1
|
Zhao Z, Zhao L, Wei XF, Jia YJ, Zhu B. Skin as outermost immune organ of vertebrates that elicits robust early immune responses after immunization with glycoprotein of spring viraemia of carp virus. PLoS Pathog 2024; 20:e1012744. [PMID: 39652527 PMCID: PMC11627376 DOI: 10.1371/journal.ppat.1012744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
As the outermost immune organ in vertebrates, the skin serves as the primary interface with the external environment and plays a crucial role in initiating the early immune response. The skin contains a variety of immune cells that induce mucosal and systemic immune responses, rendering it a prime target for vaccination strategies. Insight into the mechanisms through which vaccination triggers early immune responses is paramount for advancing animal and human health, yet our current understanding remains limited. Given its significance in vertebrate evolution, teleost fish emerges as an excellent model for investigating the early immune response of skin. In this study, we demonstrate that significant quantities of vaccine can be absorbed by the skin and transported to the body through dermis and muscle metabolism by immerses immune zebrafish with glycoprotein of spring viraemia of carp virus. Immersion immunization can elicit robust and enduring immune protection, with the skin triggering a potent immune response early in the immunization process. Analysis of the skin transcriptome revealed the involvement of numerous immune-related genes in the immersion immune response, with indications that HSP70 and MAPK signals might play pivotal roles in the immune process induced by glycoprotein. Co-immunoprecipitation and cell co-localization studies confirmed the interaction between glycoprotein and HSP70. Subsequent research demonstrated that overexpression or inhibition of HSP70 could respectively enhance or impede the expression of JNK and related proteins. However, the survival rate and immune response of HSP70 inhibited zebrafish with glycoprotein treatment were significantly reduced. These findings propose that the interaction between glycoprotein and HSP70 may activate JNK, thereby modulating mucosal and systemic immune responses induced by glycoprotein. This investigation offers novel insights and a foundational understanding of early skin immune reactions.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue-Feng Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Engineering Research Center of the Innovation and Development of Green Fishery Drugs, Universities of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Ding J, Cui X, Wang X, Zhai F, Wang L, Zhu L. Multi-omics analysis of gut microbiota and metabolites reveals contrasting profiles in domestic pigs and wild boars across urban environments. Front Microbiol 2024; 15:1450306. [PMID: 39193431 PMCID: PMC11347354 DOI: 10.3389/fmicb.2024.1450306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The gut microbiota plays a crucial role in host health and metabolism. This study explores the differences in gut microbiota and metabolites between domestic pigs (DP) and wild boars (WB) in urban environments. We analyzed gut microbial composition, metabolic profiles, virome composition, antibiotic resistance genes (ARGs), and human pathogenic bacteria (HPB) in both DP and WB. Our results revealed that DP exhibited a higher Firmicutes/Bacteroidetes ratio and were enriched in bacterial genera associated with domestication and modern feeding practices. Metabolomic analysis showed distinct profiles, with WB significantly enriched in the Pantothenate and CoA biosynthesis pathway, highlighting dietary and environmental influences on host metabolism. Additionally, DP had a distinct gut virome composition, particularly enriched in lytic phages of the Chaseviridae family. ARG analysis indicated a higher abundance of tetracycline resistance genes in DP, likely due to antibiotic use in pig farms. Furthermore, variations in HPB composition underscored potential health risks associated with contact with pig feces. These findings provide valuable insights into the microbial ecology of domestic pigs and wild boars, emphasizing the importance of these comparisons in identifying zoonotic pathogen transmission pathways and managing antibiotic resistance. Continued research in this area is essential for developing effective strategies to mitigate public health risks and promote sustainable livestock management practices.
Collapse
Affiliation(s)
- Jingjing Ding
- Jiangsu Academy of Forestry, Nanjing, China
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Xinyuan Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Wang
- Jiangsu Academy of Forestry, Nanjing, China
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Feifei Zhai
- Jiangsu Wildlife Protection Station, Nanjing, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing, China
- Jiangsu Yangzhou Urban Forest Ecosystem National Observation and Research Station, Yangzhou, China
| | - Lifeng Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Gupta A, Mahajan P, Bhagyawant SS, Saxena N, Johri AK, Kumar S, Verma SK. Recombinant YopE and LcrV vaccine candidates protect mice against plague and yersiniosis. Heliyon 2024; 10:e31446. [PMID: 38826713 PMCID: PMC11141369 DOI: 10.1016/j.heliyon.2024.e31446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
No licensed vaccine exists for the lethal plague and yersiniosis. Therefore, a combination of recombinant YopE and LcrV antigens of Yersinia pestis was evaluated for its vaccine potential in a mouse model. YopE and LcrV in formulation with alum imparted a robust humoral immune response, with isotyping profiles leaning towards the IgG1 and IgG2b subclasses. It was also observed that a significantly enhanced expression of IFN-γ, TNF-α, IL-6, IL-2, and IL-1β from the splenic cells of vaccinated mice, as well as YopE and LcrV-explicit IFN-γ eliciting T-cells. The cocktail of YopE + LcrV formulation conferred complete protection against 100 LD50Y. pestis infection, while individually, LcrV and YopE provided 80 % and 60 % protection, respectively. Similarly, the YopE + LcrV vaccinated animal group had significantly lower colony forming unit (CFU) counts in the spleen and blood compared to the groups administered with YopE or LcrV alone when challenged with Yersinia pseudotuberculosis and Yersinia enterocolitica. Histopathologic evidence reinforces these results, indicating the YopE + LcrV formulation provided superior protection against acute lung injury as early as day 3 post-challenge. In conclusion, the alum-adjuvanted YopE + LcrV is a promising vaccine formulation, eliciting a robust antibody response including a milieu of pro-inflammatory cytokines and T-cell effector functions that contribute to the protective immunity against Yersinia infections. YopE and LcrV, conserved across all three human-pathogenic Yersinia species, provide cross-protection. Therefore, our current vaccine (YopE + LcrV) targets all three pathogens: Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica. However, the efficacy should be tested in other higher mammalian models.
Collapse
Affiliation(s)
- Ankit Gupta
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sameer S. Bhagyawant
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474011, MP, India
| | - Nandita Saxena
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Subodh Kumar
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Shailendra Kumar Verma
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| |
Collapse
|
4
|
Zhang S, Nan F, Jiang S, Zhou X, Niu D, Li J, Wang H, Zhang X, Zhang X, Wang B. CRM197-conjugated peptides vaccine of HCMV pp65 and gH induce maturation of DC and effective viral-specific T cell responses. Virulence 2023; 14:2169488. [PMID: 36723437 PMCID: PMC9897769 DOI: 10.1080/21505594.2023.2169488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is prevalent worldwide, and there is currently no licenced HCMV vaccine to control it. Therefore, developing an effective HCMV vaccine is a significant priority. Because of their excellent immunogenicity, the crucial components of HCMV, phosphoprotein 65 (pp65) and glycoproteins H (gH) are potential target proteins for HCMV vaccine design. In this study, we predicted and screened the dominant antigenic epitopes of B and T cells from pp65 and gH conjugated with the carrier protein cross-reacting material 197 (CRM197) to form three peptide-CRM197 vaccines (pp65-CRM197, gH-CRM197, and pp65-CRM197+gH-CRM197). Furthermore, the immunogenicity of the peptide-CRM197 vaccines and their effects on dendritic cells (DCs) were explored. The results showed that three peptide-CRM197 vaccines could induce maturation of DCs through the p38 MAPK signalling pathway and promote the release of proinflammatory factors, such as TNF-α and interleukin (IL) -6. Meanwhile, the peptide-CRM197 vaccines could effectively activate T cell and humoral immunity, which were far better than the inactivated HCMV vaccine. In conclusion, we constructed three peptide-CRM197 vaccines, which could induce multiple immune effects, providing a novel approach for HCMV vaccine design.
Collapse
Affiliation(s)
- Shuyun Zhang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China,CONTACT Bin Wang Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China,CONTACT Bin Wang Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoqiong Zhou
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Delei Niu
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Li
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Wang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xueming Zhang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China,CONTACT Bin Wang Department of Pathogenic Biology, Department of Special Medicine, School of Basic Medicine Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Augustyniak A, Pomorska-Mól M. An Update in Knowledge of Pigs as the Source of Zoonotic Pathogens. Animals (Basel) 2023; 13:3281. [PMID: 37894005 PMCID: PMC10603695 DOI: 10.3390/ani13203281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The available data indicate that the human world population will constantly grow in the subsequent decades. This constant increase in the number of people on the Earth will lead to growth in food demand, especially in food of high nutritional value. Therefore, it is expected that the world livestock population will also increase. Such a phenomenon enhances the risk of transmitting pathogens to humans. As pig production is one of the most significant branches of the world's livestock production, zoonoses of porcine origins seem to be of particular importance. Therefore, in this review, we aim to introduce the latest data concerning, among other things, epidemiology and available preventive measures to control the most significant porcine zoonoses of viral, bacterial, and parasitic origin.
Collapse
Affiliation(s)
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| |
Collapse
|
6
|
Patnaik A, Rai SK, Dhaked RK. Recent Advancements and Novel Approaches Contributing to the Present Arsenal of Prophylaxis and Treatment Strategies Against Category A Bacterial Biothreat Agents. Indian J Microbiol 2023; 63:161-172. [PMID: 37325016 PMCID: PMC10220334 DOI: 10.1007/s12088-023-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/04/2023] [Indexed: 06/17/2023] Open
Abstract
Bacterial pathogens have always been a part of the ecosystem in which we thrive. Some pathogens have caused deadly outbreaks in the past and have been exploited as an agent of threat. Natural hotspots for these biological pathogens are widely distributed throughout the world and hence they remain clinically important. Technological advancement and change in general lifestyle has driven the evolution of these pathogens into more virulent and resistant variants. There has been a growing concern over the development of multidrug-resistant bacterial strains that could be used as bioweapons. This rapid change in pathogens also propels the field of science to develop and innovate new strategies and methodologies which are superior and safer to the existing ones. Some bacterial agents like-Bacillus anthracis, Yersinia pestis, Francisella tularensis and toxins produced by strains of Clostridium botulinum, have been segregated as Category A substances as they pose imminent threat to public health with a history of life threatening and catastrophic disease. This review highlights some encouraging developments and value additions in the current plan of action for protection against these select biothreat bacterial pathogens.
Collapse
Affiliation(s)
- Abhinandan Patnaik
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP 474002 India
| | - Sharad Kumar Rai
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP 474002 India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP 474002 India
| |
Collapse
|
7
|
Determination of Conformational and Functional Stability of Potential Plague Vaccine Candidate in Formulation. Vaccines (Basel) 2022; 11:vaccines11010027. [PMID: 36679872 PMCID: PMC9865242 DOI: 10.3390/vaccines11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Generally, protein-based vaccines are available in liquid form and are highly susceptible to instability under elevated temperature changes including freezing conditions. There is a need to create a convenient formulation of protein/peptides that can be stored at ambient conditions without loss of activity or production of adverse effects. The efficiency of naturally occurring biocompatible polymer dextran in improving the shelf-life and biological activity of a highly thermally unstable plague vaccine candidate protein called Low Calcium Response V antigen (LcrV), which can be stored at room temperature (30 ± 2 °C), has been evaluated. To determine the preferential interactions with molecular-level insight into solvent-protein interactions, analytical techniques such asspectroscopy, particle size distribution, gel electrophoresis, microscopy, and thermal analysis have been performed along with the evaluation of humoral immune response, invivo. The analytical methods demonstrate the structural stability of the LcrV protein by expressing its interaction with the excipients in the formulation. The invivo studies elicited the biological activity of the formulated antigen with a significantly higher humoral immune response (p-value = 0.047) when compared to the native, adjuvanted antigen. We propose dextran as a potential biopolymer with its co-excipient sodium chloride (NaCl) to provide protein compactness, i.e., prevent protein unfolding by molecular crowding or masking mechanism using preferential hydrophobic interaction for up to three weeks at room temperature (30 ± 2 °C).
Collapse
|
8
|
Cui Y, Miao C, Chen W, Shang W, Qi Q, Zhou W, Wang X, Li Y, Yan Z, Jiang Y. Construction and protective efficacy of a novel Streptococcus pneumoniae fusion protein vaccine NanAT1-TufT1-PlyD4. Front Immunol 2022; 13:1043293. [PMID: 36389808 PMCID: PMC9659761 DOI: 10.3389/fimmu.2022.1043293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2024] Open
Abstract
During the past decades, with the implementation of pneumococcal polysaccharide vaccine (PPV) and pneumococcal conjugate vaccines (PCVs), a dramatic reduction in vaccine type diseases and transmissions has occurred. However, it is necessary to develop a less expensive, serotype-independent pneumococcal vaccine due to the emergence of nonvaccine-type pneumococcal diseases and the limited effect of vaccines on colonization. As next-generation vaccines, conserved proteins, such as neuraminidase A (NanA), elongation factor Tu (Tuf), and pneumolysin (Ply), are promising targets against pneumococcal infections. Here, we designed and constructed a novel fusion protein, NanAT1-TufT1-PlyD4, using the structural and functional domains of full-length NanA, Tuf and Ply proteins with suitable linkers based on bioinformatics analysis and molecular cloning technology. Then, we tested whether the protein protected against focal and lethal pneumococcal infections and examined its potential protective mechanisms. The fusion protein NanAT1-TufT1-PlyD4 consists of 627 amino acids, which exhibits a relatively high level of thermostability, high stability, solubility and a high antigenic index without allergenicity. The purified fusion protein was used to subcutaneously immunize C57BL/6 mice, and NanAT1-TufT1-PlyD4 induced a strong and significant humoral immune response. The anti-NanAT1-TufT1-PlyD4 specific IgG antibody assays increased after the first immunization and reached the highest value at the 35th day. The results from in vitro experiments showed that anti-NanAT1-TufT1-PlyD4 antisera could inhibit the adhesion of Streptococcus pneumoniae (S. pneumoniae) to A549 cells. In addition, immunization with NanAT1-TufT1-PlyD4 significantly reduced S. pneumoniae colonization in the lung and decreased the damage to the lung tissues induced by S. pneumoniae infection. After challenge with a lethal dose of serotype 3 (NC_WCSUH32403), a better protection effect was observed with NanAT1-TufT1-PlyD4-immunized mice than with the separate full-length proteins and the adjuvant control; the survival rate was 50%, which met the standard of the marketed vaccine. Moreover, we showed that the humoral immune response and the Th1, Th2 and Th17-cellular immune pathways are involved in the immune protection of NanAT1-TufT1-PlyD4 to the host. Collectively, our results support that the novel fusion protein NanAT1-TufT1-PlyD4 exhibits extensive immune stimulation and is effective against pneumococcal challenges, and these properties are partially attributed to humoral and cellular-mediated immune responses.
Collapse
Affiliation(s)
- Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, China
| | - Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wenling Shang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qianqian Qi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
Milani A, Bolhassani A, Rouhollah F, Naseroleslami M. Which one of the thermal approaches (heating DNA or cells) enhances the gene expression in mammalian cells? Biotechnol Lett 2021; 43:1955-1966. [PMID: 34482511 PMCID: PMC8418791 DOI: 10.1007/s10529-021-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Heat treatment as a physical method could increase the cellular uptake of nucleic acids. In this study, the effects of heat shock were evaluated to enhance the transfection efficiency of three plasmid DNAs into HeLa and TC-1 cancerous, and HEK-293 T and Vero non-cancerous cell lines using lipofectamine 2000 reagent. METHODS Two methods of cell- and DNA-based heat treatment were used. Heating DNA solution was performed at 94 °C for 5, 10 and 15 min, and also 72 °C for 30, 60 and 120 min, individually. Moreover, heating the cells was done by incubation at 42 °C for 2 h in different times such as before, during and after DNA transfection. RESULTS Our data showed that the conformation of plasmid DNAs was changed at different temperatures with increasing time. The heat-treated plasmid DNAs (94 °C for 10 min or 72 °C for 30 min) indicated higher transfection efficiency than untreated plasmid DNAs (p < 0.05). Furthermore, heat treatment of cells before and during the transfection was higher than untreated cells (p < 0.01). Our results demonstrated that DNA transfection efficiency in cancerous cells was less than non-cancerous cells (p < 0.01). CONCLUSION Generally, these findings showed that transfection mediated by thermal stimulation could enhance gene transfection in mammalian cell lines.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|