1
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
2
|
Xuan J, Deng C, Lu H, He Y, Zhang J, Zeng X, Sun Y, Chen S, Liu Y. Serum lipid profile in systemic lupus erythematosus. Front Immunol 2025; 15:1503434. [PMID: 39877363 PMCID: PMC11772162 DOI: 10.3389/fimmu.2024.1503434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Background Dyslipidemia presents in various autoimmune diseases, and the serum lipid profile in systemic lupus erythematosus (SLE) has not yet been clearly defined. This study aims to evaluate the level of serum lipids in patients with SLE. Methods A case-control study evaluated four conventional sera lipids-total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL)-in patients with SLE compared to healthy controls (HCs). Correlations between serum lipids and clinical characteristics were analyzed in patients with SLE. A systematic review and meta-analysis were conducted to assess the epidemiology of lipid profiles in patients with SLE, and a random-effects meta-analysis was performed for data synthesis. Results TC and TG were elevated significantly, and HDL decreased in patients with SLE compared to HCs. Elevated lipids were associated with progressive disease activity. TC, TG, and HDL were elevated in patients with SLE and were associated with decreased IgG, increased 24-h proteinuria, white blood cells (WBCs), and neutrophils. Decreased HDL and increased TG were associated with an increase in the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Patients with SLE who took glucocorticoids (GCs) may have experienced increases in TC and TG, while those who took hydroxychloroquine (HCQ) may have experienced increases in TC and HDL. Eleven eligible studies including the present study on associations between serum lipids and SLE were reviewed by the meta-analysis. The results demonstrated elevated TC (MD = 0.85, 95% CI 0.82 to 0.89, p < 0.00001) and TG (MD = 0.96, 95% CI 0.94 to 0.99, p < 0.00001) levels in SLE, while HDL decreased (MD = -0.19, 95% CI -0.20 to -0.17, p < 0.00001). Conclusions Dyslipidemia is present in SLE. There was a significant association between SLE disease activity and TC, TG, and HDL. The exact pathogenesis of metabolic disorders in SLE needs to be further addressed.
Collapse
Affiliation(s)
- Jingxiu Xuan
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Chaoqiong Deng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huiqin Lu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Jimin Zhang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoli Zeng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Yuechi Sun
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| |
Collapse
|
3
|
Lin Z, Wang W, Jiang B, He J, Xu Y. Impact of systemic lupus erythematosus on cardiovascular morphologic and functional phenotypes: a Mendelian randomization analysis. Front Cardiovasc Med 2024; 11:1454645. [PMID: 39421156 PMCID: PMC11484247 DOI: 10.3389/fcvm.2024.1454645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Previous studies have established a correlation between systemic lupus erythematosus (SLE) and cardiovascular health, but the potential causal effects of SLE on heart function and structure remain poorly understood. Cardiovascular magnetic resonance imaging (CMR), a novel non-invasive technique, provides a unique assessment of cardiovascular structure and function, making it an essential tool for evaluating the risk of heart disease. In this study, we performed a Mendelian randomization analysis to determine the causal relationship between SLE and CMR traits. Methods Genetic variants independently linked to SLE were selected from a genome-wide association study (GWAS) containing 5,201 cases and 9,066 controls as instrumental variables. A set of 82 CMR traits was obtained from a recent GWAS, serving as preclinical indicators and providing preliminary insights into the morphology and function of the four cardiac chambers and two aortic segments. Primary analysis employed a two-sample Mendelian randomization study using the inverse-variance weighted method. Heterogeneity testing, sensitivity analyses, and instrumental variable strength assessments confirmed the robustness of the findings. Results SLE exhibited a correlation with increased stroke volume (βLVSV = 0.007, P = 0.045), regional peak circumferential strain (βEcc_AHA_9 = 0.013, P = 0.002; βEcc_AHA_12 = 0.009, P = 0.043; βEcc_AHA_14 = 0.013, P = 0.006), and global peak circumferential strain of the LV (βEcc_global = 0.010, P = 0.022), as well as decreased regional radial strain (βErr_AHA_11 = -0.010, P = 0.017). Conclusions This research presents evidence of a potential causal association between traits of SLE and alterations in cardiac function, guiding cardiac examinations and disease prevention in lupus patients.
Collapse
Affiliation(s)
- Zishan Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenfeng Wang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bingjing Jiang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jian He
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Akhil A, Bansal R, Ankita A, Kaur H, Monika M, Bhatnagar A. Disturbance in communication between mitochondrial redox processes and the AMPK/PGC-1α/SIRT-1 axis influences diverse organ symptoms in lupus-affected mice. Mitochondrion 2024; 78:101930. [PMID: 39025320 DOI: 10.1016/j.mito.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Mechanisms behind multiple organ involvement in lupus, is still an enigma for researchers. Mitochondrial dysfunction and oxidative stress are known to be important aspects in lupus etiology however, their role in lupus organ manifestation is yet to be understood. The present study is based on the understanding of interplay between AMPK/PGC-1α/SIRT-1 axis, mitochondrial complexes, and anti-oxidants levels, which might be involved in lupus organ pathology. METHODOLOGY Pristane-induced Balb/c mice lupus model (PIL) was utilised and evaluation of anti-oxidants, mitochondrial complexes, pro-inflammatory cytokines levels, biochemical parameters were performed by standard procedures. Tissues were studied by haematoxylin and eosin staining followed by immunohistochemistry. The AMPK/PGC-1α/SIRT-1 expression was analysed by using qPCR and flowcytometry. Analysis of reactive oxygen species (ROS) among WBCs was performed by using various dyes (DCFDA, Mitosox, JC-1) on flowcytometry. RESULT Significant presence of immune complexes (Tissue sections), ANA (Serum), and pro-inflammatory cytokines (plasma), diminished anti-oxidants and altered biochemical parameters depict the altered pathology in PIL which was accompanied by dysregulated mitochondrial complex activity. Differential expression of the AMPK/PGC-1α/SIRT-1 axis was detected in tissue and correlation with mitochondrial and antioxidant activity emerged as negative in PIL group while positive in controls. Close association was observed between ROS, mitochondrial membrane potential, and AMPK/PGC-1α/SIRT-1 axis in WBCs. CONCLUSION This study concludes that mitochondria play a dual role in lupus organ pathology, contributing to organ damage while also potentially protecting against damage through the regulation of interactions between antioxidants and the AMPK axis expression.
Collapse
Affiliation(s)
- Akhil Akhil
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Rohit Bansal
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Ankita Ankita
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Harsimran Kaur
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Monika Monika
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India
| | - Archana Bhatnagar
- Department of Biochemistry, BMS-Block II, South Campus, Panjab University, Chandigarh 160014 India.
| |
Collapse
|
5
|
Gao ZX, He T, Zhang P, Hu X, Ge M, Xu YQ, Wang P, Pan HF. Epigenetic regulation of immune cells in systemic lupus erythematosus: insight from chromatin accessibility. Expert Opin Ther Targets 2024; 28:637-649. [PMID: 38943564 DOI: 10.1080/14728222.2024.2375372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Systemic Lupus Erythematosus (SLE) is a multi-dimensional autoimmune disease involving numerous tissues throughout the body. The chromatin accessibility landscapes in immune cells play a pivotal role in governing their activation, function, and differentiation. Aberrant modulation of chromatin accessibility in immune cells is intimately associated with the onset and progression of SLE. AREAS COVERED In this review, we described the chromatin accessibility landscapes in immune cells, summarized the recent evidence of chromatin accessibility related to the pathogenesis of SLE, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. EXPERT OPINION Dynamic changes in chromatin accessibility are intimately related to the pathogenesis of SLE and have emerged as a new direction for exploring its epigenetic mechanisms. The differently accessible chromatin regions in immune cells often contain binding sites for transcription factors (TFs) and cis-regulatory elements such as enhancers and promoters, which may be potential therapeutic targets for SLE. Larger scale cohort studies and integrating epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.
Collapse
Affiliation(s)
- Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiao Hu
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Wang
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
6
|
Zhao L, Tang S, Chen F, Ren X, Han X, Zhou X. Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis. Mol Med 2024; 30:96. [PMID: 38914953 PMCID: PMC11197188 DOI: 10.1186/s10020-024-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Lupus nephritis (LN) is a severe and common manifestation of systemic lupus erythematosus (SLE) that is frequently identified with a poor prognosis. Macrophages play an important role in its pathogenesis. Different macrophage subtypes have different effects on lupus-affected kidneys. Based on their origin, macrophages can be divided into monocyte-derived macrophages (MoMacs) and tissue-resident macrophages (TrMacs). During nephritis, TrMacs develop a hybrid pro-inflammatory and anti-inflammatory functional phenotype, as they do not secrete arginase or nitric oxide (NO) when stimulated by cytokines. The infiltration of these mixed-phenotype macrophages is related to the continuous damage caused by immune complexes and exposure to circulating inflammatory mediators, which is an indication of the failure to resolve inflammation. On the other hand, MoMacs differentiate into M1 or M2 cells under cytokine stimulation. M1 macrophages are pro-inflammatory and secrete pro-inflammatory cytokines, while the M2 main phenotype is essentially anti-inflammatory and promotes tissue repair. Conversely, MoMacs undergo differentiation into M1 or M2 cells in response to cytokine stimulation. M1 macrophages are considered pro-inflammatory cells and secrete pro-inflammatory mediators, whereas the M2 main phenotype is primarily anti-inflammatory and promotes tissue repair. Moreover, based on cytokine expression, M2 macrophages can be further divided into M2a, M2b, and M2c phenotypes. M2a and M2c have anti-inflammatory effects and participate in tissue repair, while M2b cells have immunoregulatory and pro-inflammatory properties. Further, memory macrophages also have a role in the advancement of LN. Studies have demonstrated that the polarization of macrophages is controlled by multiple metabolic pathways, such as glycolysis, the pentose phosphate pathway, fatty acid oxidation, sphingolipid metabolism, the tricarboxylic acid cycle, and arginine metabolism. The changes in these metabolic pathways can be regulated by substances such as fish oil, polyenylphosphatidylcholine, taurine, fumaric acid, metformin, and salbutamol, which inhibit M1 polarization of macrophages and promote M2 polarization, thereby alleviating LN.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Fahui Chen
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shuangta East Street No. 29, Yingze District, Taiyuan, Shanxi, 030012, China.
| |
Collapse
|
7
|
Li Y, Sun T, Chen J, Liu X, Fu R, Xue F, Liu W, Ju M, Dai X, Li H, Wang W, Chi Y, Li T, Shao S, Yang R, Chen Y, Zhang L. Metabolomics profile and machine learning prediction of treatment responses in immune thrombocytopenia: A prospective cohort study. Br J Haematol 2024; 204:2405-2417. [PMID: 38438130 DOI: 10.1111/bjh.19391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by antibody-mediated platelet destruction and impaired platelet production. The mechanisms underlying ITP and biomarkers predicting the response of drug treatments are elusive. We performed a metabolomic profiling of bone marrow biopsy samples collected from ITP patients admission in a prospective study of the National Longitudinal Cohort of Hematological Diseases. Machine learning algorithms were conducted to discover novel biomarkers to predict ITP patient treatment responses. From the bone marrow biopsies of 91 ITP patients, we quantified a total of 4494 metabolites, including 1456 metabolites in the positive mode and 3038 metabolites in the negative mode. Metabolic patterns varied significantly between groups of newly diagnosed and chronic ITP, with a total of 876 differential metabolites involved in 181 unique metabolic pathways. Enrichment factors and p-values revealed the top metabolically enriched pathways to be sphingolipid metabolism, the sphingolipid signalling pathway, ubiquinone and other terpenoid-quinone biosynthesis, thiamine metabolism, tryptophan metabolism and cofactors biosynthesis, the phospholipase D signalling pathway and the phosphatidylinositol signalling system. Based on patient responses to five treatment options, we screened several metabolites using the Boruta algorithm and ranked their importance using the random forest algorithm. Lipids and their metabolism, including long-chain fatty acids, oxidized lipids, glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine biosynthesis, helped differentiate drug treatment responses. In conclusion, this study revealed metabolic alterations associated with ITP in bone marrow supernatants and a potential biomarker predicting the response to ITP.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuai Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Fernandez Requena B, Gonzalez-Riano C, Barbas C. Addressing the untargeted lipidomics challenge in urine samples: Comparative study of extraction methods by UHPLC-ESI-QTOF-MS. Anal Chim Acta 2024; 1299:342433. [PMID: 38499427 DOI: 10.1016/j.aca.2024.342433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Urine analysis has remained a fundamental and widely used method in clinical diagnostics for over a century. With its minimal invasive nature and comprehensive range of analytes, urine has established itself as a clinical diagnostic tool for various disorders, including renal, urological, metabolic, and endocrine diseases. Furthermore, urine's unique attributes make it an attractive matrix for biomarker discovery, as well as in assessing the metabolic and physiological states of patients and healthy individuals alike. However, limitations in our knowledge of average values and sources of urinary lipids decrease the wider clinical application of urinary lipidomics. In this context, untargeted lipidomics analysis relies heavily on the extraction and analysis of lipids in biological samples. Nevertheless, this type of analysis presents challenges in lipid identification due to the diverse nature of lipids. Therefore, proper sample treatment before analysis is crucial to obtain robust and reproducible lipidomic profiles. To address this gap, we conducted a comparative study of a urine pool sample collected from twenty healthy volunteers using four different lipid extraction methods: one biphasic and three monophasic protocols. The extracted lipids were then analyzed using UHPLC-MS and MS/MS, and the semi-quantification of all the accurately annotated lipid species was performed for each extraction method.
Collapse
Affiliation(s)
- Belen Fernandez Requena
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España.
| |
Collapse
|
9
|
Holtkamp HU, Aguergaray C, Prangnell K, Pook C, Amirapu S, Grey A, Simpson C, Nieuwoudt M, Jarrett P. Raman spectroscopy and mass spectrometry identifies a unique group of epidermal lipids in active discoid lupus erythematosus. Sci Rep 2023; 13:16452. [PMID: 37777584 PMCID: PMC10542761 DOI: 10.1038/s41598-023-43331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Discoid lupus erythematosus (DLE) is the most common form of cutaneous lupus1. It can cause permanent scarring. The pathophysiology of is not fully understood. Plasmacytoid dendritic cells are found in close association with apoptotic keratinocytes inferring close cellular signalling. Matrix Associated Laser Desorption Ionisation (MALDI) combined with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) is an exquisitely sensitive combination to examine disease processes at the cellular and molecular level. Active areas of discoid lupus erythematosus were compared with normal perilesional skin using MALDI combined with FT-ICR-MS. A unique set of biomarkers, including epidermal lipids is identified in active discoid lupus. These were assigned as sphingomyelins, phospholipids and ceramides. Additionally, increased levels of proteins from the keratin, and small proline rich family, and aromatic amino acids (tryptophan, phenylalanine, and tyrosine) in the epidermis are observed. These techniques, applied to punch biopsies of the skin, have shown a distinctive lipid profile of active discoid lupus. This profile may indicate specific lipid signalling pathways. Lipid rich microdomains (known as lipid rafts) are involved in cell signalling and lipid abnormalities have been described with systemic lupus erythematosus which correlate with disease activity.
Collapse
Affiliation(s)
- Hannah U Holtkamp
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| | - Claude Aguergaray
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
- Department of Physics, The University of Auckland, Auckland, New Zealand
| | - Kalita Prangnell
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Christopher Pook
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Satya Amirapu
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Angus Grey
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Cather Simpson
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Michel Nieuwoudt
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Paul Jarrett
- Department of Dermatology, Middlemore Hospital, Auckland, New Zealand.
- Department of Medicine, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
11
|
Wang W, Wang YH, Yang K, Ye X, Wang X, Wei JCC. Traditional Chinese medicine use is associated with lower risk of pneumonia in patients with systemic lupus erythematosus: a population-based retrospective cohort study. Front Pharmacol 2023; 14:1185809. [PMID: 37324478 PMCID: PMC10267408 DOI: 10.3389/fphar.2023.1185809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives: To investigate the association between traditional Chinese medicine (TCM) therapy and the risk of pneumonia in patients with systemic lupus erythematosus (SLE). Methods: This population-based control study analyzed the data retrieved from the National Health Insurance Research database in Taiwan. From a cohort of 2 million records of the 2000-2018 period, 9,714 newly diagnosed patients with SLE were initially included. 532 patients with pneumonia and 532 patients without pneumonia were matched 1:1 based on age, sex, and year of SLE diagnosis using propensity score matching. The use of TCM therapy was considered from the SLE diagnosis date to the index date and the cumulative days of TCM therapy were used to calculate the dose effect. Conditional logistic regression was used to investigate the risk of pneumonia infection. Furthermore, to explore the severity of pneumonia in SLE, sensitivity analyses were performed after stratification using the parameters of emergency room visit, admission time, and antibiotic use. Results: TCM therapy for >60 days could significantly reduce the risk of pneumonia in patients with SLE (95% CI = 0.46-0.91; p = 0.012). Stratified analysis showed that TCM use also reduced the risk of pneumonia in younger and female patients with SLE by 34% and 35%, respectively. TCM for >60 days significantly reduced the risk of pneumonia in the follow-up periods of >2, >3, >7, and >8 years. In addition, the exposure of TCM for >60 days reduced the risk of pneumonia in patients with SLE who were treated with antibiotics for moderate or severe pneumonia. Finally, the study found that using formulae to tonify the kidney for more than 90 days and formulae to activate blood circulation for less than 30 days could significantly reduce the risk of pneumonia infection in patients with SLE. Conclusion: TCM use is associated with a lower risk of pneumonia among patients with SLE.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kepeng Yang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangsheng Ye
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Zhang Z, Huang X, Du X, Wang Z, Wang Y, Xu M, Chen X, Yao Q, Yan L, Zhang Y. Plasma C18:0-ceramide is a novel potential biomarker for disease severity in myasthenia gravis. J Neurochem 2023; 165:907-919. [PMID: 37158660 DOI: 10.1111/jnc.15837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disorder characterized by fluctuation of fatigue and weakness of muscle. Due to the heterogeneity of the course of MG, available biomarkers for prognostic prediction are urgently needed. Ceramide (Cer) was reported to participate in immune regulation and many autoimmune diseases, but its effects on MG remain undefined. This study aimed to investigate the ceramides expression levels in MG patients and their potential as novel biomarkers of disease severity. Levels of plasma ceramides were determined by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Severity of disease was assessed by quantitative MG scores (QMGs), MG-specific activities of daily living scale (MG-ADLs) and 15-item MG quality of Life (MG-QOL15). The concentrations of serum interleukin-1β (IL-1β), IL-6, IL-17A, and IL-21 were determined by enzyme-linked immunosorbent assay (ELISA), and the proportions of circulating memory B cells and plasmablasts were detected by flow-cytometry assay. Four plasma ceramides levels we studied were detected higher in MG patients. And three of them (C16:0-Cer, C18:0-Cer, and C24:0-Cer) were positively associated with QMGs. In addition, receiver operating characteristic (ROC) analysis suggested that plasma ceramides have a good ability of differentiating MG from HCs. Importantly, only C18:0-Cer was shown to be positively associated with the concentration of serum IL and circulating memory B cells, and the decrease in plasma C18:0-Cer paralleled the clinical improvement of patients with MG. All together, our data suggest that ceramides may play an important role in the immunopathological mechanism of MG, and C18:0-Cer has the potential to be a novel biomarker for disease severity in MG.
Collapse
Affiliation(s)
- Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhouyi Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yingying Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingming Xu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Yao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lisha Yan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
He J, Tang D, Liu D, Hong X, Ma C, Zheng F, Zeng Z, Chen Y, Du J, Kang L, Yin L, Lu Q, Dai Y. Serum proteome and metabolome uncover novel biomarkers for the assessment of disease activity and diagnosing of systemic lupus erythematosus. Clin Immunol 2023; 251:109330. [PMID: 37075949 DOI: 10.1016/j.clim.2023.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting thousands of people. There are still no effective biomarkers for SLE diagnosis and disease activity assessment. We performed proteomics and metabolomics analyses of serum from 121 SLE patients and 106 healthy individuals, and identified 90 proteins and 76 metabolites significantly changed. Several apolipoproteins and the metabolite arachidonic acid were significantly associated with disease activity. Apolipoprotein A-IV (APOA4), LysoPC(16:0), punicic acid and stearidonic acid were correlated with renal function. Random forest model using the significantly changed molecules identified 3 proteins including ATRN, THBS1 and SERPINC1, and 5 metabolites including cholesterol, palmitoleoylethanolamide, octadecanamide, palmitamide and linoleoylethanolamide, as potential biomarkers for SLE diagnosis. Those biomarkers were further validated in an independent cohort with high accuracy (AUC = 0.862 and 0.898 for protein and metabolite biomarkers respectively). This unbiased screening has led to the discovery of novel molecules for SLE disease activity assessment and SLE classification.
Collapse
Affiliation(s)
- Jingquan He
- Department of Radiotherapy, Shenzhen Traditional Chinese Medicine Hospital, The Forth Clinical Medical College, Guangzhou Traditional Chinese Medicine University, Shenzhen 518033, China
| | - Donger Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Dongzhou Liu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Xiaoping Hong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Chiyu Ma
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Fengping Zheng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Yumei Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jie Du
- Biotree Metabolomics Research Center, Biotree, Jiading District, Shanghai 201800, China
| | - Lin Kang
- Biotree Metabolomics Research Center, Biotree, Jiading District, Shanghai 201800, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China.
| |
Collapse
|
14
|
Alexandropoulou I, Grammatikopoulou MG, Gkouskou KK, Pritsa AA, Vassilakou T, Rigopoulou E, Lindqvist HM, Bogdanos DP. Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients 2023; 15:nu15010229. [PMID: 36615886 PMCID: PMC9824311 DOI: 10.3390/nu15010229] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Autoimmune rheumatic diseases (AIRDs) constitute a set of connective tissue disorders and dysfunctions with akin clinical manifestations and autoantibody responses. AIRD treatment is based on a comprehensive approach, with the primary aim being achieving and attaining disease remission, through the control of inflammation. AIRD therapies have a low target specificity, and this usually propels metabolic disturbances, dyslipidemias and increased cardiovascular risk. Ceramides are implicated in inflammation through several different pathways, many of which sometimes intersect. They serve as signaling molecules for apoptosis, altering immune response and driving endothelial dysfunction and as regulators in the production of other molecules, including sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P). With lipid metabolism being severely altered in AIRD pathology, several studies show that the concentration and variety of ceramides in human tissues is altered in patients with rheumatic diseases compared to controls. As a result, many in vitro and some in vivo (animal) studies research the potential use of ceramides as therapeutic targets in rheumatoid arthritis (RA), ankylosing spondylitis, systemic lupus erythematosus, fibromyalgia syndrome, primary Sjögren's syndrome, systemic sclerosis, myositis, systemic vasculitis and psoriatic arthritis. Furthermore, the majority of ceramide synthesis is diet-centric and, as a result, dietary interventions may alter ceramide concentrations in the blood and affect health. Subsequently, more recently several clinical trials evaluated the possibility of distinct dietary patterns and nutrients to act as anti-ceramide regimes in humans. With nutrition being an important component of AIRD-related complications, the present review details the evidence regarding ceramide levels in patients with AIRDs, the results of anti-ceramide treatments and discusses the possibility of using medical nutritional therapy as a complementary anti-ceramide treatment in rheumatic disease.
Collapse
Affiliation(s)
- Ioanna Alexandropoulou
- Department of Nutritional Sciences & Dietetics, Faculty of Health Sciences, International Hellenic University, Alexander Campus, GR-57400 Thessaloniki, Greece
| | - Maria G. Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Kalliopi K. Gkouskou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, GR-11527 Athens, Greece
| | - Agathi A. Pritsa
- Department of Nutritional Sciences & Dietetics, Faculty of Health Sciences, International Hellenic University, Alexander Campus, GR-57400 Thessaloniki, Greece
| | - Tonia Vassilakou
- Department of Public Health Policy, School of Public Health, University of West Attica, GR-11521 Athens, Greece
| | - Eirini Rigopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Biopolis, GR-41222 Larissa, Greece
| | - Helen M. Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P.O. Box 115, 40530 Gothenburg, Sweden
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
- Correspondence:
| |
Collapse
|
15
|
Liu Y, Yu X, Zhang W, Zhang X, Wang M, Ji F. Mechanistic insight into premature atherosclerosis and cardiovascular complications in systemic lupus erythematosus. J Autoimmun 2022; 132:102863. [PMID: 35853760 DOI: 10.1016/j.jaut.2022.102863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is associated with a significant risk of cardiovascular disease (CVD), which substantially increases disease mortality and morbidity. The overall mechanisms associated with the development of premature atherosclerosis and CVD in SLE remain unclear, but has been considered as a result of an intricate interplay between the profound immune dysregulation and traditional CVD risk factors. Aberrant systemic inflammation in SLE may lead to an abnormal lipid profile and dysfunction, which can further fuel the pro-atherosclerotic environment. The existence of a strong imbalance between endothelial damage and vascular repair/angiogenesis promotes vascular injury, which is the early step in the progression of atherosclerotic CVD. Profound innate and adaptive immune dysregulation, characterized by excessive type I interferon burden, aberrant macrophage, platelet and complements activation, neutrophil dysregulation and neutrophil extracellular traps formation, uncontrolled T cell activation, and excessive autoantibody production and immune complex formation, have been proposed to promote accelerated CVD in SLE. While designing targeted therapies to correct the dysregulated immune activation may be beneficial in the treatment of SLE-related CVD, much additional work is needed to determine how to translate these findings into clinical practice. Additionally, a number of biomarkers display diagnostic potentials in improving CVD risk stratification in SLE, further prospective studies will help understand which biomarker(s) will be the most impactful one(s) in assessing SLE-linked CVD. Continued efforts to identify novel mechanisms and to establish criteria for assessing CVD risk as well as predicting CVD progression are in great need to improve CVD outcomes in SLE.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Wenduo Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Fusui Ji
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
16
|
Zhong Y, Zhang W, Hong X, Zeng Z, Chen Y, Liao S, Cai W, Xu Y, Wang G, Liu D, Tang D, Dai Y. Screening Biomarkers for Systemic Lupus Erythematosus Based on Machine Learning and Exploring Their Expression Correlations With the Ratios of Various Immune Cells. Front Immunol 2022; 13:873787. [PMID: 35757721 PMCID: PMC9226453 DOI: 10.3389/fimmu.2022.873787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune illness caused by a malfunctioning immunomodulatory system. China has the second highest prevalence of SLE in the world, from 0.03% to 0.07%. SLE is diagnosed using a combination of immunological markers, clinical symptoms, and even invasive biopsy. As a result, genetic diagnostic biomarkers for SLE diagnosis are desperately needed. Method From the Gene Expression Omnibus (GEO) database, we downloaded three array data sets of SLE patients' and healthy people's peripheral blood mononuclear cells (PBMC) (GSE65391, GSE121239 and GSE61635) as the discovery metadata (nSLE = 1315, nnormal = 122), and pooled four data sets (GSE4588, GSE50772, GSE99967, and GSE24706) as the validate data set (nSLE = 146, nnormal = 76). We screened the differentially expressed genes (DEGs) between the SLE and control samples, and employed the least absolute shrinkage and selection operator (LASSO) regression, and support vector machine recursive feature elimination (SVM-RFE) analyze to discover possible diagnostic biomarkers. The candidate markers' diagnostic efficacy was assessed using the receiver operating characteristic (ROC) curve. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) was utilized to confirm the expression of the putative biomarkers using our own Chinese cohort (nSLE = 13, nnormal = 10). Finally, the proportion of 22 immune cells in SLE patients was determined using the CIBERSORT algorithm, and the correlations between the biomarkers' expression and immune cell ratios were also investigated. Results We obtained a total of 284 DEGs and uncovered that they were largely involved in several immune relevant pathways, such as type І interferon signaling pathway, defense response to virus, and inflammatory response. Following that, six candidate diagnostic biomarkers for SLE were selected, namely ABCB1, EIF2AK2, HERC6, ID3, IFI27, and PLSCR1, whose expression levels were validated by the discovery and validation cohort data sets. As a signature, the area under curve (AUC) values of these six genes reached to 0.96 and 0.913, respectively, in the discovery and validation data sets. After that, we checked to see if the expression of ABCB1, IFI27, and PLSCR1 in our own Chinese cohort matched that of the discovery and validation sets. Subsequently, we revealed the potentially disturbed immune cell types in SLE patients using the CIBERSORT analysis, and uncovered the most relevant immune cells with the expression of ABCB1, IFI27, and PLSCR1. Conclusion Our study identified ABCB1, IFI27, and PLSCR1 as potential diagnostic genes for Chinese SLE patients, and uncovered their most relevant immune cells. The findings in this paper provide possible biomarkers for diagnosing Chinese SLE patients.
Collapse
Affiliation(s)
- Yafang Zhong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wei Zhang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaoping Hong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yumei Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Shengyou Liao
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Xu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Gang Wang
- Department of Nephrology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen Guangming New District Hospital, Shenzhen, China
| | - Dongzhou Liu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
17
|
Huang X, Luu LDW, Jia N, Zhu J, Fu J, Xiao F, Liu C, Li S, Shu G, Hou J, Kang M, Zhang D, Xu Y, Wang Y, Cui X, Lai J, Li J, Tai J. Multi-Platform Omics Analysis Reveals Molecular Signatures for Pathogenesis and Activity of Systemic Lupus Erythematosus. Front Immunol 2022; 13:833699. [PMID: 35514958 PMCID: PMC9063006 DOI: 10.3389/fimmu.2022.833699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with heterogeneous clinical manifestations and the pathogenesis of SLE is still unclear. Various omics results have been reported for SLE, but the molecular hallmarks of SLE, especially in patients with different disease activity, using an integrated multi-omics approach have not been fully investigated. Here, we collected blood samples from 10 healthy controls (HCs) and 40 SLE patients with different clinical activity including inactive (IA), low activity (LA), and high activity (HA). Using an integrative analysis of proteomic, metabolomic and lipidomic profiles, we report the multi-omics landscape for SLE. The molecular changes suggest that both the complement system and the inflammatory response were activated in SLEs and were associated with disease activity. Additionally, activation of the immunoglobulin mediated immune response were observed in the LA stage of the disease, however this immune response was suppressed slightly in the HA stage. Finally, an imbalance in lipid metabolism, especially in sphingolipid metabolism, accompanied with dysregulated apolipoproteins were observed to contribute to the disease activity of SLE. The multi-omics data presented in this study and the characterization of peripheral blood from SLE patients may thus help provide important clues regarding the pathogenesis of SLE.
Collapse
Affiliation(s)
- Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nan Jia
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jia Zhu
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Chunyan Liu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Shengnan Li
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Gaixiu Shu
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Jun Hou
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Min Kang
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Dan Zhang
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Yingjie Xu
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Xiaodai Cui
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jianming Lai
- Division of Paediatric Rheumatology, Children's Hospital Affiliated Capital Institute of Paediatrics, Beijing, China
| | - Jieqiong Li
- Department of Respiratory Disease, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
18
|
Owen KA, Grammer AC, Lipsky PE. Deconvoluting the heterogeneity of SLE: The contribution of ancestry. J Allergy Clin Immunol 2021; 149:12-23. [PMID: 34857396 DOI: 10.1016/j.jaci.2021.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disorder with a prominent genetic component. Evidence has shown that individuals of non-European ancestry experience the disease more severely, exhibiting an increased incidence of cardiovascular disease, renal involvement, and tissue damage compared with European ancestry populations. Furthermore, there seems to be variability in the response of individuals within different ancestral groups to standard medications, including cyclophosphamide, mycophenolate, rituximab, and belimumab. Although the widespread application of candidate gene, Immunochip, and genome-wide association studies has contributed to our understanding of the link between genetic variation (typically single nucleotide polymorphisms) and SLE, despite decades of research it is still unclear why ancestry remains a key determinant of poorer outcome in non-European-ancestry patients with SLE. Here, we will discuss the impact of ancestry on SLE disease burden in patients from diverse backgrounds and highlight how research efforts using novel bioinformatic and pathway-based approaches have begun to disentangle the complex genetic architecture linking ancestry to SLE susceptibility. Finally, we will illustrate how genomic and gene expression analyses can be combined to help identify novel molecular pathways and drug candidates that might uniquely impact SLE among different ancestral populations.
Collapse
|
19
|
Tanase DM, Gosav EM, Petrov D, Jucan AE, Lacatusu CM, Floria M, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Involvement of Ceramides in Non-Alcoholic Fatty Liver Disease (NAFLD) Atherosclerosis (ATS) Development: Mechanisms and Therapeutic Targets. Diagnostics (Basel) 2021; 11:2053. [PMID: 34829402 PMCID: PMC8621166 DOI: 10.3390/diagnostics11112053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (ATS) are worldwide known diseases with increased incidence and prevalence. These two are driven and are interconnected by multiple oxidative and metabolic functions such as lipotoxicity. A gamut of evidence suggests that sphingolipids (SL), such as ceramides, account for much of the tissue damage. Although in humans they are proving to be accurate biomarkers of adverse cardiovascular disease outcomes and NAFLD progression, in rodents, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of metabolic driven diseases such as diabetes, ATS, and hepatic steatosis. In this narrative review, we discuss the pathways which generate the ceramide synthesis, the potential use of circulating ceramides as novel biomarkers in the development and progression of ATS and related diseases, and their potential use as therapeutic targets in NAFDL-ATS development which can further provide new clues in this field.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Daniela Petrov
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alina Ecaterina Jucan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
20
|
Sialoglyco-Conjugate Abnormalities, IL-6 Trans-Signaling and Anti-Ganglioside Immune Response-Potential Interferences in Lupus Nephritis Pathogenesis. Diagnostics (Basel) 2021; 11:diagnostics11061129. [PMID: 34205600 PMCID: PMC8235272 DOI: 10.3390/diagnostics11061129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
We have investigated glycoconjugates sialization profile, endogen synthesis rate of antiganglioside antibodies (AGA), IL-6 signaling pathways correlated with activity disease in systemic lupus erythematous (SLE) and lupus nephritis (LN). Material and methods. A case-control study was developed and included 109 patients with SLE with or without renal impairment, 32 patients with IgA nephropathy and 60 healthy volunteers, clinically and paraclinically monitored. The following parameters were evaluated in volunteers serum: total sialic acid (TSA), orosomucoids, lipid bound sialic acid (LSA), interleukin-6 (IL-6), soluble factors IL-6R, gp130, anti –GM1, -GM2, -GM3, -GD1a, -GD1b, -GT1b, -GQ1b antigangliosides antibodies of IgG and IgM type. Results. Experimental data analysis showed: increase in synthesis rhythm of sialoglyco-conjugated in SLE (TSA increased in SLE and LN compared to control), accelerated catabolism of LSA in LN (LSA/TSA ratio was higher in SLE and LN than in control group), overexpression of IL-6 mediated trans-signaling (sIL-6R/sgp 130 ratio was subunit in SLE and IgA nephropathy and superunit in LN), large AGA profile synthesis of IgM isotype (over 45.1% in SLE and over 20.7% in LN). Conclusions. Hypersialization, accelerated glycosphingolipids degradation, IL-6 trans-signaling amplify and AGA pattern could represent essential mechanisms in LN pathogenesis.
Collapse
|