1
|
Kulesh V, Peskov K, Helmlinger G, Bocharov G. Systematic review and quantitative meta-analysis of age-dependent human T-lymphocyte homeostasis. Front Immunol 2025; 16:1475871. [PMID: 39931065 PMCID: PMC11808020 DOI: 10.3389/fimmu.2025.1475871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Objective To evaluate and quantitatively describe age-dependent homeostasis for a broad range of total T-cells and specific T-lymphocyte subpopulations in healthy human subjects. Methods A systematic literature review was performed to identify and collect relevant quantitative information on T-lymphocyte counts in human blood and various organs. Both individual subject and grouped (aggregated) data on T-lymphocyte observations in absolute and relative values were digitized and curated; cell phenotypes, gating strategies for flow cytometry analyses, organs from which observations were obtained, subjects' number and age were also systematically inventoried. Age-dependent homeostasis of each T-lymphocyte subpopulation was evaluated via a weighted average calculation within pre-specified age intervals, using a piece-wise equal-effect meta-analysis methodology. Results In total, 124 studies comprising 11722 unique observations from healthy subjects encompassing 20 different T-lymphocyte subpopulations - total CD45+ and CD3+ lymphocytes, as well as specific CD4+ and CD8+ naïve, recent thymic emigrants, activated, effector and various subpopulations of memory T-lymphocytes (total-memory, central-memory, effector-memory, resident-memory) - were systematically collected and included in the final database for a comprehensive analysis. Blood counts of most T-lymphocyte subpopulations demonstrate a decline with age, with a pronounced decrease within the first 10 years of life. Conversely, memory T-lymphocytes display a tendency to increase in older age groups, particularly after ~50 years of age. Notably, an increase in T-lymphocyte numbers is observed in neonates and infants (0 - 1 year of age) towards less differentiated T-lymphocyte subpopulations, while an increase into more differentiated subpopulations emerges later (1 - 5 years of age). Conclusion A comprehensive systematic review and meta-analysis of T-lymphocyte age-dependent homeostasis in healthy humans was performed, to evaluate immune T-cell profiles as a function of age and to characterize generalized estimates of T-lymphocyte counts across age groups. Our study introduces a quantitative description of the fundamental parameters characterizing the maintenance and evolution of T-cell subsets with age, based on a comprehensive integration of available organ-specific and systems-level flow cytometry datasets. Overall, it provides the most up-to-date view of physiological T-cell dynamics and its variance and may be used as a consistent reference for gaining further mechanistic understanding of the human immune status in health and disease.
Collapse
Affiliation(s)
- Victoria Kulesh
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
| | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Modeling & Simulation Decisions FZ-LLC, Dubai, United Arab Emirates
| | | | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
| |
Collapse
|
2
|
Zamora D, Dasgupta S, Stevens-Ayers T, Edmison B, Winston DJ, Razonable RR, Mehta AK, Lyon GM, Boeckh M, Singh N, Koelle DM, Limaye AP. Cytomegalovirus immunity in high-risk liver transplant recipients following preemptive antiviral therapy versus prophylaxis. JCI Insight 2024; 9:e180115. [PMID: 39099206 PMCID: PMC11457861 DOI: 10.1172/jci.insight.180115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
CMV-specific T cells, NK cells, and neutralizing antibodies (nAbs) were assessed in a randomized trial of CMV prevention with preemptive antiviral therapy (PET) versus prophylactic antiviral therapy (PRO) in donor-seropositive/recipient-seronegative (D+R-) liver transplant recipients (LTxR) at 100 days (end of intervention) and at 6 and 12 months after transplant. The PET group had significantly increased numbers of circulating polyfunctional T cells, NK cells, and nAbs compared with the PRO group at day 100, and several CMV immune parameters remained significantly higher by 12 months after transplant. Among PET recipients, preceding CMV viremia (vs. no preceding viremia) was associated with significantly higher levels of most CMV immune parameters at day 100. Higher numbers of CMV-specific polyfunctional T cells and NKG2C+ NK cells at day 100 were associated with a decreased incidence of CMV disease in multivariable Cox regression. The strongest associations with protection against CMV disease were with increased numbers of CMV-specific polyfunctional CD4+ T cells, CD3negCD56dimCD57negNKG2Cpos cells, and CD3negCD56dimCD57posNKG2Cpos NK cells. Our results suggest that PET is superior to PRO for CMV disease prevention by allowing low-level CMV replication and associated antigen exposure that is promptly controlled by antiviral therapy and facilitates enhanced CMV protective immunity in D+R- LTxR.
Collapse
Affiliation(s)
- Danniel Zamora
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sayan Dasgupta
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Bradley Edmison
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Drew J. Winston
- Division of Infectious Diseases, UCLA Medical Center, Los Angeles, California, USA
| | - Raymund R. Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aneesh K. Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - G. Marshall Lyon
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nina Singh
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Transplant Infectious Diseases, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - David M. Koelle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Ajit P. Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
3
|
Gadoth A, Ourfalian K, Basnet S, Kunzweiler C, Bohn RL, Fülöp T, Diaz-Decaro J. Potential relationship between cytomegalovirus and immunosenescence: Evidence from observational studies. Rev Med Virol 2024; 34:e2560. [PMID: 38866595 DOI: 10.1002/rmv.2560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Immunosenescence (IS) occurs as a natural outcome of ageing and may be described as a decline in immune system flexibility and adaptability to sufficiently respond to new, foreign antigens. Potential factors that may precipitate IS include persistent herpesvirus infections, such as cytomegalovirus (CMV). Here, we conducted a review of the literature evaluating the potential association between CMV and IS. Twenty-seven epidemiologic studies that included direct comparisons between CMV-seropositive and CMV-seronegative immunocompetent individuals were analysed. The majority of these studies (n = 20) were conducted in European populations. The strength of evidence supporting a relationship between CMV, and various IS-associated immunologic endpoints was assessed. T-cell population restructuring was the most prominently studied endpoint, described in 21 studies, most of which reported a relationship between CMV and reduced CD4:CD8 T-cell ratio or modified CD8+ T-cell levels. Telomere length (n = 4) and inflammageing (n = 3) were less frequently described in the primary literature, and the association of these endpoints with CMV and IS was less pronounced. An emergent trend from our review is the potential effect modification of the CMV-IS relationship with both sex and age, indicating the importance of considering various effector variables when evaluating associations between CMV and IS. Our analysis revealed plausible mechanisms that may underlie the larger epidemiologic trends seen in the literature that support the indirect effect of CMV on IS. Future studies are needed to clarify CMV-associated and IS-associated immunologic endpoints, as well as in more diverse global and immunocompromised populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Tamas Fülöp
- Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
4
|
Kinney BL, Brammer B, Kansal V, Parrish CJ, Kissick HT, Liu Y, Saba NF, Buchwald ZS, El-Deiry MW, Patel MR, Boyce BJ, Kaka AS, Gross JH, Baddour HM, Chen AY, Schmitt NC. CD28-CD57+ T cells from head and neck cancer patients produce high levels of cytotoxic granules and type II interferon but are not senescent. Oncoimmunology 2024; 13:2367777. [PMID: 38887372 PMCID: PMC11181932 DOI: 10.1080/2162402x.2024.2367777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
T lymphocytes expressing CD57 and lacking costimulatory receptors CD27/CD28 have been reported to accumulate with aging, chronic infection, and cancer. These cells are described as senescent, with inability to proliferate but enhanced cytolytic and cytokine-producing capacity. However, robust functional studies on these cells taken directly from cancer patients are lacking. We isolated these T cells and their CD27/28+ counterparts from blood and tumor samples of 50 patients with previously untreated head and neck cancer. Functional studies confirmed that these cells have enhanced ability to degranulate and produce IFN-γ. They also retain the ability to proliferate, thus are not senescent. These data suggest that CD27/28-CD57+ CD8+ T cells are a subset of highly differentiated, CD45RA+ effector memory (TEMRA) cells with retained proliferative capacity. Patients with > 34% of these cells among CD8+ T cells in the blood had a higher rate of locoregional disease relapse, suggesting these cells may have prognostic significance.
Collapse
Affiliation(s)
- Brendan L.C. Kinney
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brianna Brammer
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Vikash Kansal
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Connor J. Parrish
- School of Medicine, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Haydn T. Kissick
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Urology, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Yuan Liu
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Nabil F. Saba
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | | | - Mark W. El-Deiry
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mihir R. Patel
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brian J. Boyce
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Azeem S. Kaka
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jennifer H. Gross
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - H. Michael Baddour
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Amy Y. Chen
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Alba-Cano T, Fernández-Cruz E, Alonso R, Muñoz-Gómez S, Pérez de Diego R, García Martínez E, Sánchez-Mateos P, Navarro Caspistegui J, Martín López M, Gil-Herrera J. Lack of Specific Immune Response after Five Doses of mRNA SARS-CoV-2 Vaccine in a Patient with CD4 + T-Cell Lymphopenia but Preserved Responses to CMV. Vaccines (Basel) 2024; 12:386. [PMID: 38675768 PMCID: PMC11054516 DOI: 10.3390/vaccines12040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Immunogenicity of SARS-CoV-2 mRNA vaccines is highly heterogeneous in patients with inborn errors of immunity (IEIs). This case report analyzes the immune response to mRNA COVID-19 two-dose primary vaccination followed by three boosters in an IEI patient with marked CD4+ T-cell cytopenia and diminished thymic output, in comparison with that raised against latent, chronic cytomegalovirus (CMV) infection. Serum IgG antibodies anti-spike (S) protein of SARS-CoV-2 and anti-CMV were both determined by chemiluminescent microparticle immunoassays (CMIAs). SARS-CoV-2 and CMV memory CD4+ T-cell responses were simultaneously evaluated in vitro using an activation-induced marker (AIM) assay via multicolor flow cytometry. Throughout the 2-year follow-up that included the administration of five doses of SARS-CoV-2 mRNA vaccines, cellular anti-SARS-CoV-2-specific responses remained consistently negative, with extremely weak humoral responses, while the patient showed in vitro persistent CD4+ T-cell reactivity to CMV peptides and high-IgG CMV-specific titers. The assessment of immune responses to vaccines and prevalent viruses is essential in IEI patients in order to take adequate preventive measures.
Collapse
Affiliation(s)
- Trinidad Alba-Cano
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
| | - Eduardo Fernández-Cruz
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Roberto Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón and CIBER (Centro de Investigación Biomédicas en Red) de Enfermedades Respiratorias, CIBERES, 08028 Barcelona, Spain;
| | - Sara Muñoz-Gómez
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046 Madrid, Spain;
| | - Elena García Martínez
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
| | - Paloma Sánchez-Mateos
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain;
| | - Joaquín Navarro Caspistegui
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Mónica Martín López
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
| | - Juana Gil-Herrera
- Division of Immunology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain; (T.A.-C.); (E.F.-C.); (S.M.-G.); (E.G.M.); (J.N.C.); (M.M.L.)
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Reeves DB, Rigau DN, Romero A, Zhang H, Simonetti FR, Varriale J, Hoh R, Zhang L, Smith KN, Montaner LJ, Rubin LH, Gange SJ, Roan NR, Tien PC, Margolick JB, Peluso MJ, Deeks SG, Schiffer JT, Siliciano JD, Siliciano RF, Antar AAR. Mild HIV-specific selective forces overlaying natural CD4+ T cell dynamics explain the clonality and decay dynamics of HIV reservoir cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302704. [PMID: 38405967 PMCID: PMC10888981 DOI: 10.1101/2024.02.13.24302704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRβ) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRβ and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.
Collapse
|
7
|
Barrios EL, Mazer MB, McGonagill PW, Bergmann CB, Goodman MD, Gould RW, Rao M, Polcz VE, Davis RJ, Del Toro DE, Dirain ML, Dram A, Hale LO, Heidarian M, Kim CY, Kucaba TA, Lanz JP, McCray AE, Meszaros S, Miles S, Nelson CR, Rocha IL, Silva EE, Ungaro RF, Walton AH, Xu J, Zeumer-Spataro L, Drewry AM, Liang M, Bible LE, Loftus TJ, Turnbull IR, Efron PA, Remy KE, Brakenridge SC, Badovinac VP, Griffith TS, Moldawer LL, Hotchkiss RS, Caldwell CC. Adverse outcomes and an immunosuppressed endotype in septic patients with reduced IFN-γ ELISpot. JCI Insight 2024; 9:e175785. [PMID: 38100268 PMCID: PMC10906237 DOI: 10.1172/jci.insight.175785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Monty B. Mazer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Patrick W. McGonagill
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Christian B. Bergmann
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- University Hospital Ulm, Clinic for Trauma Surgery, Hand, Plastic, and Reconstructive Surgery Albert-Einstein-Allee 23, Ulm, Germany
| | - Michael D. Goodman
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert W. Gould
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahil Rao
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ruth J. Davis
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Drew E. Del Toro
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marvin L.S. Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alexandra Dram
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucas O. Hale
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mohammad Heidarian
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Caleb Y. Kim
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Tamara A. Kucaba
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jennifer P. Lanz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ashley E. McCray
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sandra Meszaros
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sydney Miles
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Candace R. Nelson
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ivanna L. Rocha
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Elvia E. Silva
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ricardo F. Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Andrew H. Walton
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Xu
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Leilani Zeumer-Spataro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Anne M. Drewry
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muxuan Liang
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida College of Public Health and Health Professions and the University of Florida College of Medicine, Gainesville, Florida, USA
| | - Letitia E. Bible
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Isaiah R. Turnbull
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kenneth E. Remy
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Scott C. Brakenridge
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vladimir P. Badovinac
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Experimental Pathology PhD Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Minneapolis VA Healthcare System, Minneapolis, Minnesota, USA
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles C. Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Yang D, Yao Y, Sun Y, Jiang E. Refractory cytomegalovirus infections in Chinese patients receiving allogeneic hematopoietic cell transplantation: a review of the literature. Front Immunol 2023; 14:1287456. [PMID: 38187387 PMCID: PMC10770847 DOI: 10.3389/fimmu.2023.1287456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
In the absence of prophylactic therapy, cytomegalovirus (CMV) viremia is a common complication following allogeneic hematopoietic cell transplantation (allo-HCT) and represents a significant cause of morbidity and mortality. Approximately 25% of allo-HCT happen in China, where the development and refinement of the 'Beijing protocol' has enabled frequent and increasing use of haploidentical donors. However, refractory CMV infection (an increase by >1 log10 in blood or serum CMV DNA levels after at least 2 weeks of an appropriately dosed anti-CMV medication) is more common among patients with haploidentical donors than with other donor types and has no established standard of care. Here, we review the literature regarding refractory CMV infection following allo-HCT in China.
Collapse
Affiliation(s)
- Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | | | - Yi Sun
- MRL Global Medical Affairs, Shanghai, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
9
|
Barrios EA, Mazer MB, McGonagill P, Bergmann CB, Goodman MD, Gould R, Rao M, Polcz V, Davis R, Del Toro D, Dirain M, Dram A, Hale L, Heidarian M, Kucaba TA, Lanz JP, McCray A, Meszaros S, Miles S, Nelson C, Rocha I, Silva EE, Ungaro R, Walton A, Xu J, Zeumer-Spataro L, Drewry A, Liang M, Bible LE, Loftus T, Turnbull I, Efron PA, Remy KE, Brakenridge S, Badovinac VP, Griffith TS, Moldawer LL, Hotchkiss RS, Caldwell CC. Adverse Long-Term Outcomes and an Immune Suppressed Endotype in Sepsis Patients with Reduced Interferon-γELISpot: A Multicenter, Prospective Observational Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.13.23295360. [PMID: 37745385 PMCID: PMC10516075 DOI: 10.1101/2023.09.13.23295360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Sepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients has generally relied on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision. METHODS An ex vivo whole blood enzyme-linked immunosorbent (ELISpot) assay for cellular production of interferon-γ (IFN-γ) was evaluated in 107 septic and 68 non-septic patients from five academic health centers using blood samples collected on days 1, 4 and 7 following ICU admission. RESULTS Compared with 46 healthy subjects, unstimulated and stimulated whole blood IFNγ expression were either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole blood IFNγ expression was significantly reduced on ICU days 1, 4 and 7 (all p<0.05), due to both significant reductions in total number of IFNγ producing cells and amount of IFNγ produced per cell (all p<0.05). Importantly, IFNγ total expression on day 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6 and procalcitonin. Septic patients with low IFNγ expression were older and had lower ALC and higher sPD-L1 and IL-10 concentrations, consistent with an immune suppressed endotype. CONCLUSIONS A whole blood IFNγ ELISpot assay can both identify septic patients at increased risk of late mortality, and identify immune-suppressed, sepsis patients.
Collapse
|
10
|
Thawornpan P, Malee C, Kochayoo P, Wangriatisak K, Leepiyasakulchai C, Ntumngia FB, De SL, Adams JH, Chootong P. Characterization of Duffy Binding Protein II-specific CD4 +T cell responses in Plasmodium vivax patients. Sci Rep 2023; 13:7741. [PMID: 37173361 PMCID: PMC10177721 DOI: 10.1038/s41598-023-34903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Plasmodium vivax Duffy Binding Protein region II (PvDBPII) is a leading vaccine candidate against blood-stage vivax malaria. Anti-PvDBPII antibodies potentially block parasite invasion by inhibition of erythrocyte binding. However, knowledge of PvDBPII-specific T cell responses is limited. Here, to assess the responses of PvDBPII-specific CD4+T cells in natural P. vivax infection, three cross-sectional studies were conducted in recovered subjects. In silico analysis was used for potential T cell epitope prediction and selection. PBMCs from P. vivax subjects were stimulated with selected peptides and examined for cytokine production by ELISPOT or intracellular cytokine staining. Six dominant T cell epitopes were identified. Peptide-driven T cell responses showed effector memory CD4+T cell phenotype, secreting both IFN-γ and TNF-α cytokines. Single amino acid substitutions in three T cell epitopes altered levels of IFN-γ memory T cell responses. Seropositivity of anti-PvDBPII antibodies were detected during acute malaria (62%) and persisted up to 12 months (11%) following P. vivax infection. Further correlation analysis showed four out of eighteen subjects had positive antibody and CD4+T cell responses to PvDBPII. Altogether, PvDBPII-specific CD4+T cells were developed in natural P. vivax infections. Data on their antigenicity could facilitate development of an efficacious vivax malaria vaccine.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chayapat Malee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
11
|
Wong P, Cina DP, Sherwood KR, Fenninger F, Sapir-Pichhadze R, Polychronakos C, Lan J, Keown PA. Clinical application of immune repertoire sequencing in solid organ transplant. Front Immunol 2023; 14:1100479. [PMID: 36865546 PMCID: PMC9971933 DOI: 10.3389/fimmu.2023.1100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Background Measurement of T cell receptor (TCR) or B cell receptor (BCR) gene utilization may be valuable in monitoring the dynamic changes in donor-reactive clonal populations following transplantation and enabling adjustment in therapy to avoid the consequences of excess immune suppression or to prevent rejection with contingent graft damage and to indicate the development of tolerance. Objective We performed a review of current literature to examine research in immune repertoire sequencing in organ transplantation and to assess the feasibility of this technology for clinical application in immune monitoring. Methods We searched MEDLINE and PubMed Central for English-language studies published between 2010 and 2021 that examined T cell/B cell repertoire dynamics upon immune activation. Manual filtering of the search results was performed based on relevancy and predefined inclusion criteria. Data were extracted based on study and methodology characteristics. Results Our initial search yielded 1933 articles of which 37 met the inclusion criteria; 16 of these were kidney transplant studies (43%) and 21 were other or general transplantation studies (57%). The predominant method for repertoire characterization was sequencing the CDR3 region of the TCR β chain. Repertoires of transplant recipients were found to have decreased diversity in both rejectors and non-rejectors when compared to healthy controls. Rejectors and those with opportunistic infections were more likely to have clonal expansion in T or B cell populations. Mixed lymphocyte culture followed by TCR sequencing was used in 6 studies to define an alloreactive repertoire and in specialized transplant settings to track tolerance. Conclusion Methodological approaches to immune repertoire sequencing are becoming established and offer considerable potential as a novel clinical tool for pre- and post-transplant immune monitoring.
Collapse
Affiliation(s)
- Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide P Cina
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Karen R Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ruth Sapir-Pichhadze
- Department of Medicine, Division of Nephrology, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children's Hospital, Montreal, QC, Canada
| | - James Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Johnson AC, Silva JAF, Kim SC, Larsen CP. Progress in kidney transplantation: The role for systems immunology. Front Med (Lausanne) 2022; 9:1070385. [PMID: 36590970 PMCID: PMC9800623 DOI: 10.3389/fmed.2022.1070385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
The development of systems biology represents an immense breakthrough in our ability to perform translational research and deliver personalized and precision medicine. A multidisciplinary approach in combination with use of novel techniques allows for the extraction and analysis of vast quantities of data even from the volume and source limited samples that can be obtained from human subjects. Continued advances in microfluidics, scalability and affordability of sequencing technologies, and development of data analysis tools have made the application of a multi-omics, or systems, approach more accessible for use outside of specialized centers. The study of alloimmune and protective immune responses after solid organ transplant offers innumerable opportunities for a multi-omics approach, however, transplant immunology labs are only just beginning to adopt the systems methodology. In this review, we focus on advances in biological techniques and how they are improving our understanding of the immune system and its interactions, highlighting potential applications in transplant immunology. First, we describe the techniques that are available, with emphasis on major advances that allow for increased scalability. Then, we review initial applications in the field of transplantation with a focus on topics that are nearing clinical integration. Finally, we examine major barriers to adapting these methods and discuss potential future developments.
Collapse
|
13
|
Zhang T, Liu X, Zhao Y, Xu X, Liu Y, Wu X. Excessive IL-15 promotes cytotoxic CD4 + CD28- T cell-mediated renal injury in lupus nephritis. Immun Ageing 2022; 19:50. [PMID: 36320075 PMCID: PMC9624042 DOI: 10.1186/s12979-022-00305-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE) are highly susceptible to infection and cardiovascular events, suggesting that chronic antigenic stimulation may accelerate premature aging in SLE patients. Premature aging in SLE is often accompanied with the expansion of cytotoxic CD4 + CD28-T cells. Damage caused by CD4 + CD28- T cells enhances the progressive aging of the tissue function and loss of organism's fitness. The high serum level of IL-15 has been implicated in the pathogenesis of SLE, but its role in CD4 + CD28-T cell-mediated cytotoxicity in nephritic SLE remains unclear. The aim of this study was to investigate the effect of IL-15 on functional properties and associated renal damage of cytotoxic CD4 + CD28- T cell in lupus nephritis (LN). RESULTS Flow cytometry showed that the number of circulating innate-like CD4 + CD28- T cells was increased in patients with nephritic SLE. Immunofluorescence showed CD4 + CD28- T cell infiltration in the kidney of LN patients, which was correlated with multiple clinicopathological features including estimated glomerular filtration rate (eGFR), proteinuria, the proportion of glomerulosclerosis and the degree of renal chronicity. In addition, a high level of IL-15 and IL15-expressing macrophage infiltration was detected in the periglomerular and intraglomerular tissues of LN patients, which enhanced the innate features, cytokine secretion and migratory capability of CD4 + CD28- T cells, and finally exerted direct TCR-independent cytotoxicity on glomerular endothelial cells in an IL-15-dependent manner in vitro. CONCLUSION Our study demonstrated that excessive IL-15 potentially promoted cytotoxic CD4 + CD28- T cell-mediated renal damage in LN. This finding may provide new insights into the potential association of premature aging and tissue damage in LN.
Collapse
Affiliation(s)
- Ti Zhang
- grid.41156.370000 0001 2314 964XJinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Xin Liu
- grid.73113.370000 0004 0369 1660Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Yue Zhao
- grid.41156.370000 0001 2314 964XJinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Xu
- grid.41156.370000 0001 2314 964XJinling Hospital, National Clinical Research Center of Kidney Diseases, Nanjing University School of Medicine, Nanjing, China
| | - Yaoyang Liu
- grid.73113.370000 0004 0369 1660Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Xin Wu
- grid.73113.370000 0004 0369 1660Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Pius-Sadowska E, Niedźwiedź A, Kulig P, Baumert B, Sobuś A, Rogińska D, Łuczkowska K, Ulańczyk Z, Wnęk S, Karolak I, Paczkowska E, Kotfis K, Kawa M, Stecewicz I, Zawodny P, Machaliński B. CXCL8, CCL2, and CMV Seropositivity as New Prognostic Factors for a Severe COVID-19 Course. Int J Mol Sci 2022; 23:ijms231911338. [PMID: 36232655 PMCID: PMC9570115 DOI: 10.3390/ijms231911338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The exact pathophysiology of severe COVID-19 is not entirely elucidated, but it has been established that hyperinflammatory responses and cytokine storms play important roles. The aim of this study was to examine CMV status, select chemokines, and complement components in COVID-19, and how concentrations of given molecules differ over time at both molecular and proteomic levels. A total of 210 COVID-19 patients (50 ICU and 160 non-ICU patients) and 80 healthy controls were enrolled in this study. Concentrations of select chemokines (CXCL8, CXCL10, CCL2, CCL3, CCR1) and complement factors (C2, C9, CFD, C4BPA, C5AR1, CR1) were examined at mRNA and protein levels with regard to a COVID-19 course (ICU vs. non-ICU group) and CMV status at different time intervals. We detected several significant differences in chemokines and complement profiles between ICU and non-ICU groups. Pro-inflammatory chemokines and the complement system appeared to greatly contribute to the pathogenesis and development of severe COVID-19. Higher concentrations of CXCL8 and CCL2 in the plasma, with reduced mRNA expression presumably through negative feedback mechanisms, as well as CMV-positive status, correlated with more severe courses of COVID-19. Therefore, CXCL8, CCL2, and CMV seropositivity should be considered as new prognostic factors for severe COVID-19 courses. However, more in-depth research is needed.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Niedźwiedź
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bartłomiej Baumert
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Szymon Wnęk
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Igor Karolak
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Miłosz Kawa
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Iwona Stecewicz
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Piotr Zawodny
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-4661-546
| |
Collapse
|
15
|
Tamura Y, Yamane K, Kawano Y, Bullinger L, Wirtz T, Weber T, Sander S, Ohki S, Kitajima Y, Okada S, Rajewsky K, Yasuda T. Concomitant Cytotoxic Effector Differentiation of CD4+ and CD8+ T Cells in Response to EBV-Infected B Cells. Cancers (Basel) 2022; 14:cancers14174118. [PMID: 36077655 PMCID: PMC9454722 DOI: 10.3390/cancers14174118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The Epstein–Barr virus (EBV) is a γ-herpes virus that primarily infects human B cells, and more than 90% of adults have experienced infection. EBV+ B cells express several viral proteins, transmitting signals important for the transformation and tumorigenesis of the infected B cells. Immune surveillance by the host immune system is important to suppress such abnormal expansion of EBV-infected B cells. Here we found that both CD4+ T cells and CD8+ T cells show similar gene expression patterns relating to cytotoxicity towards EBV-infected B cells. EBV-specific cytotoxic CD4+ T cells markedly expressed T-bet, Granzyme B, and Perforin alongside killing activity, which could reflect mechanisms shared with cytotoxic CD8+ T cells. Our findings support the concept that, upon EBV and perhaps other viral infections, T cells of different subsets can be drawn into common pathways mediating immune surveillance through cytotoxicity. Abstract Most people infected by EBV acquire specific immunity, which then controls latent infection throughout their life. Immune surveillance of EBV-infected cells by cytotoxic CD4+ T cells has been recognized; however, the molecular mechanism of generating cytotoxic effector T cells of the CD4+ subset remains poorly understood. Here we compared phenotypic features and the transcriptome of EBV-specific effector-memory CD4+ T cells and CD8+ T cells in mice and found that both T cell types show cytotoxicity and, to our surprise, widely similar gene expression patterns relating to cytotoxicity. Similar to cytotoxic CD8+ T cells, EBV-specific cytotoxic CD4+ T cells from human peripheral blood expressed T-bet, Granzyme B, and Perforin and upregulated the degranulation marker, CD107a, immediately after restimulation. Furthermore, T-bet expression in cytotoxic CD4+ T cells was highly correlated with Granzyme B and Perforin expression at the protein level. Thus, differentiation of EBV-specific cytotoxic CD4+ T cells is possibly controlled by mechanisms shared by cytotoxic CD8+ T cells. T-bet-mediated transcriptional regulation may explain the similarity of cytotoxic effector differentiation between CD4+ T cells and CD8+ T cells, implicating that this differentiation pathway may be directed by environmental input rather than T cell subset.
Collapse
Affiliation(s)
- Yumi Tamura
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Keita Yamane
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yohei Kawano
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Chariteé-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Tristan Wirtz
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Timm Weber
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Sandrine Sander
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence: ; Tel.: +81-82-257-5175
| |
Collapse
|
16
|
Higdon LE, Ahmad AA, Schaffert S, Margulies KB, Maltzman JS. CMV-Responsive CD4 T Cells Have a Stable Cytotoxic Phenotype Over the First Year Post-Transplant in Patients Without Evidence of CMV Viremia. Front Immunol 2022; 13:904705. [PMID: 35837398 PMCID: PMC9275561 DOI: 10.3389/fimmu.2022.904705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Cytomegalovirus (CMV) infection is a known cause of morbidity and mortality in solid organ transplant recipients. While primary infection is controlled by a healthy immune system, CMV is never eradicated due to viral latency and periodic reactivation. Transplantation and associated therapies hinder immune surveillance of CMV. CD4 T cells are an important part of control of CMV reactivation. We therefore investigated how CMV impacts differentiation, functionality, and expansion of protective CD4 T cells from recipients of heart or kidney transplant in the first year post-transplant without evidence of CMV viremia. We analyzed longitudinal peripheral blood samples by flow cytometry and targeted single cell RNA sequencing coupled to T cell receptor (TCR) sequencing. At the time of transplant, CD4 T cells from CMV seropositive transplant recipients had a higher degree of immune aging than the seronegative recipients. The phenotype of CD4 T cells was stable over time. CMV-responsive CD4 T cells in our transplant cohort included a large proportion with cytotoxic potential. We used sequence analysis of TCRαβ to identify clonal expansion and found that clonally expanded CMV-responsive CD4 T cells were of a predominantly aged cytotoxic phenotype. Overall, our analyses suggest that the CD4 response to CMV is dominated by cytotoxicity and not impacted by transplantation in the first year. Our findings indicate that CMV-responsive CD4 T cells are homeostatically stable in the first year after transplantation and identify subpopulations relevant to study the role of this CD4 T cell population in post-transplant health.
Collapse
Affiliation(s)
- Lauren E. Higdon
- Department of Medicine, Nephrology, Stanford University, Palo Alto, CA, United States
- *Correspondence: Lauren E. Higdon, ; Jonathan S. Maltzman,
| | - Ayah A. Ahmad
- Macaulay Honors College, Hunter College, The City University of New York, New York, NY, United States
| | - Steven Schaffert
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
- Department of Medicine/Biomedical Informatics, Stanford University, Stanford, CA, United States
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jonathan S. Maltzman
- Department of Medicine, Nephrology, Stanford University, Palo Alto, CA, United States
- Geriatric Research Education and Clinical Center, Veteran's Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- *Correspondence: Lauren E. Higdon, ; Jonathan S. Maltzman,
| |
Collapse
|
17
|
Nicolet BP, Guislain A, Wolkers MC. CD29 Enriches for Cytotoxic Human CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:2966-2975. [PMID: 34782446 DOI: 10.4049/jimmunol.2100138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022]
Abstract
CD4+ T cells are key contributors in the induction of adaptive immune responses against pathogens. Even though CD4+ T cells are primarily classified as noncytotoxic helper T cells, it has become appreciated that a subset of CD4+ T cells is cytotoxic. However, tools to identify these cytotoxic CD4+ T cells are lacking. We recently showed that CD29 (integrin β1, ITGB1) expression on human CD8+ T cells enriches for the most potent cytotoxic T cells. In this study, we questioned whether CD29 expression also associates with cytotoxic CD4+ T cells. We show that human peripheral blood-derived CD29hiCD4+ T cells display a cytotoxic gene expression profile, which closely resembles that of CD29hi cytotoxic CD8+ T cells. This CD29hi cytotoxic phenotype was observed ex vivo and was maintained in in vitro cultures. CD29 expression enriched for CD4+ T cells, which effectively produced the proinflammatory cytokines IFN-γ, IL-2, and TNF-α, and cytotoxic molecules. Lastly, CD29-expressing CD4+ T cells transduced with a MART1-specific TCR showed target cell killing in vitro. In conclusion, we demonstrate in this study that CD29 can be employed to enrich for cytotoxic human CD4+ T cells.
Collapse
Affiliation(s)
- Benoît P Nicolet
- Department of Hematopoiesis, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands; and Oncode Institute, Amsterdam, the Netherlands
| | - Aurelie Guislain
- Department of Hematopoiesis, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands; and Oncode Institute, Amsterdam, the Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands; and Oncode Institute, Amsterdam, the Netherlands
| |
Collapse
|