1
|
Lim Falk V, Mueller-Wirth N, Karathanasis D, Evangelopoulos ME, Maleska Maceski A, Zadic A, Kuhle J, Schlup C, Marti S, Guse K, Chan A, Pernet V. Extracellular Vesicle Marker Changes Associated With Disease Activity in Relapsing-Remitting Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200404. [PMID: 40300121 PMCID: PMC12056760 DOI: 10.1212/nxi.0000000000200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/19/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are autoimmune disorders of the CNS causing severe neurologic impairment. Evidence suggests that extracellular vesicles (EVs) may play a disease-specific role in the orchestration of the immune cell response of MS, NMOSD, and MOGAD. In addition, EVs are considered as a potential source of biomarkers that may allow us to establish molecular signatures for these diseases and perhaps as well to follow treatment effects and disease progression. The aim of this study was to analyze the composition of EVs in patients with relapsing-remitting MS (RRMS) (n = 52), NMOSD (n = 19), and MOGAD (n = 10) and healthy controls ([HCs], n = 15). METHODS The concentrations of neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) were determined in plasma using single-molecule array (SIMOA). The size and concentration of tetraspanin-presenting EVs were evaluated in plasma samples with a single-particle interferometric resonance imaging sensor (SP-IRIS). Tetraspanin-independent analyses were performed by nanoparticle-tracking analysis (NTA) after EV isolation by size exclusion (SmartSEC) and cryo-electron microscopy observations. EV epitopes were analyzed by extended multiplex analysis using flow cytometry. RESULTS The plasma concentration of NfL and GFAP was significantly higher in patients with RRMS than in HCs. For patients with NMOSD, only GFAP increased. The density of EVs assessed by NTA was lower in plasma of patients with RRMS than in HC plasma. In addition, the 3 disease groups presented increased mean EV sizes in comparison with HCs. Tetraspanin-based EV analyses by SP-IRIS allowed us to observe a modest difference in the level of CD81 in RRMS EVs. In patients with RRMS, but not in those with NMOSD and MOGAD, multiplex/flow cytometry analyses revealed changes in the EV levels of CD29, CD31, and CD69 associated with the time elapsed since the last relapse. The negative correlations established between the vesicular levels of CD31, CD40, CD44, CD49c, CD69, and NfL or GFAP z-scores suggest a negative relationship specifically in RRMS. DISCUSSION We speculate that the higher release of EVs containing CD29, CD31, CD40, CD44, CD49c, and CD69 in plasma, at low levels of circulating NfL/GFAP, may be associated with reduced immune cell activity in RRMS. These EV markers may characterize patients with RRMS in disease stabilization.
Collapse
Affiliation(s)
- Victoria Lim Falk
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Nicole Mueller-Wirth
- CSL Behring, CSL Biologics Research Center, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, Sitem-Insel, Bern, Switzerland
| | | | | | - Aleksandra Maleska Maceski
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Switzerland
| | - Amar Zadic
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Switzerland
| | - Jens Kuhle
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Switzerland
| | - Cornelia Schlup
- CSL Behring, CSL Biologics Research Center, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, Sitem-Insel, Bern, Switzerland
| | - Stefanie Marti
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Switzerland
| | - Kirsten Guse
- CSL Behring, CSL Biologics Research Center, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, Sitem-Insel, Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Switzerland
| | - Vincent Pernet
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, Switzerland
- Regenerative Medicine Unit, University Hospital Center of Quebec, Laval University, Quebec City, Canada; and
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, Canada
| |
Collapse
|
2
|
Kim HK, Ju H, Chung YH, Ju ES, Cho Y, Jeon Y, Jo DG, Min JH. Serum sEV miRNAs as Biomarkers in Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. Mol Neurobiol 2025:10.1007/s12035-025-04932-3. [PMID: 40388105 DOI: 10.1007/s12035-025-04932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/07/2025] [Indexed: 05/20/2025]
Abstract
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a distinct CNS demyelinating disorder that differs from multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). However, diagnosing MOGAD remains challenging due to the need to clinically exclude similar conditions and the variability in assay results. While liquid biomarkers have been extensively studied in MS and NMOSD, research on biomarkers for MOGAD remains limited. This study aims to investigate serum-derived small extracellular vesicle (sEV) miRNAs as potential diagnostic and prognostic biomarkers for MOGAD, distinguishing it from MS, NMOSD, and healthy controls. A comprehensive analysis of miRNAs in serum-derived sEVs was conducted to identify differentially expressed miRNAs among the groups. Correlations between miRNA profiles and clinical parameters, including the expanded disability status scale (EDSS) score and annualized relapse rate (ARR), were examined. The diagnostic potential of miRNAs was evaluated using the area under the curve (AUC) in the receiver operating characteristics (ROC) analyses. Serum samples were obtained from 47 patients (N = 11, MOGAD; N = 12, MS; and N = 12, NMOSD) and 12 healthy controls (HCs). We identified 77 dysregulated miRNAs in MOGAD patients, compared to HCs. Each three-miRNA panel demonstrated the highest AUC values for distinguishing MOGAD from HC (1.000), MOGAD from MS (0.939), and MOGAD from NMOSD (1.000). Additionally, hsa-miR-924 exhibited the strongest correlation with the EDSS score (ρ = -0.67, p < 0.001), while hsa-miR-548i showed the strongest correlation with ARR (ρ = -0.69, p < 0.001) in MOGAD. These miRNAs are involved in various pathways, including neuronal development, immune response, synaptic function, and chromatin remodeling, highlighting their potential roles in the pathophysiology of MOGAD. Serum sEV-derived miRNAs show strong potential as biomarkers for MOGAD, offering high diagnostic accuracy and correlations with clinical parameters. These findings pave the way for improved diagnostic and therapeutic strategies in MOGAD; however, further validation in larger cohorts is necessary.
Collapse
Affiliation(s)
- Hark Kyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyunjin Ju
- Department of Neurology, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
- Department of Neurology, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Yeon Hak Chung
- Department of Neurology, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
- Department of Neurology, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Eun-Seon Ju
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Neurology, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Yongeun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeji Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ju-Hong Min
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Neurology, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
3
|
Florea AM, Neațu M, Luca DG, Davidescu EI, Popescu BO. Fluid Biomarkers in Demyelinating Spectrum Disorders: Past, Present, and Prospects. Int J Mol Sci 2025; 26:4455. [PMID: 40362691 PMCID: PMC12072187 DOI: 10.3390/ijms26094455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The diagnostic algorithm for the demyelinating disorders of the central nervous system remains a work in progress, with the search for the ideal biomarkers ongoing. The so-called "ideal" biomarker should ensure the accurate differentiation between the most common demyelinating pathologies of the CNS and between the subtypes of the same pathology (for example, the conversion from relapsing-remitting multiple sclerosis to the secondary progressive phenotype). Advances in technology facilitated this research and in the following sections we will comprehensively review most of these, outlining the past, present, and prospects and the impact they had on both diagnosis and therapeutic approach.
Collapse
Affiliation(s)
- Anca-Maria Florea
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-M.F.); (M.N.); (B.-O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Monica Neațu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-M.F.); (M.N.); (B.-O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Dimela-Gabriela Luca
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Eugenia Irene Davidescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-M.F.); (M.N.); (B.-O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Bogdan-Ovidiu Popescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-M.F.); (M.N.); (B.-O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania;
- Department of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
4
|
Verkhratsky A, Li B, Niu J, Lin SS, Su Y, Jin WN, Li Y, Jiang S, Yi C, Shi FD, Tang Y. Neuroglial Advances: New Roles for Established Players. J Neurochem 2025; 169:e70080. [PMID: 40371609 DOI: 10.1111/jnc.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Neuroglial cells perform numerous physiological functions and contribute to the pathogenesis of all diseases of the nervous system. Neuroglial neuroprotection defines the resilience of the nervous tissue to exo- and endogenous pathological challenges, while neuroglial defence determines the progression and outcome of neurological disorders. IN this paper, we overview previously unknown but recently discovered roles of various types of neuroglial cells in diverse physiological and pathological processes. First, we describe the role of ependymal glia in the regulation of cerebrospinal fluid flow from the spinal cord to peripheral tissues through the spinal nerves. This newly discovered pathway provides a highway for the CNS-body volume transmission. Next, we present the mechanism by which astrocytes control migration and differentiation of oligodendrocyte precursor cells (OPCs). In pre- and early postnatal CNS, OPCs migrate using vasculature (which is yet free from glia limitans perivascularis) as a pathfinder. Newly forming astrocytic perivascular endfeet signal (through semaphorin-plexin cascade) to OPCs that detach from the vessels and start to differentiate into myelinating oligodendrocytes. We continue the astrocyte theme by demonstrating the neuroprotective role of APOE-laden astrocytic extracellular vesicles in neuromyelitis optica. Next, we explore the link between astrocytic morphology and stress-induced depression. We discuss the critical role of astrocytic ezrin, the cytosolic linker defining terminal astrocyte arborisation and resilience to stress: overexpression of ezrin in prefrontal cortical astrocytes makes mice resistant to stress, whereas ezrin knockdown increases animals vulnerability to stress. Subsequently, we highlight the pathophysiological role of oligodendroglial lineage in schizophrenia by describing novel hypertrophied OPCs in the post-mortem patient's tissue and in a mouse model with OPCs overexpressing alternative splice variant DISC1-Δ3. These DISC1-Δ3-OPCs demonstrated overactivated Wnt/β-catenin signalling pathway and were sufficient to trigger pathological behaviours. Finally, we deliberate on the pathological role of astrocytic and microglial connexin 43 hemichannels in Alzheimer's disease and present a new formula of Cx43 hemichannel inhibitor with increased blood-brain barrier penetration and brain retention.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Celica, BIOMEDICAL, Technology Park 24, Ljubljana, Slovenia
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Maimaitijiang G, Kira J, Nakamura Y, Watanabe M, Takase EO, Nagata S, Sakoda A, Zhang X, Masaki K, Yamasaki R, Isobe N, Yamaguchi H, Imamura T. Blood exosome connexins and small RNAs related to demyelinating disease activity. Ann Clin Transl Neurol 2025; 12:538-555. [PMID: 39901658 PMCID: PMC11920735 DOI: 10.1002/acn3.52307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 02/05/2025] Open
Abstract
OBJECTIVES To assess blood exosome (Ex)-connexin (Cx)43 (encoded by GJA1) and its truncated isoforms in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), which show distinct alterations in astroglial Cx43. METHODS Serum Exs from 48 patients with MS (34 relapsing-remitting, 14 secondary-progressive), 35 with NMOSD, 20 with other inflammatory neurologic diseases (OIND), and 17 healthy controls (HC) were subjected to quantitative Western blotting for Cx43, single-molecule array for neurofilament-L, and quantitative polymerase chain reaction for non-coding RNAs detected by RNA sequencing. Sera from control and astroglia-specific Cx43 inducible conditional knockout (Cx43-icKO) mice with experimental autoimmune encephalomyelitis (EAE) were also tested. RESULTS Ex-GJA1-29k was markedly higher in MS than in NMOSD, OIND, and HC; it successively increased at relapse, remission, and secondary progression, and positively correlated with disability scores. Ex-hsa-miR-133b and other hsa-miRs that bind to full-length Cx43 were significantly lower in secondary-progressive MS than in HC, and Ex-hsa-miR-133b was negatively correlated with disability scores. Ex-GJA1-11k expression was lower in NMOSD at relapse than in HC and OIND, and was negatively correlated with disability score worsening and Ex-neurofilament-L levels. NMOSD at relapse had significantly higher expression of small nucleolar RNA (SNORD37, SNORD95, and SNORD97) than HC, and SNORD37 and SNORD95 showed strong negative correlations with disability scores. Control mice showed increased Ex-GJA1-43k and -29k during EAE; this effect was markedly reduced in Cx43-icKO mice with attenuated EAE. INTERPRETATION Blood Ex-Cx43-truncated isoforms and small non-coding RNAs, which partially come from brain astroglia, are distinctly dysregulated in MS and NMSOD.
Collapse
Affiliation(s)
- Guzailiayi Maimaitijiang
- Translational Neuroscience Research Center, Graduate School of MedicineInternational University of Health and WelfareOkawaJapan
| | - Jun‐ichi Kira
- Translational Neuroscience Research Center, Graduate School of MedicineInternational University of Health and WelfareOkawaJapan
- Department of Neurology, Brain and Nerve CenterFukuoka Central Hospital, International University of Health and WelfareFukuokaJapan
- School of Pharmacy at FukuokaInternational University of Health and WelfareOkawaJapan
| | - Yuri Nakamura
- Translational Neuroscience Research Center, Graduate School of MedicineInternational University of Health and WelfareOkawaJapan
- Department of Neurology, Brain and Nerve CenterFukuoka Central Hospital, International University of Health and WelfareFukuokaJapan
- School of Pharmacy at FukuokaInternational University of Health and WelfareOkawaJapan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ezgi Ozdemir Takase
- Department of Neurology, Neurological Institute, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ayako Sakoda
- Translational Neuroscience Research Center, Graduate School of MedicineInternational University of Health and WelfareOkawaJapan
- Department of Neurology, Brain and Nerve CenterFukuoka Central Hospital, International University of Health and WelfareFukuokaJapan
| | - Xu Zhang
- Translational Neuroscience Research Center, Graduate School of MedicineInternational University of Health and WelfareOkawaJapan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- School of Physical Therapy, Faculty of RehabilitationReiwa Health Sciences UniversityFukuokaJapan
| | - Tomohiro Imamura
- Translational Neuroscience Research Center, Graduate School of MedicineInternational University of Health and WelfareOkawaJapan
- School of Pharmacy at FukuokaInternational University of Health and WelfareOkawaJapan
| |
Collapse
|
6
|
Chatterjee P, Chakravarty S, Biswas NK, Trivedi S, Datta A, Mukhopadhyay D. Small RNA sequencing of differentiated astrocytoma exposed to NMOSD patient sera reveals perturbations in neurodegenerative signaling. Exp Cell Res 2025; 444:114375. [PMID: 39662661 DOI: 10.1016/j.yexcr.2024.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
The signaling pathways behind severe astrocytic lysis with Aquaporin4 auto-antibody (AQP4-IgG) seropositivity, and reactive astrocytosis with myelin oligodendrocyte glycoprotein auto-antibody (MOG-IgG) seropositivity, remain largely unexplored in Neuromyelitis optica spectrum disorder (NMOSD), while almost no molecular details being known about double-seronegative (DN) patients. Recent discovery of glial fibrillary acidic protein (GFAP) in DN NMOSD patients' cerebrospinal fluid, akin to AQP4-IgG + ve cases, suggests astrocytopathy. Here, we aim to study small non coding RNA (sncRNA) signature alterations in astrocytes exposed to AQP4-IgG + ve and MOG-IgG + ve patient sera, and their potential resemblance with DN-NMOSD. Next Generation Sequencing (NGS) revealed differential expression of several microRNAs with notable alterations in hsa-miR-6824-3p, hsa-miR-324-5p and hsa-miR-4466 respectively upon sera treatment. Results with DN-NMOSD patient sera are majorly similar to that of AQP4+ve sera. Strikingly, in all three treatments, hsa-miR-200b-3p was significantly upregulated. Functional enrichment analysis revealed that Hippo and FoxO signaling pathways were primarily impacted in AQP4-IgG + ve and double negative sera treated cells whereas, MOG-IgG + ve sera treatment perturbed the PI3K-Akt and MAPK signaling pathways. Furthermore, NGS also revealed differential expression of several piRNAs in cells upon treatment with AQP4-IgG + ve and MOG-IgG + ve sera and VEGF signaling was identified as the common target of differentially expressed piRNAs of both the groups. This study, for the first time, revealed that the molecular pathophysiology of double-seronegative NMOSD might involve astrocytopathy akin to AQP4+ve NMOSD, thus pointing towards the possible existence of unidentified astrocytic autoimmune targets and identified the major alterations in intracellular sncRNAs and the associated overall cellular signaling pathways that potentially contribute to the fate of astrocytes during the progression of the disease.
Collapse
Affiliation(s)
- Pallavi Chatterjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, West Bengal, India
| | - Shouvik Chakravarty
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Biotechnology Research and Innovation Council - Regional Centre for Biotechnology (BRIC-RCB), Faridabad, India
| | - Nidhan K Biswas
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Biotechnology Research and Innovation Council - Regional Centre for Biotechnology (BRIC-RCB), Faridabad, India
| | - Santosh Trivedi
- Department of Neurology, Institute of Neurosciences, Kolkata, 700017, West Bengal, India
| | - Ashis Datta
- Department of Neurology, Institute of Neurosciences, Kolkata, 700017, West Bengal, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, West Bengal, India.
| |
Collapse
|
7
|
Su Y, Chen M, Xu W, Gu P, Fan X. Advances in Extracellular-Vesicles-Based Diagnostic and Therapeutic Approaches for Ocular Diseases. ACS NANO 2024; 18:22793-22828. [PMID: 39141830 PMCID: PMC11363148 DOI: 10.1021/acsnano.4c08486] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles of various sizes that can be secreted by most cells. EVs contain a diverse array of cargo, including RNAs, lipids, proteins, and other molecules with functions of intercellular communication, immune modulation, and regulation of physiological and pathological processes. The biofluids in the eye, including tears, aqueous humor, and vitreous humor, are important sources for EV-based diagnosis of ocular disease. Because the molecular cargos may reflect the biology of their parental cells, EVs in these biofluids, as well as in the blood, have been recognized as promising candidates as biomarkers for early diagnosis of ocular disease. Moreover, EVs have also been used as therapeutics and targeted drug delivery nanocarriers in many ocular disorders because of their low immunogenicity and superior biocompatibility in nature. In this review, we provide an overview of the recent advances in the field of EV-based studies on the diagnosis and therapeutics of ocular disease. We summarized the origins of EVs applied in ocular disease, assessed different methods for EV isolation from ocular biofluid samples, highlighted bioengineering strategies of EVs as drug delivery systems, introduced the latest applications in the diagnosis and treatment of ocular disease, and presented their potential in the current clinical trials. Finally, we briefly discussed the challenges of EV-based studies in ocular disease and some issues of concern for better focusing on clinical translational studies of EVs in the future.
Collapse
Affiliation(s)
- Yun Su
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Moxin Chen
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Wei Xu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department
of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai
Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
8
|
Teekaput C, Thiankhaw K, Chattipakorn N, Chattipakorn SC. Possible Roles of Extracellular Vesicles in the Pathogenesis and Interventions of Immune-Mediated Central Demyelinating Diseases. Exp Neurobiol 2024; 33:47-67. [PMID: 38724476 PMCID: PMC11089403 DOI: 10.5607/en24002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/15/2024] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are two of the most devastating immune-mediated central demyelinating disorders. NMOSD was once considered as a variant of MS until the discovery of an antibody specific to the condition. Despite both MS and NMOSD being considered central demyelinating disorders, their pathogenesis and clinical manifestations are distinct, however the exact mechanisms associated with each disease remain unclear. Extracellular vesicles (EVs) are nano-sized vesicles originating in various cells which serve as intercellular communicators. There is a large body of evidence to show the possible roles of EVs in the pathogenesis of several diseases, including the immune-mediated central demyelinating disorders. Various types of EVs are found across disease stages and could potentially be used as a surrogate marker, as well as acting by carrying a cargo of biochemical molecules. The possibility for EVs to be used as a next-generation targeted treatment for the immune-mediated central demyelinating disorders has been investigated. The aim of this review was to comprehensively identify, compile and discuss key findings from in vitro, in vivo and clinical studies. A summary of all findings shows that: 1) the EV profiles of MS and NMOSD differ from those of healthy individuals, 2) the use of EV markers as liquid biopsy diagnostic tools appears to be promising biomarkers for both MS and NMOSD, and 3) EVs are being studied as a potential targeted therapy for MS and NMOSD. Any controversial findings are also discussed in this review.
Collapse
Affiliation(s)
- Chutithep Teekaput
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kitti Thiankhaw
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Jiang S, Li X, Li Y, Chang Z, Yuan M, Zhang Y, Zhu H, Xiu Y, Cong H, Yin L, Yu ZW, Fan J, He W, Shi K, Tian DC, Zhang J, Verkhratsky A, Jin WN, Shi FD. APOE from patient-derived astrocytic extracellular vesicles alleviates neuromyelitis optica spectrum disorder in a mouse model. Sci Transl Med 2024; 16:eadg5116. [PMID: 38416841 DOI: 10.1126/scitranslmed.adg5116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune astrocytopathy of the central nervous system, mediated by antibodies against aquaporin-4 water channel protein (AQP4-Abs), resulting in damage of astrocytes with subsequent demyelination and axonal damage. Extracellular communication through astrocyte-derived extracellular vesicles (ADEVs) has received growing interest in association with astrocytopathies. However, to what extent ADEVs contribute to NMOSD pathogenesis remains unclear. Here, through proteomic screening of patient-derived ADEVs, we observed an increase in apolipoprotein E (APOE)-rich ADEVs in patients with AQP4-Abs-positive NMOSD. Intracerebral injection of the APOE-mimetic peptide APOE130-149 attenuated microglial reactivity, neuroinflammation, and brain lesions in a mouse model of NMOSD. The protective effect of APOE in NMOSD pathogenesis was further established by the exacerbated lesion volume in APOE-deficient mice, which could be rescued by exogenous APOE administration. Genetic knockdown of the APOE receptor lipoprotein receptor-related protein 1 (LRP1) could block the restorative effects of APOE130-149 administration. The transfusion ADEVs derived from patients with NMOSD and healthy controls also alleviated astrocyte loss, reactive microgliosis, and demyelination in NMOSD mice. The slightly larger beneficial effect of patient-derived ADEVs as compared to ADEVs from healthy controls was further augmented in APOE-/- mice. These results indicate that APOE from astrocyte-derived extracellular vesicles could mediate disease-modifying astrocyte-microglia cross-talk in NMOSD.
Collapse
Affiliation(s)
- Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xindi Li
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yan Li
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhilin Chang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Meng Yuan
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ying Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Huimin Zhu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuwen Xiu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hengri Cong
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Linlin Yin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhen-Wei Yu
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Junwan Fan
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenyan He
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kaibin Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - De-Cai Tian
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
- National Human Brain Bank for Health and Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Alexei Verkhratsky
- Health and Medicine, University of Manchester, Manchester M13 9PL, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
10
|
Qiao S, Sun Q, Li H, Yin J, Wang A, Zhang S. Abnormal DNA methylation analysis of leucine-rich glioma-inactivated 1 antibody encephalitis reveals novel methylation-driven genes related to prognostic and clinical features. Clin Epigenetics 2023; 15:139. [PMID: 37644514 PMCID: PMC10463459 DOI: 10.1186/s13148-023-01550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Aberrant DNA methylation occurs commonly during pathogenesis of neuroimmunological diseases and is of clinical value in various encephalitis subtypes. However, knowledge of the impact of DNA methylation changes on pathogenesis of leucine-rich glioma-inactivated 1 (LGI1) antibody encephalitis remains limited. METHODS A total of 44 cytokines and 10 immune checkpoint moleculars (ICMs) in the serum of patients with LGI1 encephalitis and healthy donors (HDs) were measured to evaluate the association of them with clinical parameters. Genome-wide DNA methylation profiles were performed in peripheral blood mononuclear cell (PBMC) from LGI1 encephalitis patients and HDs using reduced representation bisulfite sequencing (RRBS) and validated for the methylation status by pyrosequencing. MicroRNA profiles were acquired in serum exosome by small RNA sequencing. Targeted cytokines expression was assessed at the presence or absence of miR-2467-5p in PBMCs and the culture media, and the binding of miR-2467-5p and its targeted genes was validated by luciferase assay. RESULTS There existed significant difference in 22 cytokines/chemokines and 6 ICMs between LGI1 encephalitis patients and HDs. Decreased PDCD1 with increased ICAM1 could predict unfavorable prognosis in one-year follow-up for LGI1 encephalitis patients. Fifteen of cytokines/chemokines and ICMs presented DNA-methylated changes in the promoter and gene body using RRBS in which five were verified as methylation status by pyrosequencing, and the methylation level of CSF3, CCL2, and ICAM1 was conversely associated with their expression in PBMCs. By combining RRBS data with exosome-derived microRNA sequencing, we found that hypomethylated-driven hsa-miR-2467-5p presented elevated expression in serum exosomes and PBMCs in LGI1 encephalitis. Mechanically, miR-2467-5p significantly induced reduced expression of CSF3 and PDCD1 by binding with their 3`UTR while enhanced CCL15 expression, but not significantly correlated with peripheral blood CD19 + B cell proportion of LGI1 encephalitis patients. CONCLUSIONS Our results provided convincing evidence for DNA methylation changes, microRNA profiles in serum exosome for LGI1 encephalitis, and we also identified several novel cytokines related to clinical features in which some represented epigenetic modification of methylated-driven pattern and microRNA modulation. Our study contributed to develop treatment for epigenetic pathogenesis in LGI1 encephalitis.
Collapse
Affiliation(s)
- Shan Qiao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China
- Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Quanye Sun
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haiyun Li
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Yin
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Aihua Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China
| | - Shanchao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China.
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Extracellular Vesicles in Chronic Demyelinating Diseases: Prospects in Treatment and Diagnosis of Autoimmune Neurological Disorders. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111943. [PMID: 36431078 PMCID: PMC9693249 DOI: 10.3390/life12111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are both responsible for functional intercellular communication and involved in the pathogenesis of neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we discuss EVs' role in maintaining the living organisms' function and describe deviations in EVs' structure and malfunctioning during various neurodegenerative diseases.
Collapse
|
12
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Use in Central Nervous System Demyelinating Disorders. Int J Mol Sci 2022; 23:ijms23073829. [PMID: 35409188 PMCID: PMC8998258 DOI: 10.3390/ijms23073829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune demyelinating diseases-including multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein-associated disease, acute disseminated encephalomyelitis, and glial fibrillary acidic protein (GFAP)-associated meningoencephalomyelitis-are a heterogeneous group of diseases even though their common pathology is characterized by neuroinflammation, loss of myelin, and reactive astrogliosis. The lack of safe pharmacological therapies has purported the notion that cell-based treatments could be introduced to cure these patients. Among stem cells, mesenchymal stem cells (MSCs), obtained from various sources, are considered to be the ones with more interesting features in the context of demyelinating disorders, given that their secretome is fully equipped with an array of anti-inflammatory and neuroprotective molecules, such as mRNAs, miRNAs, lipids, and proteins with multiple functions. In this review, we discuss the potential of cell-free therapeutics utilizing MSC secretome-derived extracellular vesicles-and in particular exosomes-in the treatment of autoimmune demyelinating diseases, and provide an outlook for studies of their future applications.
Collapse
|
13
|
Saha S, Mukherjee S, Guha G, Mukhopadhyay D. Dynamics of AQP4 upon exposure to seropositive patient serum before and after Rituximab therapy in Neuromyelitis Optica: A cell-based study. J Neuroimmunol 2021; 361:577752. [PMID: 34715591 DOI: 10.1016/j.jneuroim.2021.577752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Neuromyelitis Optica (NMO) is an autoimmune inflammatory disease that affects the optic nerves and spinal cord. The autoantibody is generated against the abundant water channel protein of the brain, Aquaporin 4 (AQP4). Of the two isoforms of AQP4, the shorter one (M23) often exists as a supramolecular assembly known as an orthogonal array of particles (OAPs). There have been debates about the fate of these AQP4 clusters upon binding to the antibody, the exact mechanism of its turnover, and the proteins associated with the process. Recently several clinical cases of NMO were reported delineating the effect of Rituximab (RTX) therapy. Extending these reports at the cell signaling level, we developed a glioma based cellular model that mimicked antibody binding and helped us track the subsequent events including a variation of AQP4 levels, alterations in cellular morphology, and the changes in downstream signaling cascades. Our results revealed the extent of perturbations in the signaling pathways related to stress involving ERK, JNK, and AKT1 together with markers for cell death. We could also decipher the possible routes of degradation of AQP4, post-exposure to antibody. We further investigated the effect of autoantibody on AQP4 transcriptional level and involvement of FOXO3a and miRNA-145 in the regulation of transcription. This study highlights the differential outcome at the cellular level when treated with the serum of the same patient pre and post RTX therapy and for the first time mechanistically describes the effect of RTX.
Collapse
Affiliation(s)
- Suparna Saha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI.Sector - 1, Block - AF Bidhannagar, Kolkata 700064, India.
| | - Soumava Mukherjee
- Department of Neurology, Nil Ratan Sircar Medical College and Hospital, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Gautam Guha
- Department of Neurology, Nil Ratan Sircar Medical College and Hospital, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI.Sector - 1, Block - AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
14
|
Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms22063267. [PMID: 33806874 PMCID: PMC8004928 DOI: 10.3390/ijms22063267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Secreted extracellular vesicles (EVs) are heterogeneous cell-derived membranous granules which carry a large diversity of molecules and participate in intercellular communication by transferring these molecules to target cells by endocytosis. In the last decade, EVs’ role in several pathological conditions, from etiology to disease progression or therapy evasion, has been consolidated, including in central nervous system (CNS)-related disorders. For this review, we performed a systematic search of original works published, reporting the presence of molecular components expressed in the CNS via EVs, which have been purified from plasma, serum or cerebrospinal fluid. Our aim is to provide a list of molecular EV components that have been identified from both nonpathological conditions and the most common CNS-related disorders. We discuss the methods used to isolate and enrich EVs from specific CNS-cells and the relevance of its components in each disease context.
Collapse
|
15
|
Jin T, Gu J, Li Z, Xu Z, Gui Y. Recent Advances on Extracellular Vesicles in Central Nervous System Diseases. Clin Interv Aging 2021; 16:257-274. [PMID: 33603351 PMCID: PMC7882422 DOI: 10.2147/cia.s288415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are particles released by multiple cells, encapsulated by lipid bilayers and containing a variety of biological materials, including proteins, nucleic acids, lipids and metabolites. With the advancement of separation and characterization methods, EV subtypes and their complex and diverse functions have been recognized. In the central nervous system (CNS), EVs are involved in various physiological and pathological processes, such as regulation of neuronal firing, synaptic plasticity, formation and maintenance of myelin sheath, propagation of neuroinflammation, neuroprotection, and spread and removal of toxic protein aggregates. Activity-dependent alteration of constituents enables EVs to reflect the change of cell and tissue states, and the wide distribution of EVs in biological fluids endows them with potential as diagnostic and prognostic biomarkers for CNS diseases, including neurodegenerative disease, cerebrovascular disease, traumatic brain disease, and brain tumor. Favorable biocompatibility, ability of crossing the blood–brain barrier and protecting contents from degradation, give promising therapeutic effects of EVs, either collected from mesenchymal stem cells culture conditioned media, or designed as drug delivery vehicles loaded with specific agents. In this review, we summarized EVs’ basic biological properties, and mainly focused on their applications in CNS diseases.
Collapse
Affiliation(s)
- Tao Jin
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Jiachen Gu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Zongshan Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Zhongping Xu
- Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yaxing Gui
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| |
Collapse
|
16
|
Li W, Liu J, Tan W, Zhou Y. The role and mechanisms of Microglia in Neuromyelitis Optica Spectrum Disorders. Int J Med Sci 2021; 18:3059-3065. [PMID: 34400876 PMCID: PMC8364446 DOI: 10.7150/ijms.61153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune neurological disease that can cause blindness and disability. As the major mediators in the central nervous system, microglia plays key roles in immunological regulation in neuroinflammatory diseases, including NMOSD. Microglia can be activated by interleukin (IL)-6 and type I interferons (IFN-Is) during NMOSD, leading to signal transducer and activator of transcription (STAT) activation. Moreover, complement C3a secreted from activated astrocytes may induce the secretion of complement C1q, inflammatory cytokines and progranulin (PGRN) by microglia, facilitating injury to microglia, neurons, astrocytes and oligodendrocytes in an autocrine or paracrine manner. These processes involving activated microglia ultimately promote the pathological course of NMOSD. In this review, recent research progress on the roles of microglia in NMOSD pathogenesis is summarized, and the mechanisms of microglial activation and microglial-mediated inflammation, and the potential research prospects associated with microglial activation are also discussed.
Collapse
Affiliation(s)
- Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|