1
|
Mieczkowski K, Bakiri L, Griss J, Wagner EF. A sex-specific anti-inflammatory role for p62 in psoriasis-like disease. J Invest Dermatol 2025:S0022-202X(25)00413-0. [PMID: 40258471 DOI: 10.1016/j.jid.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Psoriasis (Ps) is a chronic inflammatory skin disease involving a complex cross talk between immune and epidermal cells. Ps is difficult to treat and often complicated by systemic manifestations such as psoriatic arthritis (PsA). Sequestosome 1/p62 is a multifunctional adaptor protein controlling autophagy, cell differentiation and inflammation that was found elevated in human psoriatic skin. We functionally evaluated the role of p62 in the cutaneous and systemic Ps-like phenotypes of a mouse model with inducible epidermal inactivation of c-Jun and JunB (DKO*). A male-specific aggravation of skin and joint disease was observed in DKO* mice, when crossed to p62-/- mice (DKO* p62-/-). Thickened epidermis, disturbed keratinocyte differentiation, enhanced immune cell infiltration and increased Cxcl1 expression were exclusively observed in the skin of male DKO* p62-/- mice. Increased androgen receptor (AR) protein expression and activation of AR signaling, as well as upregulated inflammasome and Keap1/Nrf2 activities were apparent in the skin of male DKO* p62-/- mice and are likely responsible for disease worsening. Our results describe a sex-specific anti-inflammatory role for p62 in Ps-like disease that could be relevant in the clinical setting.
Collapse
Affiliation(s)
- Kamil Mieczkowski
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| | - Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria; Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria.
| |
Collapse
|
2
|
Theodorakis N, Feretzakis G, Vamvakou G, Verykios VS, Polymeris A, Nikolaou M. Testosterone therapy for functional hypogonadism in middle-aged and elderly males: current evidence and future perspectives. Hormones (Athens) 2024; 23:801-817. [PMID: 39060901 DOI: 10.1007/s42000-024-00587-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Population aging is a global phenomenon driving research focus toward preventing and managing age-related disorders. Functional hypogonadism (FH) has been defined as the combination of low testosterone levels, typically serum total testosterone below 300-350 ng/dL, together with manifestations of hypogonadism, in the absence of an intrinsic pathology of the hypothalamic-pituitary-testicular (HPT) axis. It is usually seen in middle-aged or elderly males as a product of aging and multimorbidity. This age-related decline in testosterone levels has been associated with numerous adverse outcomes. Testosterone therapy (TTh) is the mainstay of treatment for organic hypogonadism with an identifiable intrinsic pathology of the HPT axis. Current guidelines generally make weak recommendations for TTh in patients with FH, mostly in the presence of sexual dysfunction. Concerns about long-term safety have historically limited TTh use in middle-aged and elderly males with FH. However, recent randomized controlled trials and meta-analyses have demonstrated safe long-term outcomes regarding prostatic and cardiovascular health, together with decreases in all-cause mortality and improvements in various domains, including sexual function, body composition, physical strength, bone density, and hematopoiesis. Furthermore, there are numerous insightful studies suggesting additional benefits of TTh, for instance in cardio-renal-metabolic conditions. Specifically, future trials should investigate the role of TTh in improving symptoms and prognosis in various clinical contexts, including sarcopenia, frailty, dyslipidemia, arterial hypertension, diabetes mellitus, fracture risk, heart failure, stable angina, chronic kidney disease, mood disorders, and cognitive dysfunction.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- Department of Cardiology & 65+ Clinic, Sismanogleio-Amalia Fleming General Hospital, 14, 25th Martiou Str, Melissia, 15127, Greece
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Athens, 11527, Greece
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str, Patras, 26335, Greece.
| | - Georgia Vamvakou
- Department of Cardiology & 65+ Clinic, Sismanogleio-Amalia Fleming General Hospital, 14, 25th Martiou Str, Melissia, 15127, Greece
| | - Vassilios S Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str, Patras, 26335, Greece
| | - Antonis Polymeris
- Department of Endocrinology, Metabolism and Diabetes Mellitus, Sismanogleio-Amalia Fleming General Hospital, 14, 25th Martiou Str, Melissia, 15127, Greece
| | - Maria Nikolaou
- Department of Cardiology & 65+ Clinic, Sismanogleio-Amalia Fleming General Hospital, 14, 25th Martiou Str, Melissia, 15127, Greece
| |
Collapse
|
3
|
Sinha A, Deb VK, Datta A, Yadav S, Phulkar A, Adhikari S. Evaluation of structural features of anabolic-androgenic steroids: entanglement for organ-specific toxicity. Steroids 2024; 212:109518. [PMID: 39322097 DOI: 10.1016/j.steroids.2024.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Anabolic-androgenic steroids (AASs), more correctly termed "steroidal androgens", are a broad category of compounds including both synthetic derivatives and endogenously produced androgens like testosterone, which have long been employed as performance-enhancing substances, primarily among recreational athletes and some professionals. While their short-term effects on muscle physiology are well-documented, the long-term health consequences remain inadequately understood. A key finding is the disruption of hormone production, leading to reversible and irreversible changes, particularly with prolonged use. While debate exists over the prevalence of adverse effects, studies suggest a spectrum of somatic and psychiatric consequences, highlighting the need for improved understanding and prevention strategies. AASs are not only affect muscle structure but also influence mood, behavior, and body image, potentially exacerbating substance dependence and psychological distress. Liver alterations are a prominent concern, with oxidative stress implicated in AAS-induced hepatotoxicity. Reproductive complications, including gonadal atrophy and infertility, are common, alongside virilization and feminization effects in both genders. Cardiovascular effects are particularly worrisome, with AASs implicated in hypertension, dyslipidemia, and increased thrombotic risk, contributing to cardiovascular morbidity and mortality. Moreover, AASs may enhance cancer risks, potentially accelerating carcinogenesis in various tissues, including the prostate. The review emphasizes the need for comprehensive public health initiatives to mitigate harm, including harm minimization strategies, routine health screenings, and targeted interventions for AAS users. Understanding the complex interplay of biological mechanisms and systemic effects is crucial for informing clinical management and preventive measures. This review also examines the biological impact of AASs on human muscles, detailing mechanisms of action, chemistry, and associated health risks such as liver damage, cardiovascular disease, and endocrine dysfunction.
Collapse
Affiliation(s)
- Ankan Sinha
- Department of Physical Education, Govt. Degree College, Dharmanagar, Tripura(N) 799253, India.
| | - Vishal Kumar Deb
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290 Tripura, India
| | - Satpal Yadav
- Department of Sports Biomechanics, LNIPE, NERC, Guwahati 782402 Assam, India
| | - Ashish Phulkar
- Department of Sports Management and Coaching, LNIPE, Gwalior 474002, Madhya Pradesh, India
| | - Suman Adhikari
- Department of Chemistry, Govt. Degree College, Dharmanagar, Tripura(N) 799253, India.
| |
Collapse
|
4
|
Dengri C, Koriesh A, Babi MA, Mayberry W, Goldstein ED, Pervez M, Nouh A. Testosterone supplementation and stroke in young adults: a review of the literature. Front Neurol 2024; 15:1422931. [PMID: 39286801 PMCID: PMC11402820 DOI: 10.3389/fneur.2024.1422931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Testosterone supplementation has increased in recent years for both treatment of hypogonadism and recreational use. Strokes in young adults have similarly increased with a larger proportion of patients in this age group having a stroke due to early onset of cardiovascular risk factors or unrelated to conventional risks. Hormonal treatments are associated with increased stroke risk amongst women, with some studies indicating an increase in stroke risk as high as 40% when compared to non-users. However, less is known about male sex hormones and risks associated with increased stroke. Limited data evaluates the relationship between testosterone supplementation and stroke in young adults. In this review, we analyze the literature and plausible underlying pathophysiological mechanisms associated with increased risks in patients using exogenous testosterone. Furthermore, we highlight the gaps in research about safety and long-term effects on young patients.
Collapse
Affiliation(s)
- Chetna Dengri
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
| | - Ahmed Koriesh
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
| | - Marc A Babi
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
- Department of Neurology, Cleveland Clinic Florida, Port St. Lucie, FL, United States
| | - Whitney Mayberry
- Department of Neurology, Cleveland Clinic Florida, Port St. Lucie, FL, United States
| | - Eric D Goldstein
- Department of Neurology, Brown University, Providence, RI, United States
| | - Mubashir Pervez
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
| | - Amre Nouh
- Department of Neurology, Cleveland Clinic Florida, Weston, FL, United States
| |
Collapse
|
5
|
Wang Z, Zhang G, Hu S, Fu M, Zhang P, Zhang K, Hao L, Chen S. Research progress on the protective effect of hormones and hormone drugs in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2024; 176:116764. [PMID: 38805965 DOI: 10.1016/j.biopha.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Ischemic heart disease (IHD) is a condition where the heart muscle does not receive enough blood flow, leading to cardiac dysfunction. Restoring blood flow to the coronary artery is an effective clinical therapy for myocardial ischemia. This strategy helps lower the size of the myocardial infarction and improves the prognosis of patients. Nevertheless, if the disrupted blood flow to the heart muscle is restored within a specific timeframe, it leads to more severe harm to the previously deprived heart tissue. This condition is referred to as myocardial ischemia/reperfusion injury (MIRI). Until now, there is a dearth of efficacious strategies to prevent and manage MIRI. Hormones are specialized substances that are produced directly into the circulation by endocrine organs or tissues in humans and animals, and they have particular effects on the body. Hormonal medications utilize human or animal hormones as their active components, encompassing sex hormones, adrenaline medications, thyroid hormone medications, and others. While several studies have examined the preventive properties of different endocrine hormones, such as estrogen and hormone analogs, on myocardial injury caused by ischemia-reperfusion, there are other hormone analogs whose mechanisms of action remain unexplained and whose safety cannot be assured. The current study is on hormones and hormone medications, elucidating the mechanism of hormone pharmaceuticals and emphasizing the cardioprotective effects of different endocrine hormones. It aims to provide guidance for the therapeutic use of drugs and offer direction for the examination of MIRI in clinical therapy.
Collapse
Affiliation(s)
- Zhongyi Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Gaojiang Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Meilin Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Pingyuan Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kuo Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Sichong Chen
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
6
|
Yan R, Sun Y, Yang Y, Zhang R, Jiang Y, Meng Y. Mitochondria and NLRP3 inflammasome in cardiac hypertrophy. Mol Cell Biochem 2024; 479:1571-1582. [PMID: 37589860 DOI: 10.1007/s11010-023-04812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Cardiac hypertrophy is the main adaptive response of the heart to chronic loads; however, prolonged or excessive hypertrophy promotes myocardial interstitial fibrosis, systolic dysfunction, and cardiomyocyte death, especially aseptic inflammation mediated by NLRP3 inflammasome, which can aggravate ventricular remodeling and myocardial damage, which is an important mechanism for the progression of heart failure. Various cardiac overloads can cause mitochondrial damage. In recent years, the mitochondria have been demonstrated to be involved in the inflammatory response during the development of cardiac hypertrophy in vitro and in vivo. As the NLRP3 inflammasome and mitochondria are regulators of inflammation and cardiac hypertrophy, we explored the potential functions of the NLRP3 inflammasome and mitochondrial dysfunction in cardiac hypertrophy. In particular, we proposed that the induction of mitochondrial dysfunction in cardiomyocytes may promote NLRP3-dependent inflammation during myocardial hypertrophy. Further in-depth studies could prompt valuable discoveries regarding the underlying molecular mechanisms of cardiac hypertrophy, reveal novel anti-inflammatory therapies for cardiac hypertrophy, and provide more desirable therapeutic outcomes for patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Ruyu Yan
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China
- Department of Pathology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Yuxin Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yifan Yang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yujiao Jiang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China
| | - Yan Meng
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Sciences, Jilin University, NO.990 Qinghua Street, Changchun, Jilin, China.
| |
Collapse
|
7
|
Alves JV, da Costa RM, Awata WMC, Bruder-Nascimento A, Singh S, Tostes RC, Bruder-Nascimento T. NADPH oxidase 4-derived hydrogen peroxide counterbalances testosterone-induced endothelial dysfunction and migration. Am J Physiol Endocrinol Metab 2024; 327:E1-E12. [PMID: 38690939 PMCID: PMC11390122 DOI: 10.1152/ajpendo.00365.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
High levels of testosterone (Testo) are associated with cardiovascular risk by increasing reactive oxygen species (ROS) formation. NADPH oxidases (NOX) are the major source of ROS in the vasculature of cardiovascular diseases. NOX4 is a unique isotype, which produces hydrogen peroxide (H2O2), and its participation in cardiovascular biology is controversial. So far, it is unclear whether NOX4 protects from Testo-induced endothelial injury. Thus, we hypothesized that supraphysiological levels of Testo induce endothelial NOX4 expression to attenuate endothelial injury. Human mesenteric vascular endothelial cells (HMECs) and human umbilical vein endothelial cells (HUVEC) were treated with Testo (10-7 M) with or without a NOX4 inhibitor [GLX351322 (10-4 M)] or NOX4 siRNA. In vivo, 10-wk-old C57Bl/6J male mice were treated with Testo (10 mg/kg) for 30 days to study endothelial function. Testo increased mRNA and protein levels of NOX4 in HMECs and HUVECs. Testo increased superoxide anion (O2-) and H2O2 production, which were abolished by NOX1 and NOX4 inhibition, respectively. Testo also attenuated bradykinin-induced NO production, which was further impaired by NOX4 inhibition. In vivo, Testo decreased H2O2 production in aortic segments and triggered endothelial dysfunction [decreased relaxation to acetylcholine (ACh)], which was further impaired by GLX351322 and by a superoxide dismutase and catalase mimetic (EUK134). Finally, Testo led to a dysregulated endothelial cell migration, which was exacerbated by GLX351322. These data indicate that supraphysiological levels of Testo increase the endothelial expression and activity of NOX4 to counterbalance the deleterious effects caused by Testo in endothelial function.NEW & NOTEWORTHY By inducing ROS formation, high levels of testosterone play a major role in the pathogenesis of cardiovascular disease. NOXs are the major sources of ROS in the vasculature of cardiovascular diseases. Herein, we describe a novel compensatory mechanism by showing that NOX4 is a protective oxidant enzyme and counterbalances the deleterious effects of testosterone in endothelial cells by modulating hydrogen peroxide formation.
Collapse
Affiliation(s)
- Juliano V Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rafael M da Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Brazil
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Wanessa M C Awata
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Karbasion N, Xu Y, Snider JC, Bersi MR. Primary Mouse Aortic Smooth Muscle Cells Exhibit Region- and Sex-Dependent Biological Responses In Vitro. J Biomech Eng 2024; 146:060904. [PMID: 38421345 PMCID: PMC11005860 DOI: 10.1115/1.4064965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Despite advancements in elucidating biological mechanisms of cardiovascular remodeling, cardiovascular disease (CVD) remains the leading cause of death worldwide. When stratified by sex, clear differences in CVD prevalence and mortality between males and females emerge. Regional differences in phenotype and biological response of cardiovascular cells are important for localizing the initiation and progression of CVD. Thus, to better understand region and sex differences in CVD presentation, we have focused on characterizing in vitro behaviors of primary vascular smooth muscle cells (VSMCs) from the thoracic and abdominal aorta of male and female mice. VSMC contractility was assessed by traction force microscopy (TFM; single cell) and collagen gel contraction (collective) with and without stimulation by transforming growth factor-beta 1 (TGF-β1) and cell proliferation was assessed by a colorimetric metabolic assay (MTT). Gene expression and TFM analysis revealed region- and sex-dependent behaviors, whereas collagen gel contraction was consistent across sex and aortic region under baseline conditions. Thoracic VSMCs showed a sex-dependent sensitivity to TGF-β1-induced collagen gel contraction (female > male; p = 0.025) and a sex-dependent proliferative response (female > male; p < 0.001) that was not apparent in abdominal VSMCs. Although primary VSMCs exhibit intrinsic region and sex differences in biological responses that may be relevant for CVD presentation, several factors-such as inflammation and sex hormones-were not included in this study. Such factors should be included in future studies of in vitro mechanobiological responses relevant to CVD differences in males and females.
Collapse
Affiliation(s)
- Niyousha Karbasion
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| | - Yujun Xu
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - J. Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - Matthew R. Bersi
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| |
Collapse
|
9
|
Derwand D, Zierau O, Thieme D, Keiler AM. Up to the maximum-testosterone dose-dependent effects on anabolic and androgen responsive tissues in orchiectomized rats. Andrology 2024; 12:231-240. [PMID: 37254653 DOI: 10.1111/andr.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Despite the high number of synthetic androgenic-anabolic steroids, testosterone is still misused for doping in amateur and professional sports. However, only few studies investigated the dose-response effects of testosterone beyond its physiological concentrations and in over 90 years of research, no saturation dosage has been experimentally described for exogenous testosterone administration. OBJECTIVES We want to elucidate the physiological and pathophysiological effects of supra-physiological testosterone application and close this gap in testosterone dose-response data. MATERIALS AND METHODS Male orchiectomized rats were treated with different testosterone doses ranging from 0.1 to 50 mg/kg body weight for 3 weeks. Several physiological endpoints (e.g., body weight, organ and muscle weight, muscle strength, muscle fiber size) were examined during and after the termination of the treatment with an adjusted Hershberger assay, open-field-test, and (immuno-)histologic. RESULTS The wet weights of androgen responsive organs (penis, prostate, seminal vesicle) showed a significant increase in a dose-dependent manner. Histological evaluation of the prostate showed a significant higher percentage of KI67 positive prostate nuclei in the highest dosage group and an increasing hyperplasia with increasing testosterone administered. A significant anabolic effect was only observed in Levator ani wet weight, and to minor degree for the cardiac muscle. Regarding other skeletal muscles (Musculus soleus and Musculus gastrognemicus), no significant testosterone effects were observed. We showed a significant increasing dosage-response effect for testosterone in androgen responsive organs with saturation at the two highest concentration of 10 and 50 mg/kg body weight. DISCUSSION AND CONCLUSION The dose-dependent androgenic effects of testosterone were well observable and the anabolic effects on muscle tissue were visible although to a lesser degree, without the support of aerobic exercise and a protein rich diet. Future studies should investigate a combinatorial effect of testosterone and training. Nevertheless, with the chosen range of applied testosterone, we showed a saturation of testosterone effects in prostate, seminal vesicle, penis, and Levator ani.
Collapse
Affiliation(s)
- Daniel Derwand
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Oliver Zierau
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Annekathrin Martina Keiler
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Dorr B, Abdelaziz A, Karram M. Subcutaneous testosterone pellet therapy for reversal of male osteoporosis: a review and case report. Aging Male 2023; 26:2181953. [PMID: 36912031 DOI: 10.1080/13685538.2023.2181953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
PURPOSE To describe the effects of consistent levels of testosterone in a pellet form and it's potential to reverse osteoporosis. METHODS This is a descriptive case report of a 54 year male with a spontaneous fracture and osteoporosis in the presence of what many consider a normal male testosterone level. RESULTS After discovering and documenting osteoporosis by DXA scan, the patient was shown to reverse the diagnosis of osteoporosis in a year on pelleted testosterone therapy. Consistent levels of 943 ng/dL were achieved; the patient also experienced improvements in quality of life and sleep apnea. CONCLUSION Testosterone deficiency (TD) is a clinical syndrome and osteoporosis can be found in levels above standard "criteria" of 300. This patient did not realize a benefit on injections both physical and clinically and both improved on pelleted testosterone. This should be further studied and considered for TD in men.
Collapse
Affiliation(s)
- Bruce Dorr
- Obstetrics and Gynecology/Urogynecology Division, Littleton Hospital, Littleton, CO, USA
| | - Ahmed Abdelaziz
- Obstetrics and Gynecology/Urogynecology Division, Christ Hospital, Cincinnati, OH, USA
| | - Mickey Karram
- Obstetrics and Gynecology Division, Urogynecology Chair, Christ Hospital, Cincinnati, OH, USA
| |
Collapse
|
11
|
Zhong C, Yang J, Deng K, Lang X, Zhang J, Li M, Qiu L, Zhong G, Yu J. Tiliroside Attenuates NLRP3 Inflammasome Activation in Macrophages and Protects against Acute Lung Injury in Mice. Molecules 2023; 28:7527. [PMID: 38005247 PMCID: PMC10673355 DOI: 10.3390/molecules28227527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The Nod-like receptor family PYRIN domain containing 3 (NLRP3) inflammasome is a multiprotein signaling complex that plays a pivotal role in innate immunity, and the dysregulated NLRP3 inflammasome activation is implicated in various diseases. Tiliroside is a natural flavonoid in multiple medicinal and dietary plants with known anti-inflammatory activities. However, its role in regulating NLRP3 inflammasome activation and NLRP3-related disease has not been evaluated. Herein, it was demonstrated that tiliroside is inhibitory in activating the NLRP3 inflammasome in macrophages. Mechanistically, tiliroside promotes AMP-activated protein kinase (AMPK) activation, thereby leading to ameliorated mitochondrial damage as evidenced by the reduction of mitochondrial reactive oxygen species (ROS) production and the improvement of mitochondrial membrane potential, which is accompanied by attenuated NLRP3 inflammasome activation in macrophages. Notably, tiliroside potently attenuated lipopolysaccharide (LPS)-induced acute lung injury in mice, which has been known to be NLRP3 inflammasome dependent. For the first time, this study identified that tiliroside is an NLRP3 inflammasome inhibitor and may represent a potential therapeutic agent for managing NLRP3-mediated inflammatory disease.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Yang
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jiangtao Zhang
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Min Li
- Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Liang Qiu
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Guoyue Zhong
- Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
12
|
Jin BR, Lim CY, Kim HJ, Lee M, An HJ. Antioxidant mitoquinone suppresses benign prostatic hyperplasia by regulating the AR-NLRP3 pathway. Redox Biol 2023; 65:102816. [PMID: 37454529 PMCID: PMC10368918 DOI: 10.1016/j.redox.2023.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Mitoquinone (MitoQ), a mitochondria-targeted antioxidant, has been used to treat several diseases. The present study aimed to investigate the therapeutic effects of MitoQ in benign prostatic hyperplasia (BPH) models and their underlying molecular mechanisms. In this study, we determined that MitoQ inhibited dihydrotestosterone (DHT)-induced cell proliferation and mitochondrial ROS by inhibiting androgen receptor (AR) and NOD-like receptor family pyrin domain-containing 3 (NLRP3) signaling in prostate epithelial cells. Molecular modeling revealed that DHT may combine with AR and NLRP3, and that MitoQ inhibits both AR and NLRP3. AR and NLRP3 downregulation using siRNA showed the linkage among AR, NLRP3, and MitoQ. MitoQ administration alleviated pathological prostate enlargement and exerted anti-proliferative and antioxidant effects by suppressing the AR and NLRP3 signaling pathways in rats with BPH. Hence, our findings demonstrated that MitoQ is an inhibitor of NLPR3 and AR and a therapeutic agent for BPH treatment.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chae-Young Lim
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Martínez de Toda I, González-Sánchez M, Díaz-Del Cerro E, Valera G, Carracedo J, Guerra-Pérez N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech Ageing Dev 2023; 211:111797. [PMID: 36868323 DOI: 10.1016/j.mad.2023.111797] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Sexual dimorphism is a key factor to consider in the ageing process given the impact that it has on life expectancy. The oxidative-inflammatory theory of ageing states that the ageing process is the result of the establishment of oxidative stress which, due to the interplay of the immune system, translates into inflammatory stress, and that both processes are responsible for the damage and loss of function of an organism. We show that there are relevant gender differences in a number of oxidative and inflammatory markers and propose that they may account for the differential lifespan between sexes, given that males display, in general, higher oxidation and basal inflammation. In addition, we explain the significant role of circulating cell-free DNA as a marker of oxidative damage and an inductor of inflammation, connecting both processes and having the potential to become a useful ageing marker. Finally, we discuss how oxidative and inflammatory changes take place differentially with ageing in each sex, which could also have an impact on the sex-differential lifespan. Further research including sex as an essential variable is needed to understand the grounds of sex differences in ageing and to better comprehend ageing itself.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica González-Sánchez
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Gemma Valera
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Julia Carracedo
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Natalia Guerra-Pérez
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
14
|
Pelegrin ÁF, de Paiva Gonçalves V, Carvalho JDS, Spolidorio DMP, Spolidorio LC. Testosterone replacement relieves ligature-induced periodontitis by mitigating inflammation, increasing pro-resolving markers and promoting angiogenesis in rats: A preclinical study. Arch Oral Biol 2023; 146:105605. [PMID: 36521281 DOI: 10.1016/j.archoralbio.2022.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study aimed to evaluate the inflammatory profile as well as the resolution of inflammation in a ligature-induced periodontal inflammation in rats with depletion and/or supraphysiological testosterone replacement. DESIGN Sixty male rats (Holtzman) were used in the present study. Study groups were created as following: (1) Sham (no testicle removal); (2) Orchiectomy (OCX), 3) OCX + Testosterone (OCX + T); (4) Sham + Ligature (SH + L); (5) OCX+L; and 6) OCX + T + L. The surgeries were performed on day 1, and testosterone was administered weekly since day 1. On day 15, a cotton ligature was placed around the lower first molars and maintained for 15 days. Morphological changes in periodontal tissues were determined by histopathological analysis. Immunohistochemistry (factor VIII) and immunoenzymatic assay were performed to evaluate angiogenesis process and (pro- and anti-) inflammatory markers, respectively. RESULTS Ligature promoted a marked inflammatory gingival infiltrate and bone loss (P < 0.05). Supraphysiological testosterone treatment increased the percentage of blood vessels, extracellular matrix and fibroblasts in the presence and absence of periodontal inflammation (P < 0.05). A high dose of testosterone increased factor VIII+ blood vessels and IL-10 expression in inflamed gingival tissue, while PGE2, LXA4 and MPO were reduced as a result of supraphysiological testosterone administration (P < 0.05). CONCLUSIONS These results, in our experimental model, suggest that supraphysiological testosterone treatment stimulated gingival tissue repair during ligature-induced periodontitis, and it seems to be related to an anti-inflammatory and pro-resolutive mechanism resulting by the modulatory effect on PGE2 and IL-10 related to an enhanced angiogenesis.
Collapse
Affiliation(s)
- Álvaro Formoso Pelegrin
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University - UNESP, 1680 Humaitá St., - Center, 14801-903, Araraquara, SP, Brazil.
| | - Vinícius de Paiva Gonçalves
- Department of Dentistry, Pontifical Catholic University of Minas Gerais, 500 Dom José Gaspar Avenue, - Coração Eucarístico, 30535-901 Belo Horizonte, MG, Brazil.
| | - Jhonatan de Souza Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University - UNESP, 1680 Humaitá St., - Center, 14801-903, Araraquara, SP, Brazil.
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, 1680 Humaitá St., - Center, 14801-903, Araraquara, SP, Brazil.
| | - Luís Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, 1680 Humaitá St., - Center, 14801-903, Araraquara, SP, Brazil.
| |
Collapse
|
15
|
Sessa F, Esposito M, Salerno M. Experimental studies on androgen administration in animal models: current and future perspectives. Curr Opin Endocrinol Diabetes Obes 2022; 29:566-585. [PMID: 35943186 DOI: 10.1097/med.0000000000000768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review aims to report the most recent (2020-2022) experimental scientific studies conducted on animal models, in order to highlight the relevant findings on the adverse effects related to androgen administration. RECENT FINDINGS Forty-one studies published between January 2020 and July 2022 were selected. The majority of studies investigated the effects of one androgen, whereas only four studies analyzed the effects of two drugs. Nandrolone decanoate was the most investigated drug (20 articles), boldenone was tested in 8 articles, testosterone and stanozolol were used in 7 articles each, 17b-trenbolone, metandienone, and oxandrolone were tested in 1 article each. The articles clarify the adverse effects of androgen administration on the heart, brain, kidney, liver, reproductive and musculoskeletal systems. SUMMARY The main findings of this review highlight that androgen administration increases inflammatory mediators, altering different biochemical parameters. The results concerning the reversibility of the adverse effects are controversial: on the one hand, several studies suggested that by stopping the androgen administration, the organs return to their initial state; on the other hand, the alteration of different biochemical parameters could generate irreversible organ damage. Moreover, this review highlights the importance of animal studies that should be better organized in order to clarify several important aspects related to androgen abuse to fill the gap in our knowledge in this research field.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies 'G.F. Ingrassia', University of Catania, Catania, Italy
| | | | | |
Collapse
|
16
|
Kataoka T, Fukamoto A, Hotta Y, Sanagawa A, Maeda Y, Furukawa-Hibi Y, Kimura K. Effect of High Testosterone Levels on Endothelial Function in Aorta and Erectile Function in Rats. Sex Med 2022; 10:100550. [PMID: 35939869 PMCID: PMC9537240 DOI: 10.1016/j.esxm.2022.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Testosterone is an important hormone for the physical and mental health of men; however testosterone administration has also been suggested to adversely affect the cardiovascular system. AIM To investigate the effects of excessive testosterone administration on vascular endothelial and erectile function in rats. METHODS A total of seventy-five 12-week-old rats were divided into the following groups: Sham, castrated (Cast), castrated with subcutaneous administration of 100 mg/kg/month testosterone (Cast + T1), and castrated with subcutaneous administration of 100 mg/kg/week testosterone (Cast + T4). To observe the changes in testosterone level after the administration, rats were further divided into the following groups: control; T(6.25), wherein the rats were subcutaneously injected with 6.25 mg/kg testosterone; T(25) per week, wherein the rats were subcutaneously injected with 25 mg/kg testosterone per week; and T(100), wherein the rats were subcutaneously injected with 100 mg/kg testosterone per week. The relaxation responses of aorta were measured in these rats using standardized methods, and their erectile function was also evaluated. Statistical analysis of the obtained data was performed using two-way analysis of variance (ANOVA), Tukey-Kramer's multiple comparison test, or Student's t-test. OUTCOMES At the end of the study period, endothelial function was evaluated through measurement of isometric tension, while erectile function was assessed using intracavernosal pressure (ICP), mean arterial pressure (MAP), and the expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), sirtuin 1 (Sirt1) and vascular endothelial growth factor A. RESULTS The ICP/MAP ratio in the Cast group (0.42 ± 0.04) was significantly lower than that in the Sham group (0.79 ± 0.07). The ICP/MAP ratio in the Cast + T1 group (0.73 ± 0.06) was significantly higher than that in the Cast group (P < .01) and that of the Cast + T4 (0.38 ± 0.01) group was unchanged (P > .05). The T(25) and T(100) groups exhibited significantly lower responses to ACh than the control group at 4 weeks (P < .01). Meanwhile, the ICP/MAP ratios in the T(25) group (0.44 ± 0.07) and T(100) group (0.47 ± 0.03) were significantly lower than that in the control group (0.67 ± 0.05) at stimulation frequencies of 16 Hz (P < .05). The expression of androgen receptor, Sirt1, and eNOS were significantly lower while that of iNOS was higher in the T(25) group compared with the control group (P < .05). CLINICAL TRANSLATION The results based on this animal model indicate that extremely high testosterone levels may affect endothelial and erectile function. STRENGTHS AND LIMITATIONS We found that high-dose testosterone administration decreased endothelial function in aorta and erectile function in rats. A major limitation of this study is that the blood concentration may not be representative of that in humans, and further research is needed. CONCLUSION The findings suggest that high doses of testosterone may cause endothelial dysfunction in the aorta and erectile dysfunction in rats and that the blood concentration should be monitored after testosterone administration. Kataoka T, Fukamoto A, Hotta Y, et al. Effect of High Testosterone Levels on Endothelial Function in Aorta and Erectile Function in Rats. Sex Med 2022;10:100550.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Pharmacology, Kataoka's lab, Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan.
| | - Ayako Fukamoto
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akimasa Sanagawa
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuhiro Maeda
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoko Furukawa-Hibi
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
17
|
Chen T, Yu Y, Jia F, Luan P, Liu X. The relationship between polycystic ovary syndrome and insulin resistance from 1983 to 2022: A bibliometric analysis. Front Public Health 2022; 10:960965. [PMID: 35968428 PMCID: PMC9366174 DOI: 10.3389/fpubh.2022.960965] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common clinical disease often associated with insulin resistance (IR). The interaction between PCOS and IR will promote the progress of PCOS and the risk of related complications, harm women's physical and mental health, and increase the social and economic burden. Materials and Methods PCOS IR-related works of literature were retrieved through the Web of Science Core Collection (WoSCC) Database and imported into VOSviewer and CiteSpace, respectively, in plain text format to conduct the literature visualization analysis of authors, countries, institutions, highly cited works of literature, and keywords, aiming to reveal the hot spots and trends of PCOS IR fields. Results A total of 7,244 articles were retrieved from 1900 to 2022. Among them, the United States has made the largest contribution. Diamanti-Kandarakis E was the author with the most publications, and the University of Athens was the institution with most publications. Keyword analysis showed that PCOS interacts with IR mainly through sex-hormone binding globulin, luteinizing hormone, insulin-like growth factor, oxidative stress, and other mechanisms. In addition, the complications of PCOS complicated with IR are also the focus of researchers' attention. Conclusions Through bibliometric analysis, this paper obtains the research hotspot and trend of PCOS IR fields, which can provide a reference for subsequent research.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gynaecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Yu
- Department of Gynaecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Jia
- Department of Gynaecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijie Luan
- Department of Orthopedics, Linqu County Chinese Medicine Hospital, Shandong, China
| | - Xinmin Liu
- Department of Gynaecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xinmin Liu
| |
Collapse
|
18
|
Activation and Pharmacological Regulation of Inflammasomes. Biomolecules 2022; 12:biom12071005. [PMID: 35883561 PMCID: PMC9313256 DOI: 10.3390/biom12071005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammasomes are intracellular signaling complexes of the innate immune system, which is part of the response to exogenous pathogens or physiological aberration. The multiprotein complexes mainly consist of sensor proteins, adaptors, and pro-caspase-1. The assembly of the inflammasome upon extracellular and intracellular cues drives the activation of caspase-1, which processes pro-inflammatory cytokines IL-1β and IL-18 to maturation and gasdermin-D for pore formation, leading to pyroptosis and cytokine release. Inflammasome signaling functions in numerous infectious or sterile inflammatory diseases, including inherited autoinflammatory diseases, metabolic disorders, cardiovascular diseases, cancers, neurodegenerative disorders, and COVID-19. In this review, we summarized current ideas on the organization and activation of inflammasomes, with details on the molecular mechanisms, regulations, and interventions. The recent developments of pharmacological strategies targeting inflammasomes as disease therapeutics were also covered.
Collapse
|
19
|
Santos JD, Oliveira Neto JT, Barros PR, Damasceno LEA, Lautherbach N, Assis AP, Silva CAA, Sorgi CA, Faccioli LH, Kettelhut IC, Salgado HC, Carneiro FS, Alves Filho JC, Tostes RC. Th17 cells-linked mechanisms mediate vascular dysfunction induced by testosterone in a mouse model of gender-affirming hormone therapy. Am J Physiol Heart Circ Physiol 2022; 323:H322-H335. [PMID: 35714175 DOI: 10.1152/ajpheart.00182.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clinical data point to adverse cardiovascular events elicited by testosterone replacement therapy. Testosterone is the main hormone used in gender-affirming hormone therapy (GAHT) by transmasculine people. However, the cardiovascular impact of testosterone in experimental models of GAHT remains unknown. Sex hormones modulate T cells activation, and immune mechanisms contribute to cardiovascular risk. The present study evaluated whether testosterone negatively impacts female cardiovascular function by enhancing Th17 cells-linked effector mechanisms. Female (8 weeks-old) C57BL/6J mice received testosterone (48 mg.Kg-1.week-1) for 8 weeks. Male mice were used for phenotypical comparisons. The hormone-treatment in female mice increased circulating testosterone to levels observed in male mice. Testosterone increased lean body mass and body mass index, and decreased perigonadal fat mass, mimicking clinical findings. After 8 weeks, testosterone decreased endothelium-dependent vasodilation and increased circulating Th17 cells. After 24 weeks, testosterone increased blood pressure in female mice. Ovariectomy did not intensify phenotypical or cardiovascular effects by testosterone. Female mice lacking T and B cells [Rag1 knockout (-/-)], as well as female mice lacking IL-17 receptor (IL-17Ra-/-), did not exhibit vascular dysfunction induced by testosterone. Testosterone impaired endothelium-dependent vasodilation in female mice lacking γδ T cells, similarly to the observed in wild type female mice. Adoptive transfer of CD4+ T cells restored testosterone-induced vascular dysfunction in Rag1-/- female mice. Together, these data suggest that CD4+ T cells, most likely Th17 cells, are central to vascular dysfunction induced by testosterone in female mice, indicating that changes in immune cells balance are important in the GAHT in transmasculine people.
Collapse
Affiliation(s)
- Jeimison D Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - José T Oliveira Neto
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Paula R Barros
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Luis Eduardo Alves Damasceno
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Natalia Lautherbach
- Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Ana P Assis
- Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Carlos A A Silva
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Carlos A Sorgi
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeira Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucia H Faccioli
- Department of Clinical Analyses, Toxicology and Food Science, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Isis C Kettelhut
- Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Jose C Alves Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
20
|
Melsom HS, Heiestad CM, Eftestøl E, Torp MK, Gundersen K, Bjørnebekk AK, Thorsby PM, Stensløkken KO, Hisdal J. Reduced arterial elasticity after anabolic-androgenic steroid use in young adult males and mice. Sci Rep 2022; 12:9707. [PMID: 35690664 PMCID: PMC9188580 DOI: 10.1038/s41598-022-14065-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/22/2022] [Indexed: 01/16/2023] Open
Abstract
High-doses of anabolic-androgenic steroids (AAS) is efficient for building muscle mass, but pose a risk of cardiovascular side effects. Little is known of the effect of AAS on vasculature, but previous findings suggest unfavorable alterations in vessel walls and vasoreactivity. Here, long-term effect of AAS on vascular function and morphology were examined in male weightlifters, and in a mimicking animal model. Arterial elasticity and morphology were tested with ultrasound, pulse wave velocity (PWV) and carotid intima media thickness (cIMT) in 56 current male AAS users, and 67 non-exposed weightlifting controls (WLC). Female mice were treated with testosterone for 14 days and echocardiography were applied to evaluate vascular function and morphology. Male AAS users had higher PWV (p = 0.044), reduced carotid artery compliance (p = 0.0005), and increased cIMT (p = 0.041) compared to WLC. Similar functional changes were found in the ascending aorta of mice after 7- (p = 0.043) and 14 days (p = 0.001) of testosterone treatment. This animal model can be used to map molecular mechanisms responsible for complications related to AAS misuse. Considering the age-independent stiffening of major arteries and the predictive power of an increase in PWV and cIMT, the long-term users of AAS are at increased risk of severe cardiovascular events.
Collapse
Affiliation(s)
- H S Melsom
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Vascular Surgery, Oslo University Hospital, Oslo, Norway
| | - C M Heiestad
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - E Eftestøl
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - M K Torp
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - K Gundersen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - A K Bjørnebekk
- The Anabolic Androgenic Steroid Research Group, Oslo University Hospital, Oslo, Norway
| | - P M Thorsby
- Biochemical Endocrinology and Metabolism Research Group, Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - K O Stensløkken
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - J Hisdal
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Vascular Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Li L, Wang H, Zhao S, Zhao Y, Chen Y, Zhang J, Wang C, Sun N, Fan H. Paeoniflorin ameliorates lipopolysaccharide-induced acute liver injury by inhibiting oxidative stress and inflammation via SIRT1/FOXO1a/SOD2 signaling in rats. Phytother Res 2022; 36:2558-2571. [PMID: 35570830 DOI: 10.1002/ptr.7471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Acute liver injury (ALI) is a poor prognosis and high mortality complication of sepsis. Paeoniflorin (PF) has remarkable anti-inflammatory effects in different disease models. Here, we explored the protective effect and underlying molecular mechanisms of PF against lipopolysaccharide (LPS)-induced ALI. Sprague-Dawley rats received intraperitoneal (i.p.) injection of PF for 7 days, 1 h after the last administration, and rats were injected i.p. 10 mg/kg LPS. PF improved liver structure and function, reduced hepatic reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) levels, and increased superoxide dismutase (SOD) activity. Western blot analysis suggested that PF significantly inhibited expression of inflammatory cytokines (TNF-α, IL-1β, and IL-18) and inhibited activation of the NLRP3 inflammasome. PF or mitochondrial ROS scavenger (mito-TEMPO) significantly improved liver mitochondrial function by scavenging mitochondrial ROS (mROS), restoring mitochondrial membrane potential loss and increasing level of ATP and enzyme activity of complex I and III. In addition, PF increased expression of sirtuin-1 (SIRT1), forkhead box O1 (FOXO1a) and manganese superoxide dismutase (SOD2), and increased FOXO1a nuclear retention. However, the inhibitor of SIRT1 (EX527) abolished the protective effect of PF. Taken together, PF promotes mROS clearance to inhibit mitochondrial damage and activation of the NLRP3 inflammasome via SIRT1/FOXO1a/SOD2 signaling.
Collapse
Affiliation(s)
- Lin Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiuyan Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chuqiao Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
22
|
Lu N, Cheng W, Liu D, Liu G, Cui C, Feng C, Wang X. NLRP3-Mediated Inflammation in Atherosclerosis and Associated Therapeutics. Front Cell Dev Biol 2022; 10:823387. [PMID: 35493086 PMCID: PMC9045366 DOI: 10.3389/fcell.2022.823387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/24/2022] [Indexed: 11/15/2022] Open
Abstract
The NLRP3 inflammasome is a crucial constituent of the body’s innate immune system, and a multiprotein platform which is initiated by pattern recognition receptors (PRRs). Its activation leads to caspase-1 maturation and release of inflammatory cytokines, interleukin-1β (IL-1β) and IL-18, and subsequently causes pyroptosis. Recently, the excess activation of NLRP3 inflammasome has been confirmed to mediate inflammatory responses and to participate in genesis and development of atherosclerosis. Therefore, the progress on the discovery of specific inhibitors against the NLRP3 inflammasome and the upstream and downstream inflammatory factors has become potential targets for clinical treatment. Here we review the recently described mechanisms about the NLRP3 inflammasome activation, and discuss emphatically the pharmacological interventions using statins and natural medication for atherosclerosis associated with NLRP3 inflammasome.
Collapse
Affiliation(s)
- Na Lu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Weijia Cheng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Can Cui
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Chaoli Feng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Xianwei Wang,
| |
Collapse
|
23
|
Costa RM, Alves-Lopes R, Alves JV, Servian CP, Mestriner FL, Carneiro FS, Lobato NDS, Tostes RC. Testosterone Contributes to Vascular Dysfunction in Young Mice Fed a High Fat Diet by Promoting Nuclear Factor E2-Related Factor 2 Downregulation and Oxidative Stress. Front Physiol 2022; 13:837603. [PMID: 35350697 PMCID: PMC8958040 DOI: 10.3389/fphys.2022.837603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity, an important risk factor for cardiovascular disease, promotes vascular oxidative stress. Considering that free testosterone levels remain within the reference range, especially in obese young men and that testosterone stimulates reactive oxygen species (ROS) generation, we sought to investigate whether testosterone interferes with obesity-associated oxidative stress and vascular dysfunction in male mice. We hypothesized that testosterone favors ROS accumulation and vascular dysfunction in high fat diet (HFD)-fed obese mice. We also questioned whether testosterone downregulates the nuclear factor E2–related factor 2 (Nrf2), one of the major cellular defense mechanisms against oxidative stimuli. Male C57Bl/6J mice were submitted to orchiectomy or sham-operation. Mice received either a control diet (CD) or HFD for 18 weeks. Vascular function was assessed in thoracic aortic rings and molecular mechanisms by which testosterone contributes to vascular dysfunction were determined. HFD reduced acetylcholine-induced vasodilation and increased vascular ROS generation in sham mice. Castration prevented these effects. Treatment of castrated mice fed either the CD or HFD with testosterone propionate decreased acetylcholine vasodilation. HFD decreased Nrf2 nuclear accumulation, events linked to decreased mRNA expression and activity of Nrf2-regulated enzymes (catalase, heme oxygenase-1, peroxiredoxin, and thioredoxin). These events were prevented in HFD-fed castrated mice. Bardoxolone, a Nrf2 activator, increased nuclear accumulation of Nrf2, decreased ROS generation and improved acetylcholine vasodilation in HFD-fed sham mice. In vitro, testosterone increased ROS generation and decreased Nrf2 nuclear accumulation. These effects were prevented in the presence of an androgen receptor antagonist, an inhibitor of gene transcription and an inhibitor of the pro-oxidant enzyme NOX-1. These results indicate that testosterone downregulates Nrf2, leading to oxidative stress and vascular dysfunction in HFD-fed obese young mice.
Collapse
Affiliation(s)
- Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Brazil
| | - Rhéure Alves-Lopes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,British Heart Foundation, Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Juliano V Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina P Servian
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Brazil
| | - Fabíola L Mestriner
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Núbia de S Lobato
- Academic Unit of Health Sciences, Federal University of Jatai, Jatai, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Wang J, Zhou Y, He L. Appropriate supplementation of testosterone alleviates post-stroke damage via decreasing inflammation and oxidative stress in aged male C57BL/6 mice. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221116739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stroke injury is closely related to testosterone levels. Testosterone supplementation in elderly men is seen to protect the cardiovascular system and reduce the risk of stroke. But this medication method is controversial. This study aims to investigate the effect of long-term testosterone supplementation on brain injury after stroke in aged mice. 60 male C57BL/6 mice,12-months of age were divided into 3 groups: low-dose group, high-dose group, and control group, each group was injected subcutaneously with 100 μL of sesame oil or 5 mg/kg or 50 mg/kg of testosterone (in 100 μL of sesame oil) twice per week, respectively. One week after the injection, stroke was induced by light. After the stroke, the injection continued for 6 weeks. The motion ability was measured by rotating rod and tail suspension. The brain injury was observed by naked eyes and TTC staining. In addition, we measured the inflammation ( Tnf-α, Il-6, and Mcp-1) and oxidative stress (Malondialdehyde (MDA) and T-AOC) in the injured tissue 72 h post-stroke. Low-dose testosterone supplementation improved the motion ability and decreased brain injury. It also decreased the inflammatory factors ( Tnf-α, Il-6, and Mcp-1), decreased MDA product, and increased T-AOC. High-dose testosterone supplementation not only reduced the motion ability and aggravated stroke injury, but also increased the inflammation, MDA level and decreased T-AOC level. In summary, supplementation of testosterone at normal levels in elderly mice can alleviate post-stroke injury by reducing inflammation and oxidative stress; however, excessive supplementation may cause unexpected injuries. This study has important implications for the application of testosterone replacement therapy.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Neurosurgery, Shenmu City Hospital, Shenmu, China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital of Fourth Military Medical University, Xi’an, China
| | - Lijun He
- Department of Neurosurgery, Shenmu City Hospital, Shenmu, China
| |
Collapse
|
25
|
Armeni E, Lambrinoudaki I. Menopause, androgens, and cardiovascular ageing: a narrative review. Ther Adv Endocrinol Metab 2022; 13:20420188221129946. [PMID: 36325501 PMCID: PMC9619256 DOI: 10.1177/20420188221129946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide; however, women tend to be less affected than men during their reproductive years. The female cardiovascular risk increases significantly around the time of the menopausal transition. The loss of the protective action of ovarian oestrogens and the circulating androgens has been implicated in possibly inducing subclinical and overt changes in the cardiovascular system after the menopausal transition. In vitro studies performed in human or animal cell lines demonstrate an adverse effect of testosterone on endothelial cell function and nitric oxide bioavailability. Cohort studies evaluating associations between testosterone and/or dehydroepiandrosterone and subclinical vascular disease and clinical cardiovascular events show an increased risk for women with more pronounced androgenicity. However, a mediating effect of insulin resistance is possible. Data on cardiovascular implications following low-dose testosterone treatment in middle-aged women or high-dose testosterone supplementation for gender affirmatory purposes remain primarily inconsistent. It is prudent to consider the possible adverse association between testosterone and endothelial function during the decision-making process of the most appropriate treatment for a postmenopausal woman.
Collapse
Affiliation(s)
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Musicki B, Burnett AL. Testosterone Deficiency in Sickle Cell Disease: Recognition and Remediation. Front Endocrinol (Lausanne) 2022; 13:892184. [PMID: 35592776 PMCID: PMC9113536 DOI: 10.3389/fendo.2022.892184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Hypogonadism is common in men with sickle cell disease (SCD) with prevalence rates as high as 25%. Testicular failure (primary hypogonadism) is established as the principal cause for this hormonal abnormality, although secondary hypogonadism and compensated hypogonadism have also been observed. The underlying mechanism for primary hypogonadism was elucidated in a mouse model of SCD, and involves increased NADPH oxidase-derived oxidative stress in the testis, which reduces protein expression of a steroidogenic acute regulatory protein and cholesterol transport to the mitochondria in Leydig cells. In all men including those with SCD, hypogonadism affects physical growth and development, cognition and mental health, sexual function, as well as fertility. However, it is not understood whether declines in physical, psychological, and social domains of health in SCD patients are related to low testosterone, or are consequences of other abnormalities of SCD. Priapism is one of only a few complications of SCD that has been studied in the context of hypogonadism. In this pathologic condition of prolonged penile erection in the absence of sexual excitement or stimulation, hypogonadism exacerbates already impaired endothelial nitric oxide synthase/cGMP/phosphodiesterase-5 molecular signaling in the penis. While exogenous testosterone alleviates priapism, it disadvantageously decreases intratesticular testosterone production. In contrast to treatment with exogenous testosterone, a novel approach is to target the mechanisms of testosterone deficiency in the SCD testis to drive endogenous testosterone production, which potentially decreases further oxidative stress and damage in the testis, and preserves sperm quality. Stimulation of translocator protein within the transduceosome of the testis of SCD mice reverses both hypogonadism and priapism, without affecting intratesticular testosterone production and consequently fertility. Ongoing research is needed to define and develop therapies that restore endogenous testosterone production in a physiologic, mechanism-specific fashion without affecting fertility in SCD men.
Collapse
|
27
|
Aksoyalp ZŞ, Nemutlu-Samur D. Sex-related susceptibility in coronavirus disease 2019 (COVID-19): Proposed mechanisms. Eur J Pharmacol 2021; 912:174548. [PMID: 34606834 PMCID: PMC8486578 DOI: 10.1016/j.ejphar.2021.174548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
The importance of sex differences is increasingly acknowledged in the incidence and treatment of disease. Accumulating clinical evidence demonstrates that sex differences are noticeable in COVID-19, and the prevalence, severity, and mortality rate of COVID-19 are higher among males than females. Sex-related genetic and hormonal factors and immunological responses may underlie the sex bias in COVID-19 patients. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease/serine subfamily member 2 (TMPRSS2) are essential proteins involved in the cell entry of SARS-CoV-2. Since ACE2 is encoded on the X-chromosome, a double copy of ACE2 in females may compensate for virus-mediated downregulation of ACE2, and thus ACE2-mediated cellular protection is greater in females. The X chromosome also contains the largest immune-related genes leading females to develop more robust immune responses than males. Toll-like receptor-7 (TLR-7), one of the key players in innate immunity, is linked to sex differences in autoimmunity and vaccine efficacy, and its expression is greater in females. Sex steroids also affect immune cell function. Estrogen contributes to higher CD4+ and CD8+ T cell activation levels, and females have more B cells than males. Sex differences not only affect the severity and progression of the disease, but also alter the efficacy of pharmacological treatment and adverse events related to the drugs/vaccines used against COVID-19. Administration of different drugs/vaccines in different doses or intervals may be useful to eliminate sex differences in efficacy and side/adverse effects. It should be noted that studies should include sex-specific analyses to develop further sex-specific treatments for COVID-19.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, 35620, Izmir, Turkey.
| | - Dilara Nemutlu-Samur
- Alanya Alaaddin Keykubat University, Faculty of Medicine, Department of Pharmacology, 07450, Antalya, Turkey.
| |
Collapse
|
28
|
Gasbarrino K, Di Iorio D, Daskalopoulou SS. Importance of sex and gender in ischaemic stroke and carotid atherosclerotic disease. Eur Heart J 2021; 43:460-473. [PMID: 34849703 DOI: 10.1093/eurheartj/ehab756] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Stroke is a leading cause of death and disability worldwide. Women are disproportionately affected by stroke, exhibiting higher mortality and disability rates post-stroke than men. Clinical stroke research has historically included mostly men and studies were not properly designed to perform sex- and gender-based analyses, leading to under-appreciation of differences between men and women in stroke presentation, outcomes, and response to treatment. Reasons for these differences are likely multifactorial; some are due to gender-related factors (i.e. decreased social support, lack of stroke awareness), yet others result from biological differences between sexes. Unlike men, women often present with 'atypical' stroke symptoms. Lack of awareness of 'atypical' presentation has led to delays in hospital arrival, diagnosis, and treatment of women. Differences also extend to carotid atherosclerotic disease, a cause of stroke, where plaques isolated from women are undeniably different in morphology/composition compared to men. As a result, women may require different treatment than men, as evidenced by the fact that they derive less benefit from carotid revascularization than men but more benefit from medical management. Despite this, women are less likely than men to receive medical therapy for cardiovascular risk factor management. This review focuses on the importance of sex and gender in ischaemic stroke and carotid atherosclerotic disease, summarizing the current evidence with respect to (i) stroke incidence, mortality, awareness, and outcomes, (ii) carotid plaque prevalence, morphology and composition, and gene connectivity, (iii) the role of sex hormones and sex chromosomes in atherosclerosis and ischaemic stroke risk, and (iv) carotid disease management.
Collapse
Affiliation(s)
- Karina Gasbarrino
- Vascular Health Unit, Research Institute of McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Glen Site, 1001 Decarie Boulevard, EM1.2230 Montreal, QC H4A 3J1, Canada
| | - Diana Di Iorio
- Vascular Health Unit, Research Institute of McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Glen Site, 1001 Decarie Boulevard, EM1.2230 Montreal, QC H4A 3J1, Canada
| | - Stella S Daskalopoulou
- Vascular Health Unit, Research Institute of McGill University Health Centre, Department of Medicine, Faculty of Medicine, McGill University, Glen Site, 1001 Decarie Boulevard, EM1.2230 Montreal, QC H4A 3J1, Canada
| |
Collapse
|
29
|
Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Alexiou A, Batiha GES. Testosterone in COVID-19: An Adversary Bane or Comrade Boon. Front Cell Infect Microbiol 2021; 11:666987. [PMID: 34568081 PMCID: PMC8455954 DOI: 10.3389/fcimb.2021.666987] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), which leads to pulmonary manifestations like acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In addition, COVID-19 may cause extra-pulmonary manifestation such as testicular injury. Both high and low levels of testosterone could affect the severity of COVID-19. Herein, there is substantial controversy regarding the potential role of testosterone in SARS-CoV-2 infection and COVID-19 severity. Therefore, the present study aimed to review and elucidate the assorted view of preponderance regarding the beneficial and harmful effects of testosterone in COVID-19. A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science Direct was done. All published articles related to the role of testosterone and COVID-19 were included in this mini-review. The beneficial effects of testosterone in COVID-19 are through inhibition of pro-inflammatory cytokines, augmentation of anti-inflammatory cytokines, modulation of the immune response, attenuation of oxidative stress, and endothelial dysfunction. However, its harmful effects in COVID-19 are due to augmentation of transmembrane protease serine 2 (TMPRSS2), which is essential for cleaving and activating SARS-CoV-2 spike protein during acute SARS-CoV-2 infection. Most published studies illustrated that low testosterone levels are linked to COVID-19 severity. A low testosterone level in COVID-19 is mainly due to testicular injury, the primary source of testosterone.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Hani Faidah
- Faculty of Medicine, Umm Al Qura University, Mecca, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia.,AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
30
|
Barros MPD, Bachi ALL, Santos JDMBD, Lambertucci RH, Ishihara R, Polotow TG, Caldo-Silva A, Valente PA, Hogervorst E, Furtado GE. The poorly conducted orchestra of steroid hormones, oxidative stress and inflammation in frailty needs a maestro: Regular physical exercise. Exp Gerontol 2021; 155:111562. [PMID: 34560197 DOI: 10.1016/j.exger.2021.111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
This review outlines the various factors associated with unhealthy aging which includes becoming frail and dependent. With many people not engaging in recommended exercise, facilitators and barriers to engage with exercise must be investigated to promote exercise uptake and adherence over the lifespan for different demographics, including the old, less affluent, women, and those with different cultural-ethnic backgrounds. Governmental and locally funded public health messages and environmental facilitation (gyms, parks etc.) can play an important role. Studies have shown that exercise can act as a conductor to balance oxidative stress, immune and endocrine functions together to promote healthy aging and reduce the risk for age-related morbidities, such as cardiovascular disease and atherosclerosis, and promote cognition and mood over the lifespan. Like a classic symphony orchestra, consisting of four groups of related musical instruments - the woodwinds, brass, percussion, and strings - the aging process should also perform in harmony, with compassion, avoiding the aggrandizement of any of its individual parts during the presentation. This review discusses the wide variety of molecular, cellular and endocrine mechanisms (focusing on the steroid balance) underlying this process and their interrelationships.
Collapse
Affiliation(s)
- Marcelo Paes de Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil.
| | - André Luís Lacerda Bachi
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | | | | | - Rafael Ishihara
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Tatiana Geraldo Polotow
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil
| | - Adriana Caldo-Silva
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Pedro Afonso Valente
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Eef Hogervorst
- Applied Cognitive Research National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Guilherme Eustáquio Furtado
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal; Institute Polytechnic of Maia, Porto, Portugal; University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal.
| |
Collapse
|
31
|
Al-Daghri NM, Wani K, AlHarthi H, Alghamdi A, Alnaami AM, Yakout SM. Sex-Specific Signature in the Circulating NLRP3 Levels of Saudi Adults with Metabolic Syndrome. J Clin Med 2021; 10:jcm10153288. [PMID: 34362072 PMCID: PMC8347773 DOI: 10.3390/jcm10153288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, inflammasomes such as NLRP3 as cytosolic pattern-recognition receptors have been implicated in the development of inflammation; however, limited investigations report the circulating levels of this protein. The objective, thus, was to investigative circulating NLRP3 levels in Saudi patients with a low-grade inflammatory disorder called metabolic syndrome (MetS). Two hundred Saudi adults aged 30–65, with or without MetS diagnosed on the basis of National Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP III) criteria, were randomly recruited. Five MetS components were established according to the diagnostic criteria in the study subjects. Circulating levels of NLRP3 and known inflammation markers, such as tumor necrosis factor α (TNF-α), C-reactive protein (CRP) and interleukins (IL-1β and IL-18), were measured in the blood samples taken from the study subjects. Gender-based analysis showed a significant elevated circulating levels of NLRP3 in non-MetS men compared to non-MetS females (p < 0.001). Moreover, an increase in circulating levels of NLRP3 with a number of MetS components (p = 0.038) was observed only in females. A significant positive correlation of NLRP3 levels with age (r = 0.20, p = 0.04), BMI (r = 0.32, p < 0.01) and waist (r = 0.24, p = 0.02) and a significant negative correlation between NLRP3 and HDL-cholesterol (r= −0.21, p = 0.03) were also observed in females. Logistic regression analysis also yielded a sex-specific positive association of NLRP3 with MetS in females, with this association influenced mostly by central obesity and dyslipidemia components of MetS. In conclusion, this study suggests a sexual disparity in the circulating levels of NLRP3, with a trend of increasing circulating NLRP3 levels with increasing MetS components observed only in females, influenced mostly by adiposity and dyslipidemia components of MetS. Longitudinal studies with a larger sample size and investigating sex-specific hormones with NLRP3 would be needed to establish a causal relationship of NLRP3 with MetS.
Collapse
Affiliation(s)
- Nasser M. Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.); (A.A.)
- Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.); (S.M.Y.)
- Correspondence: ; Tel.: +966-14675939
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.); (S.M.Y.)
| | - Hind AlHarthi
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.); (A.A.)
| | - Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.); (A.A.)
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.); (S.M.Y.)
| | - Sobhy M. Yakout
- Chair for Biomarkers of Chronic Diseases, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.W.); (A.M.A.); (S.M.Y.)
| |
Collapse
|
32
|
Zhang H, Tang Y, Tao J. Sex-Related Overactivation of NLRP3 Inflammasome Increases Lethality of the Male COVID-19 Patients. Front Mol Biosci 2021; 8:671363. [PMID: 34150848 PMCID: PMC8212049 DOI: 10.3389/fmolb.2021.671363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2 infection, remains a dramatic threat to human life and economic well-being worldwide. Significant heterogeneity in the severity of disease was observed for patients infected with SARS-CoV-2 ranging from asymptomatic to severe cases. Moreover, male patients had a higher probability of suffering from high mortality and severe symptoms linked to cytokine storm and excessive inflammation. The NLRP3 inflammasome is presumably critical to this process. Sex differences may directly affect the activation of NLRP3 inflammasome, impacting the severity of observed COVID-19 symptoms. To elucidate the potential mechanisms underlying sex based differences in NLRP3 activation during SARS-CoV-2 infection, this review summarizes the reported mechanisms and identifies potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
33
|
Gencer B, Bonomi M, Adorni MP, Sirtori CR, Mach F, Ruscica M. Cardiovascular risk and testosterone - from subclinical atherosclerosis to lipoprotein function to heart failure. Rev Endocr Metab Disord 2021; 22:257-274. [PMID: 33616800 PMCID: PMC8087565 DOI: 10.1007/s11154-021-09628-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The cardiovascular (CV) benefit and safety of treating low testosterone conditions is a matter of debate. Although testosterone deficiency has been linked to a rise in major adverse CV events, most of the studies on testosterone replacement therapy were not designed to assess CV risk and thus excluded men with advanced heart failure or recent history of myocardial infarction or stroke. Besides considering observational, interventional and prospective studies, this review article evaluates the impact of testosterone on atherosclerosis process, including lipoprotein functionality, progression of carotid intima media thickness, inflammation, coagulation and thromboembolism, quantification of plaque volume and vascular calcification. Until adequately powered studies evaluating testosterone effects in hypogonadal men at increased CV risk are available (TRAVERSE trial), clinicians should ponder the use of testosterone in men with atherosclerotic cardiovascular disease and discuss benefit and harms with the patients.
Collapse
Affiliation(s)
- Baris Gencer
- Cardiology Division, Geneva University Hospitals, Geneva, Switzerland.
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- Department of Endocrine and Metabolic Diseases & Lab. of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Parma, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - François Mach
- Cardiology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
34
|
An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 2021; 18:1141-1160. [PMID: 33850310 PMCID: PMC8093260 DOI: 10.1038/s41423-021-00670-3] [Citation(s) in RCA: 424] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions. Over the past decade, considerable advances have been made in elucidating the molecular mechanisms underlying the priming/licensing (Signal 1) and assembly (Signal 2) involved in NLRP3 inflammasome activation. Recently, a number of studies have indicated that the priming/licensing step is regulated by complicated mechanisms at both the transcriptional and posttranslational levels. In this review, we discuss the current understanding of the mechanistic details of NLRP3 inflammasome activation with a particular emphasis on protein-protein interactions, posttranslational modifications, and spatiotemporal regulation of the NLRP3 inflammasome machinery. We also present a detailed summary of multiple positive and/or negative regulatory pathways providing upstream signals that culminate in NLRP3 inflammasome complex assembly. A better understanding of the molecular mechanisms underlying NLRP3 inflammasome activation will provide opportunities for the development of methods for the prevention and treatment of NLRP3 inflammasome-related diseases.
Collapse
|