. Functions of MAP3Ks in antiviral immunity. Immunol Res 2023; 71:814-832. [PMID: 37286768 PMCID: PMC10247270 DOI: 10.1007/s12026-023-09401-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Immune signal transduction is crucial to the body's defense against viral infection. Recognition of pathogen-associated molecular patterns by pattern recognition receptors (PRRs) activates the transcription of interferon regulators and nuclear factor-κB (NF-κB); this promotes the release of interferons and inflammatory factors. Efficient regulation of type I interferon and NF-κB signaling by members of the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family plays an important role in antiviral immunity. Elucidating the specific roles of MAP3K activation during viral infection is essential to develop effective antiviral therapies. In this review, we outline the specific regulatory mechanisms of MAP3Ks in antiviral immunity and discuss the feasibility of targeting MAP3Ks for the treatment of virus-induced diseases.
Collapse
Affiliation(s)
- Jizhong Guan
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Yao Fan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
42
|
Wang J, Zheng H, Dong C, Xiong S. Human OTUD6B positively regulates type I IFN antiviral innate immune responses by deubiquitinating and stabilizing IRF3. mBio 2023; 14:e0033223. [PMID: 37650650 PMCID: PMC10653906 DOI: 10.1128/mbio.00332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Interferon (IFN) regulatory factor (IRF3) is one of the key factors for type I IFN transcription. To sophisticatedly regulate type I IFN antiviral immune response, IRF3 activity is closely controlled by a variety of post-translational modifications. However, the regulatory mechanisms are still not fully elucidated. In the present study, we found that human deubiquitinase OTUD6B positively regulates IRF3-mediated antiviral immune response. OTUD6B can stabilize the IRF3 protein level via hydrolyzing (Lys33)-linked polyubiquitin at Lys315. More importantly, mice with OTUD6B overexpression exhibited more resistance to RNA virus infection. Thus, unlike the previous report that zebrafish OTUD6B negatively regulates the antiviral response by suppressing K63-linked ubiquitination of IRF3 and IRF7, we demonstrate that human OTUD6B actually enhances type I IFN response and has the potential for antiviral therapy.
Collapse
Affiliation(s)
- Jian Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
43
|
Patel P. Eye disease drug as a potential cure for COVID-19: one foot-in-the-door. Eye (Lond) 2023; 37:2844-2846. [PMID: 36813997 PMCID: PMC9944394 DOI: 10.1038/s41433-023-02449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Affiliation(s)
- Parth Patel
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
44
|
Guo ZF, Tongmuang N, Li C, Zhang C, Hu L, Capreri D, Zuo MX, Summer R, Sun J. Inhibiting endothelial cell Mst1 attenuates acute lung injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559864. [PMID: 37808846 PMCID: PMC10557750 DOI: 10.1101/2023.09.27.559864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background Lung endothelium plays a pivotal role in the orchestration of inflammatory and injury responses to acute pulmonary insults. Mammalian sterile 20-like kinase 1 (Mst1), a mammalian homolog of Hippo, is a serine/threonine kinase that is ubiquitously expressed in many tissues and has been shown to play an important role in the regulation of apoptosis, inflammation, stress responses, and organ growth. While Mst1 exhibits high expression in the lung, its involvement in the endothelial response to pulmonary insults remains largely unexplored. Methods Mst1 activity was assessed in lung endothelium by western blot. Mst1 endothelial specific knockout mice and a pharmacological inhibitor were employed to assess the effects of Mst1 on homeostatic and lipopolysaccharide (LPS)-induced endothelial responses. Readouts for these studies included various assays, including NF-κB activation and levels of various inflammatory cytokines and adhesion molecules. The role of Mst1 in lung injury was evaluated in a LPS-induced murine model of acute lung injury (ALI). Results Mst1 phosphorylation was significantly increased in lung endothelial cells after exposure to tumor necrosis factor (TNF)-alpha (TNF-α) and mouse lung tissues after LPS exposure. Overexpression of full length Mst1 or its kinase domain promoted nuclear factor kappaB (NF-κB) activation through promoting JNK and p38 activation, whereas dominant negative forms of Mst1 (DN-Mst1) attenuated endothelial responses to TNF-α and interleukin-1β. Consistent with this, targeted deletion of Mst1 in lung endothelium reduced lung injury to LPS in mice. Similarly, wild-type mice were protected from LPS-induced lung injury following treatment with a pharmacological inhibitor of Mst1/2. Conclusions Our findings identified Mst1 kinase as a key regulator in the control of lung EC activation and suggest that therapeutic strategies aimed at inhibiting Mst1 activation might be effective in the prevention and treatment of lung injury to inflammatory insults.
Collapse
|
45
|
Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin 2023; 44:1879-1889. [PMID: 37055532 PMCID: PMC10462766 DOI: 10.1038/s41401-023-01079-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Immune-checkpoint inhibitors show promising effects in the treatment of multiple tumor types. Biomarkers are biological indicators used to select patients for a systemic anticancer treatment, but there are only a few clinically useful biomarkers such as PD-L1 expression and tumor mutational burden, which can be used to predict immunotherapy response. In this study, we established a database consisting of both gene expression and clinical data to identify biomarkers of response to anti-PD-1, anti-PD-L1, and anti-CTLA-4 immunotherapies. A GEO screening was executed to identify datasets with simultaneously available clinical response and transcriptomic data regardless of cancer type. The screening was restricted to the studies involving administration of anti-PD-1 (nivolumab, pembrolizumab), anti-PD-L1 (atezolizumab, durvalumab) or anti-CTLA-4 (ipilimumab) agents. Receiver operating characteristic (ROC) analysis and Mann-Whitney test were executed across all genes to identify features related to therapy response. The database consisted of 1434 tumor tissue samples from 19 datasets with esophageal, gastric, head and neck, lung, and urothelial cancers, plus melanoma. The strongest druggable gene candidates linked to anti-PD-1 resistance were SPIN1 (AUC = 0.682, P = 9.1E-12), SRC (AUC = 0.667, P = 5.9E-10), SETD7 (AUC = 0.663, P = 1.0E-09), FGFR3 (AUC = 0.657, P = 3.7E-09), YAP1 (AUC = 0.655, P = 6.0E-09), TEAD3 (AUC = 0.649, P = 4.1E-08) and BCL2 (AUC = 0.634, P = 9.7E-08). In the anti-CTLA-4 treatment cohort, BLCAP (AUC = 0.735, P = 2.1E-06) was the most promising gene candidate. No therapeutically relevant target was found to be predictive in the anti-PD-L1 cohort. In the anti-PD-1 group, we were able to confirm the significant correlation with survival for the mismatch-repair genes MLH1 and MSH6. A web platform for further analysis and validation of new biomarker candidates was set up and available at https://www.rocplot.com/immune . In summary, a database and a web platform were established to investigate biomarkers of immunotherapy response in a large cohort of solid tumor samples. Our results could help to identify new patient cohorts eligible for immunotherapy.
Collapse
Affiliation(s)
- Szonja Anna Kovács
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
| | - János Tibor Fekete
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
- Research Centre for Natural Sciences, Oncology Biomarker Research Group, Institute of Enzymology, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
- Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
| |
Collapse
|
46
|
Kim I, Park T, Noh JY, Kim W. Emerging role of Hippo pathway in the regulation of hematopoiesis. BMB Rep 2023; 56:417-425. [PMID: 37574808 PMCID: PMC10471462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation. [BMB Reports 2023; 56(8): 417-425].
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
47
|
Zhai L, Yang X, Dong J, Qian L, Gao Y, Lv Y, Chen L, Chen B, Zhou F. O‑GlcNAcylation mediates endometrial cancer progression by regulating the Hippo‑YAP pathway. Int J Oncol 2023; 63:90. [PMID: 37350405 PMCID: PMC10552701 DOI: 10.3892/ijo.2023.5538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
The incidence of endometrial cancer (EC) is rapidly increasing worldwide. The majority of endometrial cancers are diagnosed at an early stage and are associated with a good prognosis; however, patients with advanced‑stage EC have a poor prognosis and present with invasive metastasis. The mechanisms responsible for the invasion and metastasis of endometrial cancer remain unknown. Here, the present study aimed to examine the effects of O‑GlcNAcylation on the malignancy of EC and its association with Yes‑associated protein (YAP). It was found that the expression of O‑GlcNAc transferase (OGT) and O‑GlcNAcylation were increased in EC tissues; the decrease in O‑GlcNAcylation levels was found to lead to the decreased proliferation, migration and invasion of EC cells. Mass spectrometric analysis revealed that OGT knockdown reduced the O‑GlcNAcylation of YAP. Furthermore, it was found that the reduction in the O‑GlcNAcylation of YAP promoted its phosphorylation, which in turn inhibited the access of YAP to the nucleus and downstream target gene activation, demonstrating that the level of O‑GlcNAcylation affects the development of EC. On the whole, the findings of the present study indicate that YAP is a key molecule linking the O‑GlcNAcylation and Hippo pathways, which together regulate the progression of EC.
Collapse
Affiliation(s)
- Lianghao Zhai
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Xiaoshan Yang
- Stomatology Hospital, Southern Medical University, Guangzhou, Guangdong 510280
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Jian Dong
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Luomeng Qian
- Department of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Yunge Gao
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Yanhong Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Ligang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| | - Fuxing Zhou
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032
| |
Collapse
|
48
|
Lin Y, Fan L, Qi Y, Xu C, Jia D, Jiang Y, Chen S, Wang L. Bifidobacterium adolescentis induces Decorin + macrophages via TLR2 to suppress colorectal carcinogenesis. J Exp Clin Cancer Res 2023; 42:172. [PMID: 37464382 PMCID: PMC10353206 DOI: 10.1186/s13046-023-02746-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The interplay between gut microbiota and tumor microenvironment (TME) in the pathogenesis of colorectal cancer (CRC) is largely unknown. Here, we elucidated the functional role of B. adolescentis and its possible mechanism on the manipulation of Decorin+ macrophages in colorectal cancer. METHODS The relative abundance of B. adolescentis in tumor or para-tumor tissue of CRC patients was analyzed. The role of B. adolescentis was explored in the CRC animal models. The single cell-RNA sequencing (scRNA-seq) was used to investigate the myeloid cells subsets in TME. The expression level of TLR2/YAP axis and its downstream Decorin in macrophages were tested by Western blot and qRT-PCR. Knockdown of Decorin in Raw264.7 was performed to investigate the effect of Decorin+ macrophages on subcutaneous tumor formation. Multi-immunofluorescence assay examined the number of Decorin+ macrophages on the CRC tissue. RESULTS We found that the abundance of B. adolescentis was significantly reduced in tumor tissue of CRC patients. Supplementation with B. adolescentis suppressed AOM/DSS-induced tumorigenesis in mice. ScRNA-seq and animal experiment revealed that B. adolescentis increased Decorin+ macrophages. Mechanically, Decorin was activated by TLR2/YAP axis in macrophages. The abundance of B. adolescentis was correlated with the number of Decorin+ macrophages and the expression level of TLR2 in tumor tissue of CRC patients. CONCLUSIONS These results highlight that B. adolescentis induced Decorin+ macrophages and provide a novel therapeutic target for probiotic-based modulation of immune microenvironment in CRC.
Collapse
Affiliation(s)
- Yifeng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lina Fan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yadong Qi
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
| | - Chaochao Xu
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yao Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Research Center of Prevention and Treatment of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Research Center of Prevention and Treatment of Senescent Disease, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
49
|
Kern AE, Ortmayr G, Assinger A, Starlinger P. The role of microRNAs in the different phases of liver regeneration. Expert Rev Gastroenterol Hepatol 2023; 17:959-973. [PMID: 37811642 DOI: 10.1080/17474124.2023.2267422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Since the first discovery of microRNAs (miRs) extensive evidence reveals their indispensable role in different patho-physiological processes. They are recognized as critical regulators of hepatic regeneration, as they modulate multiple complex signaling pathways affecting liver regeneration. MiR-related translational suppression and degradation of target mRNAs and proteins are not limited to one specific gene, but act on multiple targets. AREAS COVERED In this review, we are going to explore the role of miRs in the context of liver regeneration and discuss the regulatory effects attributed to specific miRs. Moreover, specific pathways crucial for liver regeneration will be discussed, with a particular emphasis on the involvement of miRs within the respective signaling cascades. EXPERT OPINION The considerable amount of studies exploring miR functions in a variety of diseases paved the way for the development of miR-directed therapeutics. Clinical implementation has already shown promising results, but additional research is warranted to assure safe and efficient delivery. Nevertheless, given the broad functional properties of miRs and their critical involvement during hepatic regeneration, they represent an attractive treatment target to promote liver recovery after hepatic resection.
Collapse
Affiliation(s)
- Anna Emilia Kern
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Ortmayr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Fayyad-Kazan M, Makki R, Homsi ME, Samadi A, Chaaban H, Majzoub RE, Hamade E, Fayyad-Kazan H, Badran B. Circulating microRNA profile in response to remdesivir treatment in coronavirus disease 2019 (COVID-19) patients. Arch Virol 2023; 168:194. [PMID: 37380930 DOI: 10.1007/s00705-023-05825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19), a serious infectious disease caused by the recently discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a major global health crisis. Although no specific antiviral drugs have been proven to be fully effective against COVID-19, remdesivir (GS-5734), a nucleoside analogue prodrug, has shown beneficial effects when used to treat severe hospitalized COVID-19 cases. The molecular mechanism underlying this beneficial therapeutic effect is still vaguely understood. In this study, we assessed the effect of remdesivir treatment on the pattern of circulating miRNAs in the plasma of COVID-19 patients, which was analyzed using MiRCURY LNA miRNA miRNome qPCR Panels and confirmed by quantitative real-time RT-PCR (qRT-PCR). The results revealed that remdesivir treatment can restore the levels of miRNAs that are upregulated in COVID-19 patients to the range observed in healthy subjects. Bioinformatics analysis revealed that these miRNAs are involved in diverse biological processes, including the transforming growth factor beta (TGF-β), hippo, P53, mucin-type O-glycan biosynthesis, and glycosaminoglycan biosynthesis signaling pathways. On the other hand, three miRNAs (hsa-miR-7-5p, hsa-miR-10b-5p, and hsa-miR-130b-3p) were found to be upregulated in patients receiving remdesivir treatment and in patients who experienced natural remission. These upregulated miRNAs could serve as biomarkers of COVID-19 remission. This study highlights that the therapeutic potential of remdesivir involves alteration of certain miRNA-regulated biological processes. Targeting of these miRNAs should therefore be considered for future COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Mohammad Fayyad-Kazan
- Department of Natural and Applied Sciences, School of Arts and Sciences, The American University of Iraq-Baghdad, Baghdad, Iraq.
| | - Rawan Makki
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Mahmoud El Homsi
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Ahmad Samadi
- Molecular diagnostics Laboratory, Saida Governmental Hospital, Saida, Lebanon
| | - Hilal Chaaban
- Molecular diagnostics Laboratory, Saida Governmental Hospital, Saida, Lebanon
| | - Rania El Majzoub
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Eva Hamade
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath-Beirut, Lebanon.
| |
Collapse
|