1
|
Rao C, Semrau S, Fossati V. Decoding microglial functions in Alzheimer's disease: insights from human models. Trends Immunol 2025; 46:310-323. [PMID: 40113535 PMCID: PMC11993344 DOI: 10.1016/j.it.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Microglia, key orchestrators of the brain's immune responses, play a pivotal role in the progression of Alzheimer's disease (AD). Emerging human models, including stem cell-derived microglia and cerebral organoids, are transforming our understanding of microglial contributions to AD pathology. In this review, we highlight how these models have uncovered human-specific microglial responses to amyloid plaques and their regulation of neuroinflammation, which are not recapitulated in animal models. We also illustrate how advanced human models that better mimic brain physiology and AD pathology are providing unprecedented insights into the multifaceted roles of microglia. These innovative approaches, combined with sophisticated technologies for cell editing and analysis, are shaping AD research and opening new avenues for therapeutic interventions targeting microglia.
Collapse
Affiliation(s)
- Chandrika Rao
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Stefan Semrau
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, USA.
| |
Collapse
|
2
|
Cao F, Zhang P, Chi Y, Wang Y, Xu L, Zhang D. Celastrol Ameliorated Alzheimer's Disease in Mice by Enhancing TBX21/TREM2 Expression in Microglia and Inhibiting Tau Phosphorylation. Neurochem Res 2025; 50:126. [PMID: 40138096 DOI: 10.1007/s11064-025-04375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that is typified by the formation of senile plaques containing Aβ and neurofibrillary tangles containing tau in a hyperphosphorylated state. Celastrol, a natural compound, has proven effective in alleviating AD pathology by enhancing autophagy and reducing tau aggregates. The present study investigates the neuroprotective mechanisms of celastrol, with a particular focus on the participation of the transcription factor T-box transcription factor 21 (TBX21) and triggering receptor expressed on myeloid cells 2 (TREM2) in microglial cells. In AD mouse models, celastrol upregulated TBX21 and TREM2, suppressed phosphorylated tau and inflammatory cytokines, and restored neuronal viability. In vitro, celastrol-treated microglia enhanced neuronal survival under amyloid-beta (Aβ) stress, effects abolished by TBX21/TREM2 knockdown. Mechanistically, TBX21 directly bound the TREM2 promoter to regulate its expression. These findings identified the TBX21-TREM2 axis as a therapeutic target for AD.
Collapse
Affiliation(s)
- Fanfan Cao
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, No. 516, Jungong Rd., Yangpu District, Shanghai, 200093, PR China
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China
| | - Pan Zhang
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China
| | - Yongbin Chi
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China
| | - Ying Wang
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China
| | - Limin Xu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China.
| | - Denghai Zhang
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai, 200135, PR China.
| |
Collapse
|
3
|
Zeng CW. Stem Cell-Based Approaches for Spinal Cord Injury: The Promise of iPSCs. BIOLOGY 2025; 14:314. [PMID: 40136570 PMCID: PMC11940451 DOI: 10.3390/biology14030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Spinal cord injury (SCI) is a life-altering condition that leads to severe neurological deficits and significantly impacts patients' quality of life. Despite advancements in medical care, current treatment options remain largely palliative, with limited ability to promote meaningful functional recovery. Induced pluripotent stem cells (iPSCs) have emerged as a promising avenue for regenerative medicine, offering patient-specific, cell-based therapeutic potential for SCI repair. This review provides a comprehensive overview of recent advancements in iPSC-based approaches for SCI, detailing the strategies used to generate neural cell types, including neural progenitor cells, oligodendrocytes, astrocytes, and microglia, and their roles in promoting neuroprotection and regeneration. Additionally, we examine key preclinical and clinical studies, highlighting functional recovery assessments and discussing both standardized and debated evaluation metrics. Furthermore, we address critical challenges related to safety, tumorigenicity, immune response, survival, integration, and overcoming the inhibitory microenvironment of the injured spinal cord. We also explore emerging approaches in biomaterial scaffolds, gene editing, and rehabilitation strategies that may enhance the clinical applicability of iPSC-based therapies. By addressing these challenges and refining translational strategies, iPSC-based interventions hold significant potential to revolutionize SCI treatment and improve outcomes for affected individuals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Tiwari SK, Wong WJ, Moreira M, Pasqualini C, Ginhoux F. Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease. Nat Rev Immunol 2025; 25:108-124. [PMID: 39333753 DOI: 10.1038/s41577-024-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/30/2024]
Abstract
Macrophages are innate immune cells that are present in essentially all tissues, where they have vital roles in tissue development, homeostasis and pathogenesis. The importance of macrophages in tissue function is reflected by their association with various human diseases, and studying macrophage functions in both homeostasis and pathological tissue settings is a promising avenue for new targeted therapies that will improve human health. The ability to generate macrophages from induced pluripotent stem (iPS) cells has revolutionized macrophage biology, with the generation of iPS cell-derived macrophages (iMacs) providing unlimited access to genotype-specific cells that can be used to model various human diseases involving macrophage dysregulation. Such disease modelling is achieved by generating iPS cells from patient-derived cells carrying disease-related mutations or by introducing mutations into iPS cells from healthy donors using CRISPR-Cas9 technology. These iMacs that carry disease-related mutations can be used to study the aetiology of the particular disease in vitro. To achieve more physiological relevance, iMacs can be co-cultured in 2D systems with iPS cell-derived cells or in 3D systems with iPS cell-derived organoids. Here, we discuss the studies that have attempted to model various human diseases using iMacs, highlighting how these have advanced our knowledge about the role of macrophages in health and disease.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Jie Wong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marco Moreira
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudia Pasqualini
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Kala S, Strutz AG, Katt ME. The Rise of Pluripotent Stem Cell-Derived Glia Models of Neuroinflammation. Neurol Int 2025; 17:6. [PMID: 39852770 PMCID: PMC11767680 DOI: 10.3390/neurolint17010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a blanket term that describes the body's complex inflammatory response in the central nervous system (CNS). It encompasses a phenotype shift to a proinflammatory state, the release of cytokines, the recruitment of peripheral immune cells, and a wide variety of other processes. Neuroinflammation has been implicated in nearly every major CNS disease ranging from Alzheimer's disease to brain cancer. Understanding and modeling neuroinflammation is critical for the identification of novel therapeutic targets in the treatment of CNS diseases. Unfortunately, the translation of findings from non-human models has left much to be desired. This review systematically discusses the role of human pluripotent stem cell (hPSC)-derived glia and supporting cells within the CNS, including astrocytes, microglia, oligodendrocyte precursor cells, pericytes, and endothelial cells, to describe the state of the field and hope for future discoveries. hPSC-derived cells offer an expanded potential to study the pathobiology of neuroinflammation and immunomodulatory cascades that impact disease progression. While much progress has been made in the development of models, there is much left to explore in the application of these models to understand the complex inflammatory response in the CNS.
Collapse
Affiliation(s)
- Srishti Kala
- Cancer Cell Biology Graduate Education Program, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Andrew G. Strutz
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Moriah E. Katt
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| |
Collapse
|
6
|
Clarke BE, Ziff OJ, Tyzack G, Petrić Howe M, Wang Y, Klein P, Smith CA, Hall CA, Helmy A, Howell M, Kelly G, Patani R. Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB. Mol Neurodegener 2024; 19:90. [PMID: 39593143 PMCID: PMC11590569 DOI: 10.1186/s13024-024-00773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Microglia play crucial roles in maintaining neuronal homeostasis but have been implicated in contributing to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the role of microglia in ALS/FTD remains incompletely understood. METHODS Here, we generated highly enriched cultures of VCP mutant microglia derived from human induced pluripotent stem cells (hiPSCs) to investigate their cell autonomous and non-cell autonomous roles in ALS pathogenesis. We used RNA-sequencing, proteomics and functional assays to study hiPSC derived VCP mutant microglia and their effects on hiPSC derived motor neurons and astrocytes. RESULTS Transcriptomic, proteomic and functional analyses revealed immune and lysosomal dysfunction in VCP mutant microglia. Stimulating healthy microglia with the inflammatory inducer lipopolysaccharide (LPS) showed partial overlap with VCP mutant microglia in their reactive transformation. LPS-stimulated VCP mutant microglia displayed differential activation of inflammatory pathways compared with LPS-stimulated healthy microglia. Conserved gene expression changes were identified between VCP mutant microglia, SOD1 mutant mice microglia, and postmortem ALS spinal cord microglial signatures, including increased expression of the transmembrane glycoprotein GPNMB. While knockdown of GPNMB affected inflammatory and phagocytosis processes in microglia, this was not sufficient to ameliorate cell autonomous phenotypes in VCP mutant microglia. Secreted factors from VCP mutant microglia were sufficient to activate the JAK-STAT pathway in hiPSC derived motor neurons and astrocytes. CONCLUSIONS VCP mutant microglia undergo cell autonomous reactive transformation involving immune and lysosomal dysfunction that partially recapitulate key phenotypes of microglia from other ALS models and post mortem tissue. These phenotypes occur independently of GPNMB. Additionally, VCP mutant microglia elicit non cell autonomous responses in motor neurons and astrocytes involving the JAK-STAT pathway.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Oliver J Ziff
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| | - Giulia Tyzack
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Marija Petrić Howe
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Klein
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudia A Smith
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cameron A Hall
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| |
Collapse
|
7
|
Pocock J, Vasilopoulou F, Svensson E, Cosker K. Microglia and TREM2. Neuropharmacology 2024; 257:110020. [PMID: 38821351 DOI: 10.1016/j.neuropharm.2024.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
TREM2 is a membrane receptor solely expressed on microglia in normal brain. In this review we outline recent advances in TREM2 biology and its implications for microglial function, with particular emphasis on findings from iPSC-derived microglia (iMG) expressing TREM2 loss-of-function mutations. Alterations in receptor proximal and distal signalling underlie TREM2 risk variants linked to neurodegenerative disease, principally NH-linked FTD, and late-onset AD, but emerging data suggest roles for TREM2 in PD, MS and ALS. TREM2 downstream functions include phagocytosis of myelin debris, amyloid beta peptides, and phosphatidylserine-expressing cells (resulting from damage or stress). Microglial survival, migration, DAMP signalling, inflammasome activation, and intercellular signalling including tau spreading via exosomes, as well as roles for sTREM2 in protection and as a biomarker are discussed. The role of TREM2 in metabolic homeostasis, and immunometabolic switching are discussed regarding microglial responses to damage and protection. The use of iPSC models to investigate the role of TREM2 in AD, PD, MS, ALS, and other neurodegenerative diseases could prove invaluable due to their ability to recapitulate human pathology, allowing a full understanding of TREM2 and microglial involvement in the underlying disease mechanisms and progression. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Jennifer Pocock
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK.
| | - Foteini Vasilopoulou
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK
| | - Elina Svensson
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK
| | - Katharina Cosker
- Department of Neuroinflammation, And Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N1PJ, UK
| |
Collapse
|
8
|
Reich M, Simon MJ, Polke B, Paris I, Werner G, Schrader C, Spieth L, Davis SS, Robinson S, de Melo GL, Schlaphoff L, Buschmann K, Berghoff S, Logan T, Nuscher B, de Weerd L, Edbauer D, Simons M, Suh JH, Sandmann T, Kariolis MS, DeVos SL, Lewcock JW, Paquet D, Capell A, Di Paolo G, Haass C. Peripheral expression of brain-penetrant progranulin rescues pathologies in mouse models of frontotemporal lobar degeneration. Sci Transl Med 2024; 16:eadj7308. [PMID: 38838131 DOI: 10.1126/scitranslmed.adj7308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.
Collapse
Affiliation(s)
- Marvin Reich
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, 82152 Planegg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthew J Simon
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Beate Polke
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Iñaki Paris
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Georg Werner
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Christian Schrader
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Lena Spieth
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Sonnet S Davis
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Sophie Robinson
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, 82152 Planegg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | | | - Lennart Schlaphoff
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, 82152 Planegg, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
| | - Katrin Buschmann
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Stefan Berghoff
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Todd Logan
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Brigitte Nuscher
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Lis de Weerd
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), 81377 Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), 81377 Munich, Germany
| | - Jung H Suh
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Thomas Sandmann
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | - Sarah L DeVos
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), 81377 Munich, Germany
| | - Anja Capell
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | | | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Metabolic Biochemistry, Biomedical Centre (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), 81377 Munich, Germany
| |
Collapse
|
9
|
Wasielewska JM, Szostak K, McInnes LE, Quek H, Chaves JCS, Liddell JR, Koistinaho J, Oikari LE, Donnelly PS, White AR. Patient-Derived Blood-Brain Barrier Model for Screening Copper Bis(thiosemicarbazone) Complexes as Potential Therapeutics in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1432-1455. [PMID: 38477556 DOI: 10.1021/acschemneuro.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Kathryn Szostak
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan E McInnes
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hazel Quek
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jari Koistinaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki 00014,Finland
- Neuroscience Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Paul S Donnelly
- School of Chemistry, Bio21 Institute for Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Biomedical Science, University of Queensland, St. Lucia, QLD 4067, Australia
| |
Collapse
|
10
|
Penney J, Ralvenius WT, Loon A, Cerit O, Dileep V, Milo B, Pao PC, Woolf H, Tsai LH. iPSC-derived microglia carrying the TREM2 R47H/+ mutation are proinflammatory and promote synapse loss. Glia 2024; 72:452-469. [PMID: 37969043 PMCID: PMC10904109 DOI: 10.1002/glia.24485] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 11/17/2023]
Abstract
Genetic findings have highlighted key roles for microglia in the pathology of neurodegenerative conditions such as Alzheimer's disease (AD). A number of mutations in the microglial protein triggering receptor expressed on myeloid cells 2 (TREM2) have been associated with increased risk for developing AD, most notably the R47H/+ substitution. We employed gene editing and stem cell models to gain insight into the effects of the TREM2 R47H/+ mutation on human-induced pluripotent stem cell-derived microglia. We found transcriptional changes affecting numerous cellular processes, with R47H/+ cells exhibiting a proinflammatory gene expression signature. TREM2 R47H/+ also caused impairments in microglial movement and the uptake of multiple substrates, as well as rendering microglia hyperresponsive to inflammatory stimuli. We developed an in vitro laser-induced injury model in neuron-microglia cocultures, finding an impaired injury response by TREM2 R47H/+ microglia. Furthermore, mouse brains transplanted with TREM2 R47H/+ microglia exhibited reduced synaptic density, with upregulation of multiple complement cascade components in TREM2 R47H/+ microglia suggesting inappropriate synaptic pruning as one potential mechanism. These findings identify a number of potentially detrimental effects of the TREM2 R47H/+ mutation on microglial gene expression and function likely to underlie its association with AD.
Collapse
Affiliation(s)
- Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - William T Ralvenius
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Oyku Cerit
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Blerta Milo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hannah Woolf
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
11
|
Sullivan MA, Lane SD, McKenzie ADJ, Ball SR, Sunde M, Neely GG, Moreno CL, Maximova A, Werry EL, Kassiou M. iPSC-derived PSEN2 (N141I) astrocytes and microglia exhibit a primed inflammatory phenotype. J Neuroinflammation 2024; 21:7. [PMID: 38178159 PMCID: PMC10765839 DOI: 10.1186/s12974-023-02951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Widescale evidence points to the involvement of glia and immune pathways in the progression of Alzheimer's disease (AD). AD-associated iPSC-derived glial cells show a diverse range of AD-related phenotypic states encompassing cytokine/chemokine release, phagocytosis and morphological profiles, but to date studies are limited to cells derived from PSEN1, APOE and APP mutations or sporadic patients. The aim of the current study was to successfully differentiate iPSC-derived microglia and astrocytes from patients harbouring an AD-causative PSEN2 (N141I) mutation and characterise the inflammatory and morphological profile of these cells. METHODS iPSCs from three healthy control individuals and three familial AD patients harbouring a heterozygous PSEN2 (N141I) mutation were used to derive astrocytes and microglia-like cells and cell identity and morphology were characterised through immunofluorescent microscopy. Cellular characterisation involved the stimulation of these cells by LPS and Aβ42 and analysis of cytokine/chemokine release was conducted through ELISAs and multi-cytokine arrays. The phagocytic capacity of these cells was then indexed by the uptake of fluorescently-labelled fibrillar Aβ42. RESULTS AD-derived astrocytes and microglia-like cells exhibited an atrophied and less complex morphological appearance than healthy controls. AD-derived astrocytes showed increased basal expression of GFAP, S100β and increased secretion and phagocytosis of Aβ42 while AD-derived microglia-like cells showed decreased IL-8 secretion compared to healthy controls. Upon immunological challenge AD-derived astrocytes and microglia-like cells showed exaggerated secretion of the pro-inflammatory IL-6, CXCL1, ICAM-1 and IL-8 from astrocytes and IL-18 and MIF from microglia. CONCLUSION Our study showed, for the first time, the differentiation and characterisation of iPSC-derived astrocytes and microglia-like cells harbouring a PSEN2 (N141I) mutation. PSEN2 (N141I)-mutant astrocytes and microglia-like cells presented with a 'primed' phenotype characterised by reduced morphological complexity, exaggerated pro-inflammatory cytokine secretion and altered Aβ42 production and phagocytosis.
Collapse
Affiliation(s)
- Michael A Sullivan
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Samuel D Lane
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - André D J McKenzie
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Sarah R Ball
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Margaret Sunde
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - G Gregory Neely
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Cesar L Moreno
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Alexandra Maximova
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Eryn L Werry
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
| | - Michael Kassiou
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
12
|
Jäntti H, Kistemaker L, Buonfiglioli A, De Witte LD, Malm T, Hol EM. Emerging Models to Study Human Microglia In vitro. ADVANCES IN NEUROBIOLOGY 2024; 37:545-568. [PMID: 39207712 DOI: 10.1007/978-3-031-55529-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lois Kistemaker
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alice Buonfiglioli
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lot D De Witte
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Michalski C, Wen Z. Leveraging iPSC technology to assess neuro-immune interactions in neurological and psychiatric disorders. Front Psychiatry 2023; 14:1291115. [PMID: 38025464 PMCID: PMC10672983 DOI: 10.3389/fpsyt.2023.1291115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Communication between the immune and the nervous system is essential for human brain development and homeostasis. Disruption of this intricately regulated crosstalk can lead to neurodevelopmental, psychiatric, or neurodegenerative disorders. While animal models have been essential in characterizing the role of neuroimmunity in development and disease, they come with inherent limitations due to species specific differences, particularly with regard to microglia, the major subset of brain resident immune cells. The advent of induced pluripotent stem cell (iPSC) technology now allows the development of clinically relevant models of the central nervous system that adequately reflect human genetic architecture. This article will review recent publications that have leveraged iPSC technology to assess neuro-immune interactions. First, we will discuss the role of environmental stressors such as neurotropic viruses or pro-inflammatory cytokines on neuronal and glial function. Next, we will review how iPSC models can be used to study genetic risk factors in neurological and psychiatric disorders. Lastly, we will evaluate current challenges and future potential for iPSC models in the field of neuroimmunity.
Collapse
Affiliation(s)
- Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
14
|
Xu M, Yang Y, Peng J, Zhang Y, Wu B, He B, Jia Y, Yan T. Effects of Alpinae Oxyphyllae Fructus on microglial polarization in a LPS-induced BV2 cells model of neuroinflammation via TREM2. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115914. [PMID: 36347303 DOI: 10.1016/j.jep.2022.115914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As one of the important traditional Chinese medicines, Alpinia oxyphylla could warm and tonify the kidney and spleen. It has been used as anti-salivation, anti-diarrhea in various diseases. In recent years, many studies have reported the significant effect of Alpinia oxyphylla on improving cognitive ability, anti oxidative stress and protecting neurons. AIMS OF THE STUDY In this paper, we studied whether AE and its main active components could improve M1 and M2 polarization, inhibit neuroinflammation through triggering receptor expressed on myeloid cells 2 (TREM2), and exert anti-inflammatory effects. MATERIALS AND METHODS In this paper, the concentrations of inflammatory cytokines such as NO, TNF-α, IL-10 were assessed using detection kits respectively. Arg-1 and Iba-1, as polarized markers of M1 and M2, were detected by Immunofluorescence staining. CD86 and CD206 were tested by flow cytometry as surface markers of M1 and M2. Furthermore, RT-PCR was performed to determinate TNF-α, IL-10, Arg-1, and Iba-1. Western blot was used to test the activation of PI3K/AKT/GSK3β and BDNF/TrkB/TLR4 signaling pathways. TREM2 siRNA treatment further verified the action target of Chrysin, the main active ingredient of Alpinia oxyphylla. Molecular docking study was performed to investigate the binding mode between Chrysin and the human TREM2. RESULTS We found that AE could promote the phenotypic transformation of microglia from M1 to M2, and similar effects of Chrysin were observed. Furthermore, downregulation of TREM2 blocked the anti-neuroinflammation of Chrysin, and inhibited the shift of M1 phenotype to M2 phenotype. Additionally, TREM2-siRNA suppressed the effects of Chrysin on PI3K/AKT/GSK3β and BDNF/TrkB/TLR4 signaling pathways. CONCLUSIONS Our findings indicated that AE could improve the polarization response of microglia. TREM2 plays a vital role in the microglial repolarization effects of Chrysin through PI3K/AKT/GSK3β and BDNF/TrkB/TLR4 signaling pathways regulated by neuroinflammation.
Collapse
Affiliation(s)
- Mengjie Xu
- Department of Biological Sciences, XinZhou Teachers University, DunQi Street 1, Xinzhou, 034000, China
| | - Yunfang Yang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Jing Peng
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Yue Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| |
Collapse
|
15
|
Cai W, Wu T, Chen N. The Amyloid-Beta Clearance: From Molecular Targets to Glial and Neural Cells. Biomolecules 2023; 13:313. [PMID: 36830682 PMCID: PMC9953441 DOI: 10.3390/biom13020313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The deposition of amyloid-beta (Aβ) plaques in the brain is one of the primary pathological characteristics of Alzheimer's disease (AD). It can take place 20-30 years before the onset of clinical symptoms. The imbalance between the production and the clearance of Aβ is one of the major causes of AD. Enhancing Aβ clearance at an early stage is an attractive preventive and therapeutic strategy of AD. Direct inhibition of Aβ production and aggregation using small molecules, peptides, and monoclonal antibody drugs has not yielded satisfactory efficacy in clinical trials for decades. Novel approaches are required to understand and combat Aβ deposition. Neurological dysfunction is a complex process that integrates the functions of different types of cells in the brain. The role of non-neurons in AD has not been fully elucidated. An in-depth understanding of the interactions between neurons and non-neurons can contribute to the elucidation of Aβ formation and the identification of effective drug targets. AD patient-derived pluripotent stem cells (PSCs) contain complete disease background information and have the potential to differentiate into various types of neurons and non-neurons in vitro, which may bring new insight into the treatment of AD. Here, we systematically review the latest studies on Aβ clearance and clarify the roles of cell interactions among microglia, astroglia and neurons in response to Aβ plaques, which will be beneficial to explore methods for reconstructing AD disease models using inducible PSCs (iPSCs) through cell differentiation techniques and validating the applications of models in understanding the formation of Aβ plaques. This review may provide the most promising directions of finding the clues for preventing and delaying the development of AD.
Collapse
Affiliation(s)
| | | | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| |
Collapse
|
16
|
Sahlgren Bendtsen KM, Hall VJ. The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer's Disease. Cells 2023; 12:cells12030420. [PMID: 36766763 PMCID: PMC9913971 DOI: 10.3390/cells12030420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Modeling Alzheimer's disease (AD) using human-induced pluripotent stem cells (iPSCs) is a field now spanning 15 years. Developments in the field have shown a shift in using simple 2D cortical neuron models to more advanced tri-cultures and 3D cerebral organoids that recapitulate more features of the disease. This is largely due to development and optimization of new cell protocols. In this review, we highlight recent major breakthroughs in the AD field and the implications this has in modeling AD using iPSCs (AD-iPSCs). To date, AD-iPSCs have been largely used to recapitulate and study impaired amyloid precursor protein (APP) processing and tau phosphorylation in both familial and sporadic AD. AD-iPSCs have also been studied for varying neuronal and glial dysfunctions. Moreover, they have been useful for discovering new molecular mechanisms, such as identifying proteins that bridge APP processing with tau phosphorylation and for identifying molecular pathways that bridge APP processing dysfunction with impaired cholesterol biosynthesis. Perhaps the greatest use of AD-iPSCs has been in discovering compounds via drug screening, that reduce amyloid beta (Aβ) in neurons, such as the anti-inflammatory compound, cromolyn, and antiparasitic drugs, avermectins. In addition, high content screening using AD-iPSCs has led to the identification of statins that can reduce levels of phosphorylated tau (p-Tau) in neurons. Some of these compounds have made it through to testing in human clinical trials. Improvements in omic technologies including single cell RNA sequencing and proteomics as well as advances in production of iPSC-cerebral organoids and tri-cultures is likely to result in the further discovery of new drugs and treatments for AD. Some caveats remain in the field, including, long experimental conditions to create mature neurons, high costs of media that limit research capabilities, and a lack of reproducibility using current iPSC-cerebral organoid protocols. Despite these current limitations, AD-iPSCs remain an excellent cellular model for studying AD mechanisms and for drug discovery.
Collapse
|
17
|
Vaughan-Jackson A, Stodolak S, Ebrahimi KH, Johnson E, Reardon PK, Dupont M, Zhang S, McCullagh JSO, James WS. Density dependent regulation of inflammatory responses in macrophages. Front Immunol 2022; 13:895488. [PMID: 36591218 PMCID: PMC9800520 DOI: 10.3389/fimmu.2022.895488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophage distribution density is tightly regulated within the body, yet the importance of macrophage crowding during in vitro culture is largely unstudied. Using a human induced pluripotent stem cell (iPSC)-derived macrophage model of tissue resident macrophages, we characterize how increasing macrophage culture density changes their morphology and phenotype before and after inflammatory stimulation. In particular, density drives changes in macrophage inflammatory cytokine and chemokine secretion in both resting and activated states. This density regulated inflammatory state is also evident in blood monocyte derived-macrophages, the human monocytic THP-1 immortalized cell line, and iPSC-derived microglia. Density-dependent changes appear to be driven by a transferable soluble factor, yet the precise mechanism remains unknown. Our findings highlight cell plating density as an important but frequently overlooked consideration of in vitro macrophage research relevant to a variety of fields ranging from basic macrophage cell biology to disease studies.
Collapse
Affiliation(s)
- Alun Vaughan-Jackson
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Szymon Stodolak
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul K. Reardon
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Maeva Dupont
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shengpan Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Hübschmann V, Korkut-Demirbaş M, Siegert S. Assessing human iPSC-derived microglia identity and function by immunostaining, phagocytosis, calcium activity, and inflammation assay. STAR Protoc 2022; 3:101866. [PMID: 36595902 PMCID: PMC9678782 DOI: 10.1016/j.xpro.2022.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
To understand how potential gene manipulations affect in vitro microglia, we provide a set of short protocols to evaluate microglia identity and function. We detail steps for immunostaining to determine microglia identity. We describe three functional assays for microglia: phagocytosis, calcium response following ATP stimulation, and cytokine expression upon inflammatory stimuli. We apply these protocols to human induced-pluripotent-stem-cell (hiPSC)-derived microglia, but they can be also applied to other in vitro microglial models including primary mouse microglia. For complete details on the use and execution of this protocol, please refer to Bartalska et al. (2022).1.
Collapse
Affiliation(s)
- Verena Hübschmann
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Medina Korkut-Demirbaş
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
19
|
Garcia G, Pinto S, Ferreira S, Lopes D, Serrador MJ, Fernandes A, Vaz AR, de Mendonça A, Edenhofer F, Malm T, Koistinaho J, Brites D. Emerging Role of miR-21-5p in Neuron-Glia Dysregulation and Exosome Transfer Using Multiple Models of Alzheimer's Disease. Cells 2022; 11:3377. [PMID: 36359774 PMCID: PMC9655962 DOI: 10.3390/cells11213377] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with neuron-glia dysfunction and dysregulated miRNAs. We previously reported upregulated miR-124/miR-21 in AD neurons and their exosomes. However, their glial distribution, phenotypic alterations and exosomal spread are scarcely documented. Here, we show glial cell activation and miR-21 overexpression in mouse organotypic hippocampal slices transplanted with SH-SY5Y cells expressing the human APP695 Swedish mutation. The upregulation of miR-21 only in the CSF from a small series of mild cognitive impairment (MCI) AD patients, but not in non-AD MCI individuals, supports its discriminatory potential. Microglia, neurons, and astrocytes differentiated from the same induced pluripotent stem cells from PSEN1ΔE9 AD patients all showed miR-21 elevation. In AD neurons, miR-124/miR-21 overexpression was recapitulated in their exosomes. In AD microglia, the upregulation of iNOS and miR-21/miR-146a supports their activation. AD astrocytes manifested a restrained inflammatory profile, with high miR-21 but low miR-155 and depleted exosomal miRNAs. Their immunostimulation with C1q + IL-1α + TNF-α induced morphological alterations and increased S100B, inflammatory transcripts, sAPPβ, cytokine release and exosomal miR-21. PPARα, a target of miR-21, was found to be repressed in all models, except in neurons, likely due to concomitant miR-125b elevation. The data from these AD models highlight miR-21 as a promising biomarker and a disease-modifying target to be further explored.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Sara Pinto
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sofia Ferreira
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Daniela Lopes
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria João Serrador
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Adelaide Fernandes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | | | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
20
|
Simöes Da Gama C, Morin-Brureau M. Study of BBB Dysregulation in Neuropathogenicity Using Integrative Human Model of Blood-Brain Barrier. Front Cell Neurosci 2022; 16:863836. [PMID: 35755780 PMCID: PMC9226644 DOI: 10.3389/fncel.2022.863836] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
The blood-brain barrier (BBB) is a cellular and physical barrier with a crucial role in homeostasis of the brain extracellular environment. It controls the imports of nutrients to the brain and exports toxins and pathogens. Dysregulation of the blood-brain barrier increases permeability and contributes to pathologies, including Alzheimer's disease, epilepsy, and ischemia. It remains unclear how a dysregulated BBB contributes to these different syndromes. Initial studies on the role of the BBB in neurological disorders and also techniques to permit the entry of therapeutic molecules were made in animals. This review examines progress in the use of human models of the BBB, more relevant to human neurological disorders. In recent years, the functionality and complexity of in vitro BBB models have increased. Initial efforts consisted of static transwell cultures of brain endothelial cells. Human cell models based on microfluidics or organoids derived from human-derived induced pluripotent stem cells have become more realistic and perform better. We consider the architecture of different model generations as well as the cell types used in their fabrication. Finally, we discuss optimal models to study neurodegenerative diseases, brain glioma, epilepsies, transmigration of peripheral immune cells, and brain entry of neurotrophic viruses and metastatic cancer cells.
Collapse
Affiliation(s)
- Coraly Simöes Da Gama
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Mélanie Morin-Brureau
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
21
|
Lyadova I, Vasiliev A. Macrophages derived from pluripotent stem cells: prospective applications and research gaps. Cell Biosci 2022; 12:96. [PMID: 35725499 PMCID: PMC9207879 DOI: 10.1186/s13578-022-00824-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent a valuable cell source able to give rise to different cell types of the body. Among the various pathways of iPSC differentiation, the differentiation into macrophages is a recently developed and rapidly growing technique. Macrophages play a key role in the control of host homeostasis. Their dysfunction underlies many diseases, including hereditary, infectious, oncological, metabolic and other disorders. Targeting macrophage activity and developing macrophage-based cell therapy represent promising tools for the treatment of many pathological conditions. Macrophages generated from human iPSCs (iMphs) provide great opportunities in these areas. The generation of iMphs is based on a step-wise differentiation of iPSCs into mesoderm, hematopoietic progenitors, myeloid monocyte-like cells and macrophages. The technique allows to obtain standardizable populations of human macrophages from any individual, scale up macrophage production and introduce genetic modifications, which gives significant advantages over the standard source of human macrophages, monocyte-derived macrophages. The spectrum of iMph applications is rapidly growing. iMphs have been successfully used to model hereditary diseases and macrophage-pathogen interactions, as well as to test drugs. iMph use for cell therapy is another promising and rapidly developing area of research. The principles and the details of iMph generation have recently been reviewed. This review systemizes current and prospective iMph applications and discusses the problem of iMph safety and other issues that need to be explored before iMphs become clinically applicable.
Collapse
Affiliation(s)
- Irina Lyadova
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation.
| | - Andrei Vasiliev
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation
| |
Collapse
|
22
|
Mishra S, Kinoshita C, Axtman AD, Young JE. Evaluation of a Selective Chemical Probe Validates That CK2 Mediates Neuroinflammation in a Human Induced Pluripotent Stem Cell-Derived Microglial Model. Front Mol Neurosci 2022; 15:824956. [PMID: 35774866 PMCID: PMC9239073 DOI: 10.3389/fnmol.2022.824956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/20/2022] [Indexed: 01/11/2023] Open
Abstract
Novel treatments for neurodegenerative disorders are in high demand. It is imperative that new protein targets be identified to address this need. Characterization and validation of nascent targets can be accomplished very effectively using highly specific and potent chemical probes. Human induced pluripotent stem cells (hiPSCs) provide a relevant platform for testing new compounds in disease relevant cell types. However, many recent studies utilizing this platform have focused on neuronal cells. In this study, we used hiPSC-derived microglia-like cells (MGLs) to perform side-by-side testing of a selective chemical probe, SGC-CK2-1, compared with an advanced clinical candidate, CX-4945, both targeting casein kinase 2 (CK2), one of the first kinases shown to be dysregulated in Alzheimer's disease (AD). CK2 can mediate neuroinflammation in AD, however, its role in microglia, the innate immune cells of the central nervous system (CNS), has not been defined. We analyzed available RNA-seq data to determine the microglial expression of kinases inhibited by SGC-CK2-1 and CX-4945 with a reported role in mediating inflammation in glial cells. As proof-of-concept for using hiPSC-MGLs as a potential screening platform, we used both wild-type (WT) MGLs and MGLs harboring a mutation in presenilin-1 (PSEN1), which is causative for early-onset, familial AD (FAD). We stimulated these MGLs with pro-inflammatory lipopolysaccharides (LPS) derived from E. coli and observed strong inhibition of the expression and secretion of proinflammatory cytokines by simultaneous treatment with SGC-CK2-1. A direct comparison shows that SGC-CK2-1 was more effective at suppression of proinflammatory cytokines than CX-4945. Together, these results validate a selective chemical probe, SGC-CK2-1, in human microglia as a tool to reduce neuroinflammation.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Alison D. Axtman
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
Silveira IA, Mullis AS, Cairns DM, Shevzov-Zebrun A, Whalen J, Galuppo A, Walsh KG, Kaplan DL. Screening neuroprotective compounds in herpes-induced Alzheimer's disease cell and 3D tissue models. Free Radic Biol Med 2022; 186:76-92. [PMID: 35537596 DOI: 10.1016/j.freeradbiomed.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder that can cause life-altering and debilitating cognitive decline. AD's etiology is poorly understood, and no disease-modifying therapeutics exist. Here, we describe the use of 2D and 3D tissue culture models of herpesvirus-induced AD, which recapitulate hallmark disease features of plaque formation, gliosis, neuroinflammation, and impaired neuronal signaling, to screen a panel of 21 medications, supplements, and nutraceuticals with purported neuroprotective benefits. This screen identified green tea catechins and resveratrol as having strong anti-plaque properties, functional neuroprotective benefits, and minimal neurotoxicity, providing support for their further investigation as AD preventives and therapies. Two other candidates, citicoline and metformin, reduced plaque formation and were minimally toxic, but did not protect against virus-induced impairments in neuronal signaling. This study establishes a simple platform for rapidly screening and characterizing AD compounds of interest in 2D and 3D human cortical tissue models representing physiologically relevant disease features.
Collapse
Affiliation(s)
- Isabella A Silveira
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Adam S Mullis
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center, Tufts University, Medford, MA, 02155, USA
| | - Anna Shevzov-Zebrun
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jordyn Whalen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Alexa Galuppo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Katherine G Walsh
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
24
|
Generation of an hiPSC-Derived Co-Culture System to Assess the Effects of Neuroinflammation on Blood-Brain Barrier Integrity. Cells 2022; 11:cells11030419. [PMID: 35159229 PMCID: PMC8834542 DOI: 10.3390/cells11030419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier (BBB) regulates the interaction between the highly vulnerable central nervous system (CNS) and the peripheral parts of the body. Disruption of the BBB has been associated with multiple neurological disorders, in which immune pathways in microglia are suggested to play a key role. Currently, many in vitro BBB model systems lack a physiologically relevant microglia component in order to address questions related to the mechanism of BBB integrity or the transport of molecules between the periphery and the CNS. To bridge this gap, we redefined a serum-free medium in order to allow for the successful co-culturing of human inducible pluripotent stem cell (hiPSC)-derived microglia and hiPSC-derived brain microvascular endothelial-like cells (BMECs) without influencing barrier properties as assessed by electrical resistance. We demonstrate that hiPSC-derived microglia exposed to lipopolysaccharide (LPS) weaken the barrier integrity, which is associated with the secretion of several cytokines relevant in neuroinflammation. Consequently, here we provide a simplistic humanised BBB model of neuroinflammation that can be further extended (e.g., by addition of other cell types in a more complex 3D architecture) and applied for mechanistic studies and therapeutic compound profiling.
Collapse
|
25
|
Wang H. Microglia Heterogeneity in Alzheimer's Disease: Insights From Single-Cell Technologies. Front Synaptic Neurosci 2022; 13:773590. [PMID: 35002670 PMCID: PMC8735255 DOI: 10.3389/fnsyn.2021.773590] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system and play critical roles in brain immunity, development, and homeostasis. The pathology of Alzheimer’s disease (AD) triggers activation of microglia. Microglia express many AD risk genes, suggesting that their response to AD pathology can affect disease progression. Microglia have long been considered a homogenous cell population. The diversity of microglia has gained great interest in recent years due to the emergence of novel single-cell technologies, such as single-cell/nucleus RNA sequencing and single-cell mass cytometry by time-of-flight. This review summarizes the current knowledge about the diversity/heterogeneity of microglia and distinct microglia states in the brain of both AD mouse models and patients, as revealed by single-cell technologies. It also discusses the future developments for application of single-cell technologies and the integration of these technologies with functional studies to further dissect microglia biology in AD. Defining the functional correlates of distinct microglia states will shed new light on the pathological roles of microglia and might uncover new relevant therapeutic targets for AD.
Collapse
Affiliation(s)
- Hansen Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Giacomelli E, Vahsen BF, Calder EL, Xu Y, Scaber J, Gray E, Dafinca R, Talbot K, Studer L. Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell 2022; 29:11-35. [PMID: 34995492 PMCID: PMC8785905 DOI: 10.1016/j.stem.2021.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was among the first of these disorders modeled in patient-specific iPSCs, and recent findings have translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining challenges in exploiting the full potential of iPSC technology for understanding and potentially treating neurodegenerative diseases such as ALS.
Collapse
Affiliation(s)
- Elisa Giacomelli
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Björn F Vahsen
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Yinyan Xu
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Jakub Scaber
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
27
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|
28
|
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas M, Bithell A. Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia. PLoS Comput Biol 2021; 17:e1009520. [PMID: 34723961 PMCID: PMC8584768 DOI: 10.1371/journal.pcbi.1009520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/11/2021] [Accepted: 10/02/2021] [Indexed: 01/14/2023] Open
Abstract
Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology. Mathematical modelling and computer simulation are powerful tools by which we can analyse complex biological systems, particularly, neural phenomena involved in brain dysfunction. In this research, we develop a theoretical foundation for studying P2X-mediated calcium and sodium signalling in human microglial cells. Microglia, which are brain-resident macrophages, restructure their intracellular actin cytoskeleton to enable motility; this restructuring requires a complex molecular cascade involving a set of ionic channels, membrane-coupled receptors and cytosolic components. Recent studies highlight the importance for increasing our understanding of microglia physiology, since their functions play critical roles in both normal physiological and pathological dynamics of the brain. There is a need to develop reliable human cellular models to investigate the biology of microglia aimed at understanding the influence of purinergic signalling in brain dysfunction to provide novel drug discovery targets. In this work, a detailed mathematical model is built for the dynamics of human P2XRs in microglia. Subsequently, experimental whole-cell currents are used to derive P2X-mediated electrophysiology of human microglia (i.e. sodium and calcium dynamics, and membrane potential). Our predictions reveal new quantitative insights into P2XRs on how they regulate ionic concentrations in terms of physiological interactions and transient responses.
Collapse
Affiliation(s)
- Alireza Poshtkohi
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
- * E-mail:
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Mark Dallas
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
29
|
Engrafted stem cell therapy for Alzheimer's disease: A promising treatment strategy with clinical outcome. J Control Release 2021; 338:837-857. [PMID: 34509587 DOI: 10.1016/j.jconrel.2021.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
To date, although the microscopic alterations present in Alzheimer's disease (AD) have been well known for over a century only a handful of symptomatic treatments have been developed which are a far cry from a full cure providing volatile benefits. In this context, the intervention of stem cell therapy (SCT) has been proposed as an auxiliary treatment for AD as suggested by the rising number of pre-clinical studies that stem cell engraftment could provide an exciting future treatment regimen against neurodegeneration. Although, most of the primary enthusiasm about this approach was based on replacing deteriorating neurons, the latest studies have implied that the positive modulations fostered by stem cells are fuelled by bystander effects. Present review provides a detailed update on stem cell therapy for AD along with meticulous discussion regarding challenges in developing different stem cells from an aspect of experiment to clinical research and their potential in the milieu of AD hallmarks. Specifically, we focus and provide in depth view on recent advancements in the discipline of SCT aiming to repopulate or regenerate the degenerating neuronal circuitry in AD using stem-cell-on-a-chip and 3D bioprinting techniques. The focus is specifically on the successful restoration of cognitive functions upon engraftment of stem cells on in vivo models for the benefit of the current researchers and their understanding about the status of SCT in AD and finally summarizing on what future holds for SCT in the treatment of AD.
Collapse
|
30
|
Chen Y, Colonna M. Microglia in Alzheimer's disease at single-cell level. Are there common patterns in humans and mice? J Exp Med 2021; 218:212499. [PMID: 34292312 PMCID: PMC8302448 DOI: 10.1084/jem.20202717] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by extracellular aggregates of amyloid β peptides, intraneuronal tau aggregates, and neuronal death. This pathology triggers activation of microglia. Because variants of genes expressed in microglia correlate with AD risk, microglial response to pathology plausibly impacts disease course. In mouse AD models, single-cell RNA sequencing (scRNA-seq) analyses delineated this response as progressive conversion of homeostatic microglia into disease-associated microglia (DAM); additional reactive microglial populations have been reported in other models of neurodegeneration and neuroinflammation. We review all of these microglial signatures, highlighting four fundamental patterns: DAM, IFN–microglia, MHC-II microglia, and proliferating microglia. We propose that all reported microglia populations are either just one or a combination, depending on the clustering strategy applied and the disease model. We further review single-nucleus RNA sequencing (snRNA-seq) data from human AD specimens and discuss reasons for parallels and discrepancies between human and mouse transcriptional profiles. Finally, we outline future directions for delineating the microglial impact in AD pathogenesis.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO.,Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
31
|
Aires V, Coulon-Bainier C, Pavlovic A, Ebeling M, Schmucki R, Schweitzer C, Kueng E, Gutbier S, Harde E. CD22 Blockage Restores Age-Related Impairments of Microglia Surveillance Capacity. Front Immunol 2021; 12:684430. [PMID: 34140954 PMCID: PMC8204252 DOI: 10.3389/fimmu.2021.684430] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Microglia, the innate immune cells of the brain, are essential for maintaining homeostasis by their ramified, highly motile processes and for orchestrating the immune response to pathological stimuli. They are implicated in several neurodegenerative diseases like Alzheimer's and Parkinson's disease. One commonality of these diseases is their strong correlation with aging as the highest risk factor and studying age-related alterations in microglia physiology and associated signaling mechanism is indispensable for a better understanding of age-related pathomechanisms. CD22 has been identified as a modifier of microglia phagocytosis in a recent study, but not much is known about the function of CD22 in microglia. Here we show that CD22 surface levels are upregulated in aged versus adult microglia. Furthermore, in the amyloid mouse model PS2APP, Aβ-containing microglia also exhibit increased CD22 signal. To assess the impact of CD22 blockage on microglia morphology and dynamics, we have established a protocol to image microglia process motility in acutely prepared brain slices from CX3CR1-GFP reporter mice. We observed a significant reduction of microglial ramification and surveillance capacity in brain slices from aged versus adult mice. The age-related decrease in surveillance can be restored by antibody-mediated CD22 blockage in aged mice, whereas surveillance in adult mice is not affected by CD22 inhibition. Moreover to complement the results obtained in mice, we show that human iPSC-derived macrophages exhibit an increased phagocytic capacity upon CD22 blockage. Downstream analysis of antibody-mediated CD22 inhibition revealed an influence on BMP and TGFβ associated gene networks. Our results demonstrate CD22 as a broad age-associated modulator of microglia functionality with potential implications for neurodegenerative disorders.
Collapse
Affiliation(s)
- Vanessa Aires
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.,Department of Neurology, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Claire Coulon-Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anto Pavlovic
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roland Schmucki
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christophe Schweitzer
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Erich Kueng
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon Gutbier
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eva Harde
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
32
|
Wurm J, Konttinen H, Andressen C, Malm T, Spittau B. Microglia Development and Maturation and Its Implications for Induction of Microglia-Like Cells from Human iPSCs. Int J Mol Sci 2021; 22:ijms22063088. [PMID: 33803024 PMCID: PMC8002593 DOI: 10.3390/ijms22063088] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
Microglia are resident immune cells of the central nervous system and play critical roles during the development, homeostasis, and pathologies of the brain. Originated from yolk sac erythromyeloid progenitors, microglia immigrate into the embryonic brain parenchyma to undergo final postnatal differentiation and maturation driven by distinct chemokines, cytokines, and growth factors. Among them, TGFβ1 is an important regulator of microglial functions, mediating homeostasis, anti-inflammation, and triggering the expression of microglial homeostatic signature genes. Since microglia studies are mainly based on rodent cells and the isolation of homeostatic microglia from human tissue is challenging, human-induced pluripotent stem cells have been successfully differentiated into microglia-like cells recently. However, employed differentiation protocols strongly vary regarding used cytokines and growth factors, culture conditions, time span, and cell yield. Moreover, the incomplete differentiation of human microglia can hamper the similarity to primary human microglia and dramatically influence the outcome of follow-up studies with these differentiated cells. This review summarizes the current knowledge of the molecular mechanisms driving rodent microglia differentiation in vivo, further compares published differentiation protocols, and highlights the potential of TGFβ as an essential maturation factor.
Collapse
Affiliation(s)
- Johannes Wurm
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany; (J.W.); (C.A.)
| | - Henna Konttinen
- Neuroinflammation Research Group, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (H.K.); (T.M.)
| | - Christian Andressen
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany; (J.W.); (C.A.)
| | - Tarja Malm
- Neuroinflammation Research Group, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (H.K.); (T.M.)
| | - Björn Spittau
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany; (J.W.); (C.A.)
- Correspondence: ; Tel.: +49-521-10686512
| |
Collapse
|