1
|
Lin X, Lin Q. Heat shock-pretreated bone marrow mesenchymal stem cells accelerate wound healing in a diabetic foot ulcer rat model. Diabet Med 2025; 42:e15507. [PMID: 39924779 DOI: 10.1111/dme.15507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are the severe chronic complications of diabetes, amputation is required when ulcers cause severe loss of tissue or evoke a life-threatening infection. Mesenchymal stem cells (MSCs) have shown a good effect in helping DFU healing, though the efficiency needs to be improved. This study aimed to investigate the effects of heat shock pretreatment on the improvement of the therapeutic effects of MSCs. METHODS Primary rat bone marrow MSCs (BMSCs) were isolated and stimulated with heat shock pretreatment and then tested on a DFU rat model. Alkaline phosphatase, Alizarin Red S, and Oil Red O were stained to check the osteogenic differentiation ability of heat shock-pretreated BMSCs. The effect of heat shock pretreatment on the inflammatory response of macrophages was studied with the lipopolysaccharides stimulation model on a mouse macrophage cell line RAW264.7. The impact of heat shock-pretreated BMSCs on dermal fibroblasts was also checked. Last, heat shock-pretreated BMSCs were tested on a DFU rat model. RESULTS Heat shock-pretreated BMSCs were characterized by the expression of CD105 and CD44. Heat shock pre-stimulation did not affect cell viability when cultured up to 96 h. Heat shock pre-stimulated BMSCs inhibited the inflammatory response by reducing the pro-inflammatory cytokine production (IL-1β, IL-6, and TNF-α) and enhancing the anti-inflammatory cytokine production (IL-10) (at least all p < 0.01), as well as increasing the ratio of M2 polarization macrophages to M1 polarization in vitro (p < 0.001). Heat shock pre-stimulated BMSCs enhanced the growth and migration of dermal fibroblasts in vitro (p < 0.001). Heat shock-BMSCs promoted the M2 polarization level of macrophages in wound tissues in a DFU rat model. CONCLUSION Heat shock pretreatment could enhance the therapeutic effect of BMSCs on wound healing in a DFU rat model.
Collapse
Affiliation(s)
- Xi Lin
- Department of Emergency Surgery, Center for Trauma Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Yakhshimurodov UR, Yamashita K, Miki K, Kawamura T, Saito S, Miyagawa S. A generalized protocol for the induction of M2-like macrophages from mouse and rat bone marrow mononuclear cells. Biol Methods Protoc 2025; 10:bpaf020. [PMID: 40177524 PMCID: PMC11964487 DOI: 10.1093/biomethods/bpaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Regardless of origin and localization, macrophages are the major immune cells that maintain homeostasis in both healthy and diseased states. However, there is no consensus on the phenotypes, functions and fates of macrophages. Existing studies clarify macrophage biology from different biomedical research perspectives, but the heterogeneity of induction methods hinders reproducibility and comparability. To address this problem, we validated a novel generalized in vitro protocol for the induction of M2-like macrophages from mice and rats bone marrow mononuclear cells. Our approach improves reliability and cross-species applicability, providing a valuable tool for macrophage research.
Collapse
Affiliation(s)
- Ulugbek R Yakhshimurodov
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Kizuku Yamashita
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Kenji Miki
- Premium Research Institute for Human Metaverse Medicine (PRIMe), Osaka University, Suita, 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Shunsuke Saito
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
3
|
Carter-Cusack D, Huang S, Keshvari S, Patkar O, Sehgal A, Allavena R, Byrne RAJ, Morgan BP, Bush SJ, Summers KM, Irvine KM, Hume DA. Wild-type bone marrow cells repopulate tissue resident macrophages and reverse the impacts of homozygous CSF1R mutation. PLoS Genet 2025; 21:e1011525. [PMID: 39869647 PMCID: PMC11785368 DOI: 10.1371/journal.pgen.1011525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/31/2025] [Accepted: 12/04/2024] [Indexed: 01/29/2025] Open
Abstract
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival. To dissect the phenotype and function of macrophages in postnatal development, we generated transcriptomic profiles of all major organs of wild-type and Csf1rko rats at weaning and in selected organs following rescue by BMT. The transcriptomic profiles revealed subtle effects of macrophage deficiency on development of all major organs. Network analysis revealed a common signature of CSF1R-dependent resident tissue macrophages that includes the components of complement C1Q (C1qa/b/c genes). Circulating C1Q was almost undetectable in Csf1rko rats and rapidly restored to normal levels following BMT. Tissue-specific macrophage signatures were also identified, notably including sinus macrophage populations in the lymph nodes. Their loss in Csf1rko rats was confirmed by immunohistochemical localisation of CD209B (SIGNR1). By 6-12 weeks, Csf1rko rats succumb to emphysema-like pathology associated with the selective loss of interstitial macrophages and granulocytosis. This pathology was reversed by BMT. Along with physiological rescue, BMT precisely regenerated the abundance and expression profiles of resident macrophages. The exception was the brain, where BM-derived microglia-like cells had a distinct expression profile compared to resident microglia. In addition, the transferred BM failed to restore blood monocyte or CSF1R-positive bone marrow progenitors. These studies provide a model for the pathology and treatment of CSF1R mutations in humans and the innate immune deficiency associated with prematurity.
Collapse
Affiliation(s)
- Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Stephen Huang
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Omkar Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Robert A. J. Byrne
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stephen J. Bush
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Katharine M. Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
4
|
Isali I, McClellan P, Wong TR, Hijaz S, Fletcher DR, Liu G, Bonfield TL, Anderson JM, Hijaz A, Akkus O. Differential effects of macrophage subtype-specific cytokines on fibroblast proliferation and endothelial cell function in co-culture system. J Biomed Mater Res A 2025; 113:e37799. [PMID: 39295242 DOI: 10.1002/jbm.a.37799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Macrophages are involved in several critical activities associated with tissue repair and regeneration. Current approaches in regenerative medicine are focusing on leveraging the innate immune response to accelerate tissue regeneration and improve long-term healing outcomes. Of particular interest in this regard are the currently known, four main M2 macrophage subtypes: M2interleukin (IL)-4,IL-13, M2IC, M2IL-10, M2non-selective adenosine receptor agonists (NECA) (M2IL-4,IL-13 → M2NECA). In this study, rat bone marrow-derived macrophages (M0) were polarized to each of the four subtypes M2IL-4,IL-13 → M2NECA and cultured for 72 h in vitro. Luminex assay results highlighted increased production of tissue inhibitor of metalloproteinases-1 (TIMP-1) for M2IL-4,IL-13, higher amounts of transforming growth factor-beta 1 (TGF-β1) for M2IL-10, and elevated vascular endothelial growth factor A (VEGF-A) from M2NECA. Co-culture experiments performed with M2IL-10 macrophages and L929 fibroblasts highlighted the increased production of soluble collagen within the media as well as higher amounts of collagen in the extracellular matrix. Human umbilical vein endothelial cells (HUVECs) were co-cultured with M2NECA macrophages, which demonstrated an increase in intercellular adhesion molecule (ICAM) and platelet endothelial cell adhesion molecule (PECAM), as well as increased formation of endothelial tubes. The findings of this study emphasize a critical demand for further characterization and analyses of distinct M2 subtypes and careful selection of specific macrophage populations for regeneration of specific tissue types. The current, broad classification of "M2" may be sufficient in many general tissue engineering applications, but, as conditions are constantly in flux within the microenvironment in vivo, a higher degree of specificity and control over the initial M2 subtype could result in more consistent long-term outcomes where macrophages are utilized as part of an overall regenerative strategy.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R Wong
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sara Hijaz
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David R Fletcher
- Case Western Reserve University, Department of Genetics and Genome Sciences, Cleveland, Ohio, USA
| | - Guiming Liu
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
| | - Tracey L Bonfield
- Case Western Reserve University, Department of Genetics and Genome Sciences, Cleveland, Ohio, USA
| | - James M Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adonis Hijaz
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopedics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Banerjee A, Singh P, Sheikh PA, Kumar A, Koul V, Bhattacharyya J. Simultaneous regulation of AGE/RAGE signaling and MMP-9 expression by an immunomodulating hydrogel accelerates healing in diabetic wounds. BIOMATERIALS ADVANCES 2024; 163:213937. [PMID: 38968788 DOI: 10.1016/j.bioadv.2024.213937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE In chronic hyperglycemia, the advanced glycation end product (AGE) interacts with its receptor (RAGE) and contributes to impaired wound healing by inducing oxidative stress, generating dysfunctional macrophages, and prolonging the inflammatory response. Additionally, uncontrolled levels of proteases, including metallomatrix protease-9 (MMP-9), in the diabetic wound bed degrade the extracellular matrix (ECM) and biological cues that augment healing. A multifunctional antimicrobial hydrogel (Immuno-gel) containing RAGE and MMP-9 inhibitors can regulate the wound microenvironment and promote scar-free healing. RESULTS Immuno-gel was characterized and the wound healing efficacy was determined in vitro cell culture and in vivo diabetic Wistar rat wound model using ELISA, Western blot, and Immunofluorescence staining. The Immuno-gel exhibited a highly porous morphology with excellent in vitro cytocompatibility. AGE-stimulated macrophages treated with the Immuno-gel released higher levels of pro-healing cytokines in vitro. In the hydrogel-wound interface of diabetic Wistar rats, Immuno-gel treatment significantly reduced MMP-9 and NF-κB expression and enhanced pro-healing (M2) macrophage population and pro-healing cytokines. CONCLUSION Altogether, this study suggests that Immuno-gel simultaneously attenuates macrophage dysfunction through the inhibition of AGE/RAGE signaling and reduces MMP-9 overexpression, both of which favor scar-free healing. The combinatorial treatment with RAGE and MMP-9 inhibitors via Immuno-gel simultaneously modulates the diabetic wound microenvironment, making it a promising novel treatment to accelerate diabetic wound healing.
Collapse
Affiliation(s)
- Ahana Banerjee
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110029, India
| | - Prerna Singh
- Department of Biological sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India
| | - Parvaiz A Sheikh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok Kumar
- Department of Biological sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; Centre of Excellence for Orthopedics and Prosthetics, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India; Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110029, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110029, India.
| |
Collapse
|
6
|
Antounians L, Figueira RL, Kukreja B, Litvack ML, Zani-Ruttenstock E, Khalaj K, Montalva L, Doktor F, Obed M, Blundell M, Wu T, Chan C, Wagner R, Lacher M, Wilson MD, Post M, Kalish BT, Zani A. Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment. SCIENCE ADVANCES 2024; 10:eadn5405. [PMID: 39058789 PMCID: PMC11277482 DOI: 10.1126/sciadv.adn5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Bharti Kukreja
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Michael L. Litvack
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Taiyi Wu
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Richard Wagner
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5T 1P5, Canada
| | - Brian T. Kalish
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada
| |
Collapse
|
7
|
Huang S, Carter-Cusack D, Maxwell E, Patkar OL, Irvine KM, Hume DA. Genetic and Immunohistochemistry Tools to Visualize Rat Macrophages In Situ. Methods Mol Biol 2024; 2713:99-115. [PMID: 37639117 DOI: 10.1007/978-1-0716-3437-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages contribute to many aspects of development and homeostasis, innate and acquired immunity, immunopathology, and tissue repair. Every tissue contains an abundant resident macrophage population. Inflammatory stimuli promote the recruitment of monocytes from the blood and their adaptation promotes the removal of the stimulus and subsequent restoration of normal tissue architecture. Dysregulation of this response leads to chronic inflammation and tissue injury. In many tissues, their differentiation and survival are dependent on the colony stimulating factor 1 receptor (CSF1R) signalling axis, which is highly conserved across all vertebrates. Complete loss of either CSF1R or its cognate ligands, colony stimulating factor 1 (CSF1), and interleukin 34 (IL-34), results in the loss of many tissue-resident macrophage populations. This provides a useful paradigm to study macrophages.There are many tools used to visualize tissue-resident macrophages and their precursors, monocytes, in mice and humans. Particularly in mice there are genetic tools available to delete, enhance and manipulate monocytes and macrophages and their gene products to gain insight into phenotype and function. The laboratory rat has many advantages as an experimental model for the understanding of human disease, but the analytical resources are currently more limited than in mice. Here, we describe available genetic models, antibodies, and immunohistochemistry (IHC) methods that may be used to visualize tissue-resident macrophages in rats.
Collapse
Affiliation(s)
- Stephen Huang
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Dylan Carter-Cusack
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Emma Maxwell
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Omkar L Patkar
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Katharine M Irvine
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia.
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Sehgal A, Carter-Cusack D, Keshvari S, Patkar O, Huang S, Summers KM, Hume DA, Irvine KM. Intraperitoneal transfer of wild-type bone marrow repopulates tissue macrophages in the Csf1r knockout rat without contributing to monocytopoiesis. Eur J Immunol 2023; 53:e2250312. [PMID: 37059596 DOI: 10.1002/eji.202250312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
Homozygous null mutation of the Csf1r gene (Csf1rko) in rats leads to the loss of most tissue macrophage populations and pleiotropic impacts on postnatal growth and organ maturation, leading to early mortality. The phenotype can be reversed by intraperitoneal transfer of WT BM cells (BMT) at weaning. Here, we used a Csf1r-mApple transgenic reporter to track the fate of donor-derived cells. Following BMT into Csf1rko recipients, mApple+ve cells restored IBA1+ tissue macrophage populations in every tissue. However, monocytes, neutrophils, and B cells in the BM, blood, and lymphoid tissues remained of recipient (mApple-ve ) origin. An mApple+ve cell population expanded in the peritoneal cavity and invaded locally in the mesentery, fat pads, omentum, and diaphragm. One week after BMT, distal organs contained foci of mApple+ve , IBA1-ve immature progenitors that appeared to proliferate, migrate, and differentiate locally. We conclude that rat BM contains progenitor cells that are able to restore, replace, and maintain all tissue macrophage populations in a Csf1rko rat directly without contributing to the BM progenitor or blood monocyte populations.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Omkar Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Stephen Huang
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
9
|
Nakajima R, Takemura A, Ikeyama Y, Ito K. Lipopolysaccharide administration increases the susceptibility of mitochondrial permeability transition pore opening via altering adenine nucleotide translocase conformation in the mouse liver. J Toxicol Sci 2023; 48:65-73. [PMID: 36725022 DOI: 10.2131/jts.48.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, induces various biological reactions in vivo. Our previous study suggested that LPS administration disrupts respiratory chain complex activities, enhances reactive oxygen species production, especially in the liver mitochondria, and sensitizes mitochondrial permeability transition (MPT) pore opening in rats. However, it is unknown whether LPS-induced MPT pore opening in rats is similarly observed in mice and whether the mechanism is the same. LPS administration to mice increased not only cyclosporin A-sensitive swelling (MPT pore opening) susceptibility, but also induced cyclosporin A-insensitive basal swelling, unlike in rats. In addition, respiratory activity observed after adding ADP was significantly decreased. Based on these results, we further investigated the role of adenine nucleotide translocase (ANT). Carboxyatractyloside (CATR; an ANT inhibitor) treatment decreased respiratory activity after ADP was added in vehicle-treated mitochondria similarly to LPS administration. Additionally, CATR treatment increased MPT pore opening susceptibility in LPS-treated mitochondria compared to that of vehicle-treated mitochondria. Our study shows that ANT maintained a c-state conformation upon LPS administration, which increased MPT pore opening susceptibility in mice. These results suggest that LPS enhances MPT pore opening susceptibility across species, but the mechanism may differ between rat and mouse.
Collapse
Affiliation(s)
- Ryota Nakajima
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Akinori Takemura
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Yugo Ikeyama
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
10
|
Wierenga KA, Riemers FM, Westendorp B, Harkema JR, Pestka JJ. Single cell analysis of docosahexaenoic acid suppression of sequential LPS-induced proinflammatory and interferon-regulated gene expression in the macrophage. Front Immunol 2022; 13:993614. [PMID: 36405730 PMCID: PMC9669445 DOI: 10.3389/fimmu.2022.993614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Preclinical and clinical studies suggest that consumption of long chain omega-3 polyunsaturated fatty acids (PUFAs) reduces severity of chronic inflammatory and autoimmune diseases. While these ameliorative effects are conventionally associated with downregulated expression of proinflammatory cytokine and chemokine genes, our laboratory has recently identified Type 1 interferon (IFN1)-regulated gene expression to be another key target of omega-3 PUFAs. Here we used single cell RNA sequencing (scRNAseq) to gain new mechanistic perspectives on how the omega-3 PUFA docosahexaenoic acid (DHA) influences TLR4-driven proinflammatory and IFN1-regulated gene expression in a novel self-renewing murine fetal liver-derived macrophage (FLM) model. FLMs were cultured with 25 µM DHA or vehicle for 24 h, treated with modest concentration of LPS (20 ng/ml) for 1 and 4 h, and then subjected to scRNAseq using the 10X Chromium System. At 0 h (i.e., in the absence of LPS), DHA increased expression of genes associated with the NRF2 antioxidant response (e.g. Sqstm1, Hmox1, Chchd10) and metal homeostasis (e.g.Mt1, Mt2, Ftl1, Fth1), both of which are consistent with DHA-induced polarization of FLMs to a more anti-inflammatory phenotype. At 1 h post-LPS treatment, DHA inhibited LPS-induced cholesterol synthesis genes (e.g. Scd1, Scd2, Pmvk, Cyp51, Hmgcs1, and Fdps) which potentially could contribute to interference with TLR4-mediated inflammatory signaling. At 4 h post-LPS treatment, LPS-treated FLMs reflected a more robust inflammatory response including upregulation of proinflammatory cytokine (e.g. Il1a, Il1b, Tnf) and chemokine (e.g.Ccl2, Ccl3, Ccl4, Ccl7) genes as well as IFN1-regulated genes (e.g. Irf7, Mx1, Oasl1, Ifit1), many of which were suppressed by DHA. Using single-cell regulatory network inference and clustering (SCENIC) to identify gene expression networks, we found DHA modestly downregulated LPS-induced expression of NF-κB-target genes. Importantly, LPS induced a subset of FLMs simultaneously expressing NF-κB- and IRF7/STAT1/STAT2-target genes that were conspicuously absent in DHA-pretreated FLMs. Thus, DHA potently targeted both the NF-κB and the IFN1 responses. Altogether, scRNAseq generated a valuable dataset that provides new insights into multiple overlapping mechanisms by which DHA may transcriptionally or post-transcriptionally regulate LPS-induced proinflammatory and IFN1-driven responses in macrophages.
Collapse
Affiliation(s)
- Kathryn A. Wierenga
- Department of Biochemistry and Molecular Biology, Michigan State University, Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States
| | - Frank M. Riemers
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, Lansing, MI, United States
| |
Collapse
|
11
|
Summers KM, Bush SJ, Wu C, Hume DA. Generation and network analysis of an RNA-seq transcriptional atlas for the rat. NAR Genom Bioinform 2022; 4:lqac017. [PMID: 35265836 PMCID: PMC8900154 DOI: 10.1093/nargab/lqac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Abstract
The laboratory rat is an important model for biomedical research. To generate a comprehensive rat transcriptomic atlas, we curated and downloaded 7700 rat RNA-seq datasets from public repositories, downsampled them to a common depth and quantified expression. Data from 585 rat tissues and cells, averaged from each BioProject, can be visualized and queried at http://biogps.org/ratatlas. Gene co-expression network (GCN) analysis revealed clusters of transcripts that were tissue or cell type restricted and contained transcription factors implicated in lineage determination. Other clusters were enriched for transcripts associated with biological processes. Many of these clusters overlap with previous data from analysis of other species, while some (e.g. expressed specifically in immune cells, retina/pineal gland, pituitary and germ cells) are unique to these data. GCN analysis on large subsets of the data related specifically to liver, nervous system, kidney, musculoskeletal system and cardiovascular system enabled deconvolution of cell type-specific signatures. The approach is extensible and the dataset can be used as a point of reference from which to analyse the transcriptomes of cell types and tissues that have not yet been sampled. Sets of strictly co-expressed transcripts provide a resource for critical interpretation of single-cell RNA-seq data.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute—University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chunlei Wu
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David A Hume
- Mater Research Institute—University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
12
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
13
|
Jenkins SJ, Allen JE. The expanding world of tissue-resident macrophages. Eur J Immunol 2021; 51:1882-1896. [PMID: 34107057 DOI: 10.1002/eji.202048881] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022]
Abstract
The term 'macrophage' encompasses tissue cells that typically share dependence on the same transcriptional regulatory pathways (e.g. the transcription factor PU.1) and growth factors (e.g. CSF1/IL-34). They share a core set of functions that largely arise from a uniquely high phagocytic capacity manifest in their ability to clear dying cells, pathogens and scavenge damaged, toxic or modified host molecules. However, macrophages demonstrate a remarkable degree of tissue-specific functionality and have diverse origins that vary by tissue site and inflammation status. With our understanding of this diversity has come an appreciation of the longevity and replicative capacity of tissue-resident macrophages and thus the realisation that macrophages may persist through tissue perturbations and inflammatory events with important consequences for cell function. Here, we discuss our current understanding of the parameters that regulate macrophage survival and function, focusing on the relative importance of the tissue environment versus cell-intrinsic factors, such as origin, how long a cell has been resident within a tissue and prior history of activation. Thus, we reconsider the view of macrophages as wholly plastic cells and raise many unanswered questions about the relative importance of cell life-history versus environment in macrophage programming and function.
Collapse
Affiliation(s)
- Stephen J Jenkins
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology & Inflammation, Wellcome Centre for Cell Matrix Research, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar OL, Ferrari-Cestari M, Snell CE, Chen C, Stevenson A, Davis FM, Bush SJ, Pridans C, Summers KM, Pettit AR, Irvine KM, Hume DA. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet 2021; 17:e1009605. [PMID: 34081701 PMCID: PMC8205168 DOI: 10.1371/journal.pgen.1009605] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.
Collapse
Affiliation(s)
- Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Ngari Teakle
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Lena Batoon
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Omkar L. Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Cameron E. Snell
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Alex Stevenson
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Felicity M. Davis
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Clare Pridans
- Centre for Inflammation Research and Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Allison R. Pettit
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
| | - Katharine M. Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
- * E-mail: (KMI); (DAH)
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Qld, Australia
- * E-mail: (KMI); (DAH)
| |
Collapse
|
15
|
Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM. The Mononuclear Phagocyte System of the Rat. THE JOURNAL OF IMMUNOLOGY 2021; 206:2251-2263. [PMID: 33965905 DOI: 10.4049/jimmunol.2100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|