1
|
Supino D, Davoudian S, Silva-Gomes R, Piovani D, Garuti R, Desai A, Mapelli SN, Scavello F, Carnevale S, Mariancini A, Magrini E, Leone R, Sironi M, Valentino S, Di Mitri D, Portale F, Fedeli C, Comina D, Bonovas S, Voza A, Mantovani A, Bottazzi B, Garlanda C. Monocyte-macrophage membrane expression of IL-1R2 is a severity biomarker in sepsis. Cell Death Dis 2025; 16:269. [PMID: 40204720 PMCID: PMC11982311 DOI: 10.1038/s41419-025-07597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/19/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
Interleukin-1 (IL-1)/IL-1 receptor family consists of activators and inhibitors which play a key role in inflammation, emergency myelopoiesis, and myeloid cell activation. The latter includes the IL-1R2 decoy receptor. To investigate the expression and significance of IL-1R2 in sepsis, we conducted high-dimensional flow cytometry of circulating cells from patients stratified according to the Sequential Sepsis-Related Organ Failure Assessment (SOFA) score. Here we report that the IL-1 decoy receptor is selectively upregulated on the plasma membrane of leukocytes and, in particular, monocytes from septic patients, and downregulated in septic shock. Flow cytometry combined with transcriptomic analysis of publicly available datasets indicated that IL-1R2 is associated with the differentiation of monocytes to a population of circulating monocytic cells with macrophage features (Mono/Mφ). In vitro stimulation of monocytes from healthy donors with Colony Stimulating Factors (CSFs), in particular GM-CSF and Lipopolysaccharides (LPS), induced IL-1R2+ Mono/Mφ, which recapitulated the characteristics of sepsis-associated monocytic cells, including low expression of HLA-DR, high levels of macrophage markers such as MS4A4A and CD63, immune checkpoints, immunosuppressive molecules and selected scavenger receptors. Membrane-associated IL-1R2 and MS4A4A correlated with immunological markers, cytokine storm, and clinical parameters (e.g., SOFA score, creatinine, survival), reflecting the infection severity in hospitalized patients.Thus, in sepsis IL-1R2 is expressed in a subset of circulating monocytes co-expressing mature macrophage and immune dysfunction features with clinical significance.
Collapse
Affiliation(s)
| | | | - Rita Silva-Gomes
- IRCCS Humanitas Research Hospital, Milan, Italy
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Daniele Piovani
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberto Garuti
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Desai
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Emergency, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | - Andrea Mariancini
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | | | | | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Carlo Fedeli
- Department of Emergency, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Denise Comina
- Department of Emergency, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefanos Bonovas
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Emergency, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
| |
Collapse
|
2
|
Lee JTH, Barnett SN, Roberts K, Ashwin H, Milross L, Cho JW, Huseynov A, Woodhams B, Aivazidis A, Li T, Majo J, Chaves P, Lee M, Miranda AMA, Jablonska Z, Arena V, Hanley B, Osborn M, Uhlmann V, Xu XN, McLean GR, Teichmann SA, Randi AM, Filby A, Kaye PM, Fisher AJ, Hemberg M, Noseda M, Bayraktar OA. Integrated histopathology, spatial and single cell transcriptomics resolve cellular drivers of early and late alveolar damage in COVID-19. Nat Commun 2025; 16:1979. [PMID: 40064844 PMCID: PMC11893906 DOI: 10.1038/s41467-025-56473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
The most common cause of death due to COVID-19 remains respiratory failure. Yet, our understanding of the precise cellular and molecular changes underlying lung alveolar damage is limited. Here, we integrate single cell transcriptomic data of COVID-19 and donor lung tissue with spatial transcriptomic data stratifying histopathological stages of diffuse alveolar damage. We identify changes in cellular composition across progressive damage, including waves of molecularly distinct macrophages and depletion of epithelial and endothelial populations. Predicted markers of pathological states identify immunoregulatory signatures, including IFN-alpha and metallothionein signatures in early damage, and fibrosis-related collagens in late damage. Furthermore, we predict a fibrinolytic shutdown via endothelial upregulation of SERPINE1/PAI-1. Cell-cell interaction analysis revealed macrophage-derived SPP1/osteopontin signalling as a key regulator during early steps of alveolar damage. These results provide a comprehensive, spatially resolved atlas of alveolar damage progression in COVID-19, highlighting the cellular mechanisms underlying pro-inflammatory and pro-fibrotic pathways in severe disease.
Collapse
Affiliation(s)
| | - Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | | | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Jae-Won Cho
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alik Huseynov
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Benjamin Woodhams
- Wellcome Sanger Institute, Hinxton, UK
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Cambridge, UK
| | | | - Tong Li
- Wellcome Sanger Institute, Hinxton, UK
| | - Joaquim Majo
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Patricia Chaves
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Zuzanna Jablonska
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Vincenzo Arena
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Brian Hanley
- Department of Cellular Pathology, Northwest London Pathology, Imperial College London NHS Trust, London, UK
| | - Michael Osborn
- Department of Cellular Pathology, Northwest London Pathology, Imperial College London NHS Trust, London, UK
| | - Virginie Uhlmann
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Cambridge, UK
| | - Xiao-Ning Xu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Gary R McLean
- National Heart and Lung Institute, Imperial College London, London, UK
- London Metropolitan University, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute & Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Andrew Filby
- Biosciences Institute and Innovation, Methodology and Application Research Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Martin Hemberg
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK.
| | | |
Collapse
|
3
|
Nielsen MR, Skougaard M, Drachmann C, Stisen ZR, Ditlev SB, Jessen LE, Kristensen LE. Single-cell RNA sequencing highlights the influence of innate and adaptive immune response mechanisms in psoriatic arthritis. Front Immunol 2025; 15:1490051. [PMID: 40084238 PMCID: PMC11904337 DOI: 10.3389/fimmu.2024.1490051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/17/2024] [Indexed: 03/16/2025] Open
Abstract
Introduction Psoriatic arthritis (PsA) is a chronic immune-mediated inflammatory disease displaying heterogeneous symptoms. However, the association between the clinical heterogeneity of PsA and disease immunopathogenesis remains poorly understood complicating diagnostic precision. A knowledge gap remains on whether it is possible to distinguish the clinical PsA phenotypes on the immune cellular level. The primary aim of the study was to explore the differences in gene expression profiles comparing PsA patients without cutaneous psoriasis (PsA-only) and PsA patients with cutaneous psoriasis (PsA/PsC). The secondary aim was to describe the transcriptional patterns in PsA patients compared with healthy controls. Methods The study applied single-cell RNA sequencing (scRNAseq) using the BD Rhapsody™ Single-Cell Analysis System to evaluate peripheral blood mononuclear cells (PBMCs) from 70 PsA patients and 10 healthy controls. Differential expression (DE) analysis and gene set enrichment analysis (GSEA) were applied to evaluate differentially expressed genes (DEGs) and enriched signaling pathways, respectively. Results The DE analysis and GSEA comparing PsA-only and PsA/PsC patients with healthy controls, respectively, revealed divergent results involving both innate and adaptive immune mechanisms, which might be associated with differences in the clinical phenotype. No DEGs were discovered in the direct comparison of PsA-only and PsA/PsC patients. Discussion The single-cell transcriptome profiling provided insight into the heterogeneity of PsA patients as the discovered DEGs and the GSEA did demonstrate differences in signaling associated with inflammation comparing PsA patients with and without cutaneous psoriasis.
Collapse
Affiliation(s)
- Melanie R. Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, (DTU), Kgs., Lyngby, Denmark
| | - Marie Skougaard
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- The Parker Insitute, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Clara Drachmann
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, (DTU), Kgs., Lyngby, Denmark
| | - Zara R. Stisen
- The Parker Insitute, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Sisse B. Ditlev
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Leon E. Jessen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, (DTU), Kgs., Lyngby, Denmark
| | - Lars Erik Kristensen
- The Parker Insitute, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Corteggio A, Heinzl T, Boraschi D, Voci S, Gagliardi A, Cosco D, Italiani P. Safety of Zein Nanoparticles on Human Innate Immunity and Inflammation. Int J Mol Sci 2024; 25:11630. [PMID: 39519184 PMCID: PMC11546227 DOI: 10.3390/ijms252111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, natural polymers have attracted great interest for the development of release systems for vaccine formulations and drug delivery. Zein, a hydrophobic proline-rich protein mixture obtained from maize, is one of the most widely used polymers, very promising for applications in tissue engineering and the parenteral delivery of bioactive agents. Still, we have a limited understanding of the interaction between zein particles and the human immune system, in particular innate immunity/inflammation, which is the first line of defense of our body. Assessing the immune safety of nanoparticles is of central importance for ensuring that nano-formulations for medical use do not cause adverse effects on human health. Here, we evaluated the capacity of zein nanoparticles to induce/modulate the innate/inflammatory response, the development of innate memory, and the macrophage polarization by using reliable in vitro systems based on human primary monocytes and monocyte-derived macrophages. We observed that zein nanoparticles do not influence any of these aspects of the innate immune/inflammatory response, suggesting its safety and its potential efficiency as a nanocarrier for drug or antigen delivery.
Collapse
Affiliation(s)
- Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
| | - Tommaso Heinzl
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen University of Advanced Technology, Shenzhen 518055, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR), Shenzhen 518055, China
- Stazione Zoologica Anton Dohrn (SZN), 80121 Napoli, Italy
| | - Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “Salvatore Venuta”, 88100 Catanzaro, Italy; (S.V.); (A.G.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “Salvatore Venuta”, 88100 Catanzaro, Italy; (S.V.); (A.G.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “Salvatore Venuta”, 88100 Catanzaro, Italy; (S.V.); (A.G.)
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Napoli, Italy; (A.C.); (T.H.); (D.B.)
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR), Shenzhen 518055, China
- Stazione Zoologica Anton Dohrn (SZN), 80121 Napoli, Italy
| |
Collapse
|
5
|
Dinu M, Angelino D, Del Bo' C, Serafini M, Sofi F, Martini D. Role of ultra-processed foods in modulating the effect of Mediterranean diet on human and planet health-study protocol of the PROMENADE randomized controlled trial. Trials 2024; 25:641. [PMID: 39350201 PMCID: PMC11440767 DOI: 10.1186/s13063-024-08470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The Mediterranean diet (MD), globally recognized for its sustainability and health benefits, traditionally emphasizes the consumption of plant-based foods in raw or minimally processed forms. However, shifting lifestyles, even in Mediterranean regions, have led to an increasing consumption of ultra-processed foods (UPF). Epidemiological evidence suggests that UPF consumption may be detrimental to human health, but there is only one clinical trial on this topic which is largely debated in the scientific community. This study aims to investigate the impact of the inclusion of UPF within a Mediterranean-based dietary pattern on cardiometabolic markers, gut microbiota, and other markers of human and planet health. METHODS Fifty clinically healthy individuals showing overweight and presenting a low-to-moderate cardiovascular risk profile will be recruited for a 7-month randomized, open, cross-over dietary trial. Eligible participants will be randomly assigned to a 3-month high-UPF MD (intervention group) or a low-UPF MD (control group), with a 1-month wash-out period. Both intervention diets will have identical food group compositions, with the intervention group consuming 5 servings/day of selected UPF items, and the control group consuming raw/minimally processed items from the same food group. Blood, urine, and fecal samples, alongside food/lifestyle diaries, will be collected from each participant before and after the dietary interventions. The primary endpoint will be the change in plasma LDL-cholesterol levels from baseline. Additional markers include blood pressure, anthropometric parameters, chemical parameters, glucose and lipid-related metabolic markers, incretins, inflammatory and oxidative stress markers, fecal microbiota composition, and short-chain fatty acids. Finally, food waste production will be evaluated through specific validated food diaries. The study has been approved by the Ethical Committee of the University of Milan and the Tuscany Regional Ethics Committee of the Azienda Ospedaliera Universitaria (AOU) - Careggi, Florence. DISCUSSION Results from the PROMENADE study will improve knowledge about the impact of UPF consumption on human and planet health and will contribute to the scientific debate on this topic. TRIAL REGISTRATION ClinicalTrials.gov NCT06314932. Registered on March 13, 2024.
Collapse
Affiliation(s)
- Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Donato Angelino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, 20133, Italy
| | - Mauro Serafini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, 20133, Italy.
| |
Collapse
|
6
|
Mensah‐Bonsu M, Doss C, Gloster C, Muganda P. Gene expression analysis identifies hub genes and pathways distinguishing fatal from survivor outcomes of Ebola virus disease. FASEB Bioadv 2024; 6:298-310. [PMID: 39399477 PMCID: PMC11467745 DOI: 10.1096/fba.2024-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 10/15/2024] Open
Abstract
The Ebola virus poses a severe public health threat, yet understanding factors influencing disease outcomes remains incomplete. Our study aimed to identify critical pathways and hub genes associated with fatal and survivor Ebola disease outcomes. We analyzed differentially expressed hub genes (DEGs) between groups with fatal and survival outcomes, as well as a healthy control group. We conducted additional analysis to determine the functions and pathways associated with these DEGs. We found 13,198 DEGs in the fatal and 12,039 DEGs in the survival group compared to healthy controls, and 1873 DEGs in the acute fatal and survivor groups comparison. Upregulated DEGs in the comparison between the acute fatal and survivor groups were linked to ECM receptor interaction, complement and coagulation cascades, and PI3K-Akt signaling. Upregulated hub genes identified from the acute fatal and survivor comparison (FGB, C1QA, SERPINF2, PLAT, C9, SERPINE1, F3, VWF) were enriched in complement and coagulation cascades; the downregulated hub genes (IL1B, 1L17RE, XCL1, CXCL6, CCL4, CD8A, CD8B, CD3D) were associated with immune cell processes. Hub genes CCL2 and F2 were unique to fatal outcomes, while CXCL1, HIST1H4F, and IL1A were upregulated hub genes unique to survival outcomes compared to healthy controls. Our results demonstrate for the first time the association of EVD outcomes to specific hub genes and their associated pathways and biological processes. The identified hub genes and pathways could help better elucidate Ebola disease pathogenesis and contribute to the development of targeted interventions and personalized treatment for distinct EVD outcomes.
Collapse
Affiliation(s)
- Melvin Mensah‐Bonsu
- Applied Science and TechnologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Christopher Doss
- Department of Electrical and Computer EngineeringNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Clay Gloster
- Department of Computer Systems TechnologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Perpetua Muganda
- Department of BiologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
7
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
8
|
Hallihan H, Tsai P, Lv N, Xiao L, Peñalver Bernabé B, Wu Y, Pandey GN, Williams LM, Ajilore OA, Ma J. Affective neural circuits and inflammatory markers linked to depression and anxiety symptoms in patients with comorbid obesity. J Psychiatr Res 2023; 160:9-18. [PMID: 36764197 PMCID: PMC10023437 DOI: 10.1016/j.jpsychires.2023.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Although we have effective treatments for depression and anxiety, we lack mechanistic understanding or evidence-based strategies to tailor these treatments in the context of major comorbidities such as obesity. The current feasibility study uses functional neuroimaging and biospecimen data to determine if changes in inflammatory markers, fecal short-chain fatty acids, and neural circuit-based targets can predict depression and anxiety outcomes among participants with comorbid obesity. Blood and stool samples and functional magnetic resonance imaging data were obtained at baseline and 2 months, during the parent ENGAGE-2 trial. From 30 participants with both biospecimen and fMRI data, this subsample study explored the relationship among changes in inflammatory markers and fecal short-chain fatty acids and changes in neural targets, and their joint relationship with depression and anxiety symptoms. Bivariate and partial correlation, canonical correlation, and partial least squares analyses were conducted, with adjustments for age, sex, and treatment group. Initial correlation analyses revealed three inflammatory markers (IL-1RA, IL-6, and TNF-α) and five neural targets (in Negative Affect, Positive Affect, and Default Mode Circuits) with significantly associated changes at 2 months. Partial least squares analyses then showed that changes in IL-1RA and TNF-α and changes in three neural targets (in Negative Affect and Positive Affect Circuits) at 2 months were associated with changes in depression and anxiety symptoms at 6 months. This study sheds light on the plausibility of incorporation of inflammatory and gastrointestinal biomarkers with neural targets as predictors of depression and comorbid anxiety outcomes among patients with obesity.
Collapse
Affiliation(s)
- Hagar Hallihan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60608, USA
| | - Perry Tsai
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Nan Lv
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, IL, 60608, USA
| | - Lan Xiao
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| | | | - Yichao Wu
- Department of Mathematics, Statistics, and Computer Science, College of Liberal Arts and Sciences, Chicago, IL, 60607, USA
| | - Ghanshyam N Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Olusola A Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jun Ma
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60608, USA.
| |
Collapse
|
9
|
Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity 2023; 56:289-306.e7. [PMID: 36750099 PMCID: PMC9942876 DOI: 10.1016/j.immuni.2023.01.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/27/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstructured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation, we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoidosis and bioinformatically reconstructed the underlying gene regulatory networks. We discovered an immune stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cytokine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharmacological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosis mouse model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ development in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.
Collapse
|
10
|
Boraschi D, Canesi L, Drobne D, Kemmerling B, Pinsino A, Prochazkova P. Interaction between nanomaterials and the innate immune system across evolution. Biol Rev Camb Philos Soc 2023; 98:747-774. [PMID: 36639936 DOI: 10.1111/brv.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), 1068 Xueyuan Blvd, 518071, Shenzhen, China.,Institute of Protein Biochemistry and Cell Biology (IBBC), CNR, Via Pietro Castellino 111, 80131, Naples, Italy.,Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80132, Napoli, Italy.,China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR, SZN), Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000, Ljubliana, Slovenia
| | - Birgit Kemmerling
- ZMBP - Center for Plant Molecular Biology, Plant Biochemistry, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
11
|
Salas-Venegas V, Santín-Márquez R, Ramírez-Carreto RJ, Rodríguez-Cortés YM, Cano-Martínez A, Luna-López A, Chavarría A, Konigsberg M, López-Díazguerrero NE. Chronic consumption of a hypercaloric diet increases neuroinflammation and brain senescence, promoting cognitive decline in middle-aged female Wistar rats. Front Aging Neurosci 2023; 15:1162747. [PMID: 37139092 PMCID: PMC10149996 DOI: 10.3389/fnagi.2023.1162747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
Being overweight and obesity are world health problems, with a higher prevalence in women, defined as abnormal or excessive fat accumulation that increases the risk of chronic diseases. Excess energy leads to adipose expansion, generating hypertrophic adipocytes that produce various pro-inflammatory molecules. These molecules cause chronic low-intensity inflammation, affecting the organism's functioning and the central nervous system (CNS), inducing neuroinflammation. The neuroinflammatory response during obesity occurs in different structures of the CNS involved in memory and learning, such as the cortex and the hippocampus. Here we analyzed how obesity-related peripheral inflammation can affect CNS physiology, generating neuroinflammation and promoting cellular senescence establishment. Since some studies have shown an increase in senescent cells during aging, obesity, and neurodegenerative diseases, we proposed that cellular senescence participation may contribute to the cognitive decline in an obesity model of middle-aged female Wistar rats. The inflammatory state of 6 and 13 months-old female Wistar rats fed with a hypercaloric diet was measured in serum and CNS (cortex and hippocampus). Memory was evaluated using the novel object recognition (NOR) test; the presence of senescent markers was also determined. Our data suggest that the systemic inflammation generated by obesity induces a neuroinflammatory state in regions involved in learning and memory, with an increase in senescent markers, thus proposing senescence as a potential participant in the negative consequences of obesity in cognition.
Collapse
Affiliation(s)
- Verónica Salas-Venegas
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Roberto Santín-Márquez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología “Ignacio Chávez”, CDMX, Mexico City, Mexico
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, CDMX, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Mina Konigsberg
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Norma Edith López-Díazguerrero
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
- *Correspondence: Norma Edith López-Díazguerrero,
| |
Collapse
|
12
|
Nessler JN, Tipold A. Immunoglobulin profiling with large high-density peptide microarrays as screening method to detect candidate proteins for future biomarker detection in dogs with steroid-responsive meningitis-arteritis. PLoS One 2023; 18:e0284010. [PMID: 37036858 PMCID: PMC10085023 DOI: 10.1371/journal.pone.0284010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
Steroid responsive meningitis arteritis (SRMA) is an aberrant Th2-mediated systemic inflammatory disease in dogs. The etiopathogenesis still remains unclear as no triggering pathogen or autoantigen could be found so far. HYPOTHESIS Large high-density peptide microarrays are a suitable screening method to detect possible autoantigens which might be involved in the pathogenesis of SRMA. METHODS The IgA and IgG profile of pooled serum samples of 5 dogs with SRMA and 5 dogs with neck pain due to intervertebral disc herniation (IVDH) without ataxia or paresis were compared via commercially available high-density peptide microarrays (Discovery Microarray) containing 29,240 random linear peptides. Canine distemper virus nucleoprotein (CDVN) served as positive control as all dogs were vaccinated. Common motifs were compared to amino acid sequences of known proteins via databank search. One suitable protein was manually selected for further analysis with a smaller customized high-density peptide microarray. RESULTS Pooled serum of dogs with SRMA and IVDH showed different IgA and IgG responses on Discovery Microarray. Only top IgG responses of dogs with SRMA showed a common motif not related to the control protein CDVN. This common motif is part of the interleukin 1 receptor antagonist protein (IL1Ra). On IL1Ra, dogs with SRMA displayed IgA binding to an additional epitope, which dogs with IVDH did not show. DISCUSSION IL1Ra is an anti-inflammatory acute phase protein. Different immunoglobulin binding patterns on IL1Ra could be involved in the pathogenesis of SRMA and IL1Ra might be developed as future biomarker for SRMA.
Collapse
Affiliation(s)
- Jasmin Nicole Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
13
|
Brauneck F, Fischer B, Witt M, Muschhammer J, Oelrich J, da Costa Avelar PH, Tsoka S, Bullinger L, Seubert E, Smit DJ, Bokemeyer C, Ackermann C, Wellbrock J, Haag F, Fiedler W. TIGIT blockade repolarizes AML-associated TIGIT + M2 macrophages to an M1 phenotype and increases CD47-mediated phagocytosis. J Immunother Cancer 2022; 10:jitc-2022-004794. [PMID: 36549780 PMCID: PMC9791419 DOI: 10.1136/jitc-2022-004794] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Leukemia-associated macrophages (LAMs) represent an important cell population within the tumor microenvironment, but little is known about the phenotype, function, and plasticity of these cells. The present study provides an extensive characterization of macrophages in patients with acute myeloid leukemia (AML). METHODS The phenotype and expression of coregulatory markers were assessed on bone marrow (BM)-derived LAM populations, using multiparametric flow cytometry. BM and blood aspirates were obtained from patients with newly diagnosed acute myeloid leukemia (pAML, n=59), patients in long-term remission (lrAML, n=8), patients with relapsed acute myeloid leukemia (rAML, n=7) and monocyte-derived macrophages of the blood from healthy donors (HD, n=17). LAM subpopulations were correlated with clinical parameters. Using a blocking anti-T-cell immunoreceptor with Ig and ITIM domains (TIGIT) antibody or mouse IgG2α isotype control, we investigated polarization, secretion of cytokines, and phagocytosis on LAMs and healthy monocyte-derived macrophages in vitro. RESULTS In pAML and rAML, M1 LAMs were reduced and the predominant macrophage population consisted of immunosuppressive M2 LAMs defined by expression of CD163, CD204, CD206, and CD86. M2 LAMs in active AML highly expressed inhibitory receptors such as TIGIT, T-cell immunoglobulin and mucin-domain containing-3 protein (TIM-3), and lymphocyte-activation gene 3 (LAG-3). High expression of CD163 was associated with a poor overall survival (OS). In addition, increased frequencies of TIGIT+ M2 LAMs were associated with an intermediate or adverse risk according to the European Leukemia Network criteria and the FLT3 ITD mutation. In vitro blockade of TIGIT shifted the polarization of primary LAMs or peripheral blood-derived M2 macrophages toward the M1 phenotype and increased secretion of M1-associated cytokines and chemokines. Moreover, the blockade of TIGIT augmented the anti-CD47-mediated phagocytosis of AML cell lines and primary AML cells. CONCLUSION Our findings suggest that immunosuppressive TIGIT+ M2 LAMs can be redirected into an efficient effector population that may be of direct clinical relevance in the near future.
Collapse
Affiliation(s)
- Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Brit Fischer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Witt
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Muschhammer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennyfer Oelrich
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, UK
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Elisa Seubert
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Gómez-Carballa A, Rivero-Calle I, Pardo-Seco J, Gómez-Rial J, Rivero-Velasco C, Rodríguez-Núñez N, Barbeito-Castiñeiras G, Pérez-Freixo H, Cebey-López M, Barral-Arca R, Rodriguez-Tenreiro C, Dacosta-Urbieta A, Bello X, Pischedda S, Currás-Tuala MJ, Viz-Lasheras S, Martinón-Torres F, Salas A. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. ENVIRONMENTAL RESEARCH 2022; 210:112890. [PMID: 35202626 PMCID: PMC8861187 DOI: 10.1016/j.envres.2022.112890] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 05/08/2023]
Abstract
Coronavirus Disease-19 (COVID-19) symptoms range from mild to severe illness; the cause for this differential response to infection remains unknown. Unravelling the immune mechanisms acting at different levels of the colonization process might be key to understand these differences. We carried out a multi-tissue (nasal, buccal and blood; n = 156) gene expression analysis of immune-related genes from patients affected by different COVID-19 severities, and healthy controls through the nCounter technology. Mild and asymptomatic cases showed a powerful innate antiviral response in nasal epithelium, characterized by activation of interferon (IFN) pathway and downstream cascades, successfully controlling the infection at local level. In contrast, weak macrophage/monocyte driven innate antiviral response and lack of IFN signalling activity were present in severe cases. Consequently, oral mucosa from severe patients showed signals of viral activity, cell arresting and viral dissemination to the lower respiratory tract, which ultimately could explain the exacerbated innate immune response and impaired adaptative immune responses observed at systemic level. Results from saliva transcriptome suggest that the buccal cavity might play a key role in SARS-CoV-2 infection and dissemination in patients with worse prognosis. Co-expression network analysis adds further support to these findings, by detecting modules specifically correlated with severity involved in the abovementioned biological routes; this analysis also provides new candidate genes that might be tested as biomarkers in future studies. We also found tissue specific severity-related signatures mainly represented by genes involved in the innate immune system and cytokine/chemokine signalling. Local immune response could be key to determine the course of the systemic response and thus COVID-19 severity. Our findings provide a framework to investigate severity host gene biomarkers and pathways that might be relevant to diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Laboratorio de Inmunología. Servicio de Análisis Clínicos. Hospital Clínico Universitario (SERGAS), Galicia, Spain
| | - Carmen Rivero-Velasco
- Intensive Medicine Department, Hospital Clìnico Universitario de Santiago de Compostela, Galicia, Spain
| | - Nuria Rodríguez-Núñez
- Pneumology Department, Hospital Clìnico Universitario de Santiago de Compostela, Galicia, Spain
| | - Gema Barbeito-Castiñeiras
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Santiago Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Hugo Pérez-Freixo
- Preventive Medicine Department, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | - Miriam Cebey-López
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ruth Barral-Arca
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Rodriguez-Tenreiro
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Dacosta-Urbieta
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sara Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María José Currás-Tuala
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sandra Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
15
|
Oelen R, de Vries DH, Brugge H, Gordon MG, Vochteloo M, Ye CJ, Westra HJ, Franke L, van der Wijst MGP. Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure. Nat Commun 2022; 13:3267. [PMID: 35672358 PMCID: PMC9174272 DOI: 10.1038/s41467-022-30893-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
The host's gene expression and gene regulatory response to pathogen exposure can be influenced by a combination of the host's genetic background, the type of and exposure time to pathogens. Here we provide a detailed dissection of this using single-cell RNA-sequencing of 1.3M peripheral blood mononuclear cells from 120 individuals, longitudinally exposed to three different pathogens. These analyses indicate that cell-type-specificity is a more prominent factor than pathogen-specificity regarding contexts that affect how genetics influences gene expression (i.e., eQTL) and co-expression (i.e., co-expression QTL). In monocytes, the strongest responder to pathogen stimulations, 71.4% of the genetic variants whose effect on gene expression is influenced by pathogen exposure (i.e., response QTL) also affect the co-expression between genes. This indicates widespread, context-specific changes in gene expression level and its regulation that are driven by genetics. Pathway analysis on the CLEC12A gene that exemplifies cell-type-, exposure-time- and genetic-background-dependent co-expression interactions, shows enrichment of the interferon (IFN) pathway specifically at 3-h post-exposure in monocytes. Similar genetic background-dependent association between IFN activity and CLEC12A co-expression patterns is confirmed in systemic lupus erythematosus by in silico analysis, which implies that CLEC12A might be an IFN-regulated gene. Altogether, this study highlights the importance of context for gaining a better understanding of the mechanisms of gene regulation in health and disease.
Collapse
Affiliation(s)
- Roy Oelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Dylan H de Vries
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Harm Brugge
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Grace Gordon
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Martijn Vochteloo
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Chun J Ye
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- UCSF Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Harm-Jan Westra
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Farzi R, Aghbash PS, Eslami N, Azadi A, Shamekh A, Hemmat N, Entezari-Maleki T, Baghi HB. The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathol Res Pract 2022; 233:153848. [PMID: 35338971 PMCID: PMC8941975 DOI: 10.1016/j.prp.2022.153848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is one of the three lethal coronavirus outbreaks in the recent two decades and a serious threat to global health all over the world. The principal feature of the COVID-19 infection is the so-called "cytokine storm" exaggerated molecular response to virus distribution, which plays massive tissue and organ injury roles. Immunological treatments, including monoclonal antibodies and vaccines, have been suggested as the main approaches in treating and preventing this disease. Therefore, a proper investigation of the roles of antigen-presenting cells (APCs) in the aforementioned immunological responses appears essential. The present review will provide detailed information about APCs' role in the infection and pathogenesis of SARS-CoV-2 and the effect of monoclonal antibodies in diagnosis and treatment.
Collapse
Affiliation(s)
- Rana Farzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Eslami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Azadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Auguste M, Melillo D, Corteggio A, Marino R, Canesi L, Pinsino A, Italiani P, Boraschi D. Methodological Approaches To Assess Innate Immunity and Innate Memory in Marine Invertebrates and Humans. FRONTIERS IN TOXICOLOGY 2022; 4:842469. [PMID: 35295223 PMCID: PMC8915809 DOI: 10.3389/ftox.2022.842469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Assessing the impact of drugs and contaminants on immune responses requires methodological approaches able to represent real-life conditions and predict long-term effects. Innate immunity/inflammation is the evolutionarily most widespread and conserved defensive mechanism in living organisms, and therefore we will focus here on immunotoxicological methods that specifically target such processes. By exploiting the conserved mechanisms of innate immunity, we have examined the most representative immunotoxicity methodological approaches across living species, to identify common features and human proxy models/assays. Three marine invertebrate organisms are examined in comparison with humans, i.e., bivalve molluscs, tunicates and sea urchins. In vivo and in vitro approaches are compared, highlighting common mechanisms and species-specific endpoints, to be applied in predictive human and environmental immunotoxicity assessment. Emphasis is given to the 3R principle of Replacement, Refinement and Reduction of Animals in Research and to the application of the ARRIVE guidelines on reporting animal research, in order to strengthen the quality and usability of immunotoxicology research data.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Rita Marino
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), CNR, Palermo, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| |
Collapse
|
18
|
Macleod T, Berekmeri A, Bridgewood C, Stacey M, McGonagle D, Wittmann M. The Immunological Impact of IL-1 Family Cytokines on the Epidermal Barrier. Front Immunol 2022; 12:808012. [PMID: 35003136 PMCID: PMC8733307 DOI: 10.3389/fimmu.2021.808012] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
The skin barrier would not function without IL-1 family members, but their physiological role in the immunological aspects of skin barrier function are often overlooked. This review summarises the role of IL-1 family cytokines (IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37 and IL-38) in the skin. We focus on novel aspects of their interaction with commensals and pathogens, the important impact of proteases on cytokine activity, on healing responses and inflammation limiting mechanisms. We discuss IL-1 family cytokines in the context of IL-4/IL-13 and IL-23/IL-17 axis-driven diseases and highlight consequences of human loss/gain of function mutations in activating or inhibitory pathway molecules. This review highlights recent findings that emphasize the importance of IL-1 family cytokines in both physiological and pathological cutaneous inflammation and emergent translational therapeutics that are helping further elucidate these cytokines.
Collapse
Affiliation(s)
- Tom Macleod
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Anna Berekmeri
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Martin Stacey
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
19
|
Saas P, Chagué C, Maraux M, Cherrier T. Toward the Characterization of Human Pro-Resolving Macrophages? Front Immunol 2020; 11:593300. [PMID: 33281821 PMCID: PMC7691375 DOI: 10.3389/fimmu.2020.593300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Philippe Saas
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | | | | | | |
Collapse
|
20
|
Martinez FO, Combes TW, Orsenigo F, Gordon S. Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine 2020; 59:102964. [PMID: 32861199 PMCID: PMC7456455 DOI: 10.1016/j.ebiom.2020.102964] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mononuclear phagocytes are a widely distributed family of cells contributing to innate and adaptive immunity. Circulating monocytes and tissue macrophages participate in all stages of SARS COVID-19. They contribute to comorbidities predisposing to clinical infection, virus resistance and dissemination, and to host factors that determine disease severity, recovery and sequelae. Assays are available to detect viral infection and antibody responses, but no adequate tests have been developed to measure the activation level of monocytes and tissue macrophages, and the risk of progression to a fatal hyperinflammatory syndrome. Blood monocytes provide a window on the systemic immune response, from production to tissue recruitment, reflecting the impact of infection on the host. Ready availability of blood makes it possible to monitor severity and the risk of potentially lethal complications, by developing tests to assess the status of monocyte activation and its potential for further inflammatory dysregulation after recruitment to tissues and during recovery.
Collapse
Affiliation(s)
- Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Theo W Combes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Federica Orsenigo
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom; Università degli Studi di Milano-Bicocca. Department of Biotechnology and Biosciences. Milan, Italy
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|