1
|
Duerksen J, Lopez RCT, Tappia PS, Ramjiawan B, Mansouri B. Efficacy of biomarkers and imaging techniques for the diagnosis of traumatic brain injury: challenges and opportunities. Mol Cell Biochem 2025; 480:2797-2814. [PMID: 39656395 DOI: 10.1007/s11010-024-05176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/25/2024] [Indexed: 05/03/2025]
Abstract
Concussion is a pervasive health issue in the present day. Increased prevalence in recent years has indicated a need to improve the current understanding of minor traumatic brain injury (mTBI). Effort has been devoted to understanding the underlying pathophysiology of TBIs, but some mechanisms remain unknown. Potentially lethal secondary effects of concussion include second impact syndrome and chronic traumatic encephalopathy (CTE), introducing long-term considerations for the management of mTBI. Post-concussion syndrome is another long-term consequence of concussion and may be influenced by both neuroinflammation and hormonal imbalances resulting from head trauma. Genetically mutated apolipoprotein E may also contribute to the severity and persistence of concussion symptoms, perhaps even acting as a risk factor for CTE. As it stands, the diagnosis of concussion is nuanced, depending primarily on subjective diagnostic tools that incorporate patient-reported symptoms and neurocognitive tests. Diagnostic tools provide some assistance in concussion diagnosis, but still lack accuracy and inherently leave room for uncertainty. To mitigate some of this uncertainty, considerable research has been devoted to the development of methods to diagnose concussions objectively. Biomarkers such as S100 calcium binding protein B (S100B), glial fibrillary acidic protein (GFAP), neurofilament light protein (Nf-L), interleukin-6 (IL-6) and microRNAs (miRNAs) as well as imaging techniques including diffusion tensor imaging (DTI) and blood-oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) show great promise in this regard. This review aims to compile the relevant literature in these areas in the hopes of being used as a reference point for future research regarding concussions.
Collapse
Affiliation(s)
- James Duerksen
- Asper Clinical Research Institute and Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada
| | - Rhea Carina T Lopez
- Asper Clinical Research Institute and Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada
| | - Paramjit S Tappia
- Asper Clinical Research Institute and Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.
| | - Bram Ramjiawan
- Asper Clinical Research Institute and Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Behzad Mansouri
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Duve K, Shkrobot S, Petakh P, Oksenych V, Kamyshnyi O. Clinical, Neuroimaging, and Genetic Markers Associated with Cognitive and Functional Outcomes After Traumatic Brain Injury. J Clin Med 2025; 14:2796. [PMID: 40283626 PMCID: PMC12027744 DOI: 10.3390/jcm14082796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Traumatic brain injury (TBI) is a major cause of long-term disability worldwide, often leading to progressive cognitive and functional impairments. This study aimed to investigate the underlying factors contributing to long-term deterioration in TBI patients. Methods: We conducted a comprehensive evaluation of 145 patients aged 18-66 years with a documented history of TBI and ongoing cognitive and behavioral deficits. Assessments included neuroimaging, laboratory tests, genetic analysis, and standardized tools such as the Montreal Cognitive Assessment (MoCA) and the Barthel Index. Results: Structural brain abnormalities, including ventricular enlargement and gliosis, were observed in a substantial portion of the cohort. Persistent neuroinflammatory markers were also identified. Genetic analysis revealed a significant association between cognitive decline and polymorphisms in the ACE and PON1 genes. Patients carrying these variants were more likely to exhibit reduced cognitive performance and greater functional limitations. Conclusion: These findings suggest that genetic predisposition, chronic neuroinflammation, and structural brain damage collectively contribute to long-term outcomes following TBI. This highlights the potential of genetic and imaging biomarkers in identifying high-risk individuals and supports the need for personalized approaches to diagnosis, monitoring, and treatment in chronic TBI management.
Collapse
Affiliation(s)
- Khrystyna Duve
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Svitlana Shkrobot
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine;
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
3
|
Bedggood MJ, Essex CA, Theadom A, Murray H, Hume P, Holdsworth SJ, Faull RLM, Pedersen M. MRI-T2 Relaxometry is Increased in Mild Traumatic Brain Injury: Indications of Acute Brain Abnormalities After Injury. J Neurosci Res 2025; 103:e70034. [PMID: 40178334 PMCID: PMC11967326 DOI: 10.1002/jnr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Mild traumatic brain injury (mTBI) is a common condition, particularly pervasive in contact sports environments. A range of symptoms can accompany this type of injury and negatively impact people's lives. As mTBI diagnosis and recovery largely rely on subjective reports, more objective injury markers are needed. The current study compared structural brain MRI-T2 relaxometry between a group of 40 male athletes with mTBI within 14 days of injury and 40 age-matched male controls. Voxel-averaged T2 relaxometry within the gray matter was increased for the mTBI group compared to controls (p < 0.001), with statistically significant increased T2 relaxometry particularly in superior cortical regions. Our findings indicate subtle brain abnormalities can be identified in acute mTBI using MRI-T2 relaxometry. These brain abnormalities may reflect inflammation present in the brain and could constitute an objective injury marker to supplement current subjective methods that dominate clinical decisions regarding diagnosis and prognosis. Future research should validate this potential marker with other data types, such as blood biomarkers or histological samples.
Collapse
Affiliation(s)
| | | | - Alice Theadom
- Auckland University of TechnologyAucklandNew Zealand
| | | | - Patria Hume
- Auckland University of TechnologyAucklandNew Zealand
- The University of AucklandAucklandNew Zealand
| | - Samantha J. Holdsworth
- The University of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
| | | | | |
Collapse
|
4
|
Pertab JL, Merkley TL, Winiarski H, Cramond KMJ, Cramond AJ. Concussion and the Autonomic, Immune, and Endocrine Systems: An Introduction to the Field and a Treatment Framework for Persisting Symptoms. J Pers Med 2025; 15:33. [PMID: 39852225 PMCID: PMC11766534 DOI: 10.3390/jpm15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
A significant proportion of patients who sustain a concussion/mild traumatic brain injury endorse persisting, lingering symptoms. The symptoms associated with concussion are nonspecific, and many other medical conditions present with similar symptoms. Medical conditions that overlap symptomatically with concussion include anxiety, depression, insomnia, chronic pain, chronic fatigue, fibromyalgia, and cervical strain injuries. One of the factors that may account for these similarities is that these conditions all present with disturbances in the optimal functioning of the autonomic nervous system and its intricate interactions with the endocrine system and immune system-the three primary regulatory systems in the body. When clinicians are working with patients presenting with persisting symptoms after concussion, evidence-based treatment options drawn from the literature are limited. We present a framework for the assessment and treatment of persisting symptoms following concussion based on the available evidence (treatment trials), neuroanatomical principles (research into the physiology of concussion), and clinical judgment. We review the research supporting the premise that behavioral interventions designed to stabilize and optimize regulatory systems in the body following injury have the potential to reduce symptoms and improve functioning in patients. Foundational concussion rehabilitation strategies in the areas of sleep stabilization, fatigue management, physical exercise, nutrition, relaxation protocols, and behavioral activation are outlined along with practical strategies for implementing intervention modules with patients.
Collapse
Affiliation(s)
- Jon L. Pertab
- Neurosciences Institute, Intermountain Healthcare, Murray, UT 84107, USA
| | - Tricia L. Merkley
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Holly Winiarski
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
5
|
Al-Khateeb ZF, Henson SM, Tremoleda JL, Michael-Titus AT. The Immune Response in Two Models of Traumatic Injury of the Immature Brain. Cells 2024; 13:1612. [PMID: 39404376 PMCID: PMC11475908 DOI: 10.3390/cells13191612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Traumatic brain injury (TBI) can cause major disability and increases the risk of neurodegeneration. Post-TBI, there is infiltration of peripheral myeloid and lymphoid cells; there is limited information on the peripheral immune response post-TBI in the immature brain-where injury may interfere with neurodevelopment. We carried out two injury types in juvenile mice: invasive TBI with a controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury and analysed the response at 5- and 35-days post-injury. In the two models, we detected the brain infiltration of immune cells (e.g., neutrophils, monocytes, dendritic cells, CD4+ T cells, and NK cells). There were increases in macrophages, neutrophils, and dendritic cells in the spleen, increases in dendritic cells in blood, and increases in CD8+ T cells and B cells in lymph nodes. These results indicate a complex peripheral immune response post-TBI in the immature brain, with differences between an invasive injury and a repetitive mild injury.
Collapse
Affiliation(s)
- Zahra F. Al-Khateeb
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Siân M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jordi L. Tremoleda
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
6
|
Alrasheed AS, Alqadhibi MA, Khoja RH, Alayyaf AS, Alhumoudi DS, Aldawlan MI, Alghanmi BO, Almutairi FS, Bin-Mahfooz MA, Altalhi LA, Aldanyowi SN, Aleid AM, Alessa AA. Emerging therapies for immunomodulation in traumatic brain injury: A systematic review and meta-analysis. Surg Neurol Int 2024; 15:327. [PMID: 39372991 PMCID: PMC11450791 DOI: 10.25259/sni_502_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024] Open
Abstract
Background Traumatic brain injury (TBI) represents a significant global health burden, often leading to significant morbidity and mortality. Mounting evidence underscores the intricate involvement of dysregulated immune responses in TBI pathophysiology, highlighting the potential for immunomodulatory interventions to mitigate secondary injury cascades and enhance patient outcomes. Despite advancements in treatment modalities, optimizing therapeutic strategies remains a critical challenge in TBI management. To address this gap, this systematic review and meta-analysis aimed to rigorously evaluate the efficacy and safety of emerging immunomodulatory therapies in the context of TBI. Methods We searched electronic databases such as PubMed, Scopus, Web of Science and CENTRAL for relevant studies investigating the efficacy of immunomodulatory therapies in TBI that were meticulously selected for inclusion. Two independent reviewers meticulously performed data extraction and quality assessment, adhering to predefined criteria. Both randomized controlled trials (RCTs) and observational studies reporting clinically relevant outcomes, such as mortality rates, the Glasgow coma scale, and adverse events, were meticulously scrutinized. Meta-analysis techniques were employed to assess treatment effects across studies quantitatively and analyzed using the Review Manager software (version 5.2). Results Fourteen studies (n = 1 observational and n = 13 RCTs) were included in our study. Meta-analysis showed no significant overall mortality difference, but erythropoietin (EPO) significantly reduced mortality (odds ratio = 0.49; 95% confidence interval: 0.31-0.78, P = 0.002). The adverse event meta-analysis revealed no significant differences. Conclusion Immunomodulatory therapies did not significantly affect overall mortality, but EPO demonstrated promising results. Adverse events did not significantly differ from controls. Further research is warranted to refine TBI treatment protocols.
Collapse
Affiliation(s)
| | | | - Rammaz Hussam Khoja
- Department of Surgery, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Abdulaziz Saad Alayyaf
- Department of Surgery, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia
| | - Duaa Saleh Alhumoudi
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mubarak Ibrahim Aldawlan
- Department of Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | | | - Mohammed Ali Bin-Mahfooz
- Department of Surgery, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Lina Abdulrahim Altalhi
- Department of Surgery, College of Medicine and Medical Science, Arabian Gulf University, Manama, Bahrain
| | - Saud Nayef Aldanyowi
- Department of Surgery, College of Medicine, King Faisal University, AlAhsa, Saudi Arabia
| | | | | |
Collapse
|
7
|
Vanier C, Santhanam P, Rochester N, Carter L, Lim M, Kilani A, Venkatesh S, Azad S, Knoblauch T, Surti T, Brown C, Sanchez JR, Ma L, Parikh S, Germin L, Fazzini E, Snyder TH. Symptom Persistence Relates to Volume and Asymmetry of the Limbic System after Mild Traumatic Brain Injury. J Clin Med 2024; 13:5154. [PMID: 39274367 PMCID: PMC11396354 DOI: 10.3390/jcm13175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Persistent symptoms have been reported in up to 50% of the 27 million people with mild traumatic brain injuries (mTBI) every year. MRI findings are currently limited by low diagnostic and prognostic sensitivities, constraining the value of imaging in the stratification of patients following mTBI. Limbic system structures are promising brain regions in offering prognostic factors for symptom persistence following mTBI. The objective of this study was to associate volume and symmetry of limbic system structures with the presence and persistence of common symptoms in patients with mTBI. Methods: This study focused on 524 adults (aged 18-82), 58% female, with 82% injured in motor vehicle accidents and 28% reporting loss of consciousness (LOC). Magnetic resonance imaging (MRI) data included a sagittal 3D T1-weighted sequence with 1.2 mm slice thickness, with voxel sizes of 0.93 mm × 0.93 mm × 1.2 mm, obtained a median of 156 days after injury. Symptom diagnosis and persistence were collected retrospectively from patient medical records. Intracranial volume-adjusted regional volumes per side utilizing automated volumetric analysis (NeuroQuant®) were used to calculate total volume, laterality index, and side-independent asymmetry. Covariates included age, sex, LOC, and days from injury. Limbic volumetrics did not relate to symptom presentation, except the (-) association between headache presence and thalamus volume (adjusted odds ratio = 0.51, 95% confidence interval = 0.32, 0.85). Headache, balance problems, anxiety, and depression persistence was (-) associated with thalamus volume (hazard ratio (HR) 1.25 to 1.94). Longer persistence of balance problems was associated with (-) lateral orbitofrontal cortex volume (HR = 1.33) and (+) asymmetry of the hippocampus (HR = 0.27). Persistence of cognitive deficits was associated with (+) asymmetry in the caudal anterior cingulate (HR = 0.67). Depression persistence was associated with (+) asymmetry in the isthmus of the cingulate gyrus (HR = 5.39). Persistence of anxiety was associated with (-) volume of the parahippocampal gyrus (HR = 1.67), orbitofrontal cortex (HR > 1.97), and right-biased laterality of the entorhinal cortex (HR = 0.52). Conclusions: Relative volume and asymmetry of the limbic system structures in patients with mTBI are associated with the persistence of symptoms, particularly anxiety. The conclusions of this study are limited by the absence of a reference group with no mTBI.
Collapse
Affiliation(s)
- Cheryl Vanier
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | | | - Nicholas Rochester
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Medicine, Central Michigan University, Midland, MI 48859, USA
| | | | - Mike Lim
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Amir Kilani
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Shivani Venkatesh
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Sherwin Azad
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Thomas Knoblauch
- Imgen Research Group, Las Vegas, NV 89118, USA
- Department of Interdisciplinary Health Sciences, University of Nevada, Las Vegas, NV 89557, USA
| | - Tapasya Surti
- Department of Neurology, University of Texas Health Science Center, Houston, TX 78701-2982, USA
| | - Colin Brown
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Justin Roy Sanchez
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Leon Ma
- Department of Anesthesiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Shaunaq Parikh
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Leo Germin
- Clinical Neurology Specialists, Las Vegas, NV 89147, USA
| | - Enrico Fazzini
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Travis H Snyder
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
- Department of Radiology, HCA Healthcare, Mountain View Hospital, Las Vegas, NV 89166, USA
- SimonMed Imaging, Las Vegas, NV 89121, USA
| |
Collapse
|
8
|
Ye C, Ho R, Moberg KH, Zheng JQ. Adverse impact of female reproductive signaling on age-dependent neurodegeneration after mild head trauma in Drosophila. eLife 2024; 13:RP97908. [PMID: 39213032 PMCID: PMC11364438 DOI: 10.7554/elife.97908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - Ryan Ho
- College of Art and Science, Emory UniversityAtlantaUnited States
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - James Q Zheng
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
- Department of Neurology, Emory University School of MedicineAtlantaUnited States
- Center for Neurodegenerative Diseases, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
9
|
Marino AL, Rex TS, Harrison FE. Modulation of microglia activation by the ascorbic acid transporter SVCT2. Brain Behav Immun 2024; 120:557-570. [PMID: 38972487 PMCID: PMC11458066 DOI: 10.1016/j.bbi.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024] Open
Abstract
Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.
Collapse
Affiliation(s)
- Amanda L Marino
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Tonia S Rex
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
10
|
Li J, Li X, Li X, Liang Z, Wang Z, Shahzad KA, Xu M, Tan F. Local Delivery of Dual Stem Cell-Derived Exosomes Using an Electrospun Nanofibrous Platform for the Treatment of Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37497-37512. [PMID: 38980910 DOI: 10.1021/acsami.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Traumatic brain injury poses serious physical, psychosocial, and economic threats. Although systemic administration of stem cell-derived exosomes has recently been proven to be a promising modality for traumatic brain injury treatment, they come with distinct drawbacks. Luckily, various biomaterials have been developed to assist local delivery of exosomes to improve the targeting of organs, minimize nonspecific accumulation in vital organs, and ensure the protection and release of exosomes. In this study, we developed an electrospun nanofibrous scaffold to provide sustained delivery of dual exosomes derived from mesenchymal stem cells and neural stem cells for traumatic brain injury treatment. The electrospun nanofibrous scaffold employed a functionalized layer of polydopamine on electrospun poly(ε-caprolactone) nanofibers, thereby enhancing the efficient incorporation of exosomes through a synergistic interplay of adhesive forces, hydrogen bonding, and electrostatic interactions. First, the mesenchymal stem cell-derived exosomes and the neural stem cell-derived exosomes were found to modulate microglial polarization toward M2 phenotype, play an important role in the modulation of inflammatory responses, and augment axonal outgrowth and neural repair in PC12 cells. Second, the nanofibrous scaffold loaded with dual stem cell-derived exosomes (Duo-Exo@NF) accelerated functional recovery in a murine traumatic brain injury model, as it mitigated the presence of reactive astrocytes and microglia while elevating the levels of growth associated protein-43 and doublecortin. Additionally, multiomics analysis provided mechanistic insights into how dual stem cell-derived exosomes exerted its therapeutic effects. These findings collectively suggest that our novel Duo-Exo@NF system could function as an effective treatment modality for traumatic brain injury using sustained local delivery of dual exosomes from stem cells.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhanping Liang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
- The Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
- The Royal College of Surgeons of England, London WC2A3PE, U.K
| |
Collapse
|
11
|
Bedggood MJ, Essex CA, Theadom A, Holdsworth SJ, Faull RLM, Pedersen M. Individual-level analysis of MRI T2 relaxometry in mild traumatic brain injury: Possible indications of brain inflammation. Neuroimage Clin 2024; 43:103647. [PMID: 39068788 PMCID: PMC11663787 DOI: 10.1016/j.nicl.2024.103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Mild traumatic brain injury (mTBI), often called concussion, is a prevalent condition that can have significant implications for people's health, functioning and well-being. Current clinical practice relies on self-reported symptoms to guide decision-making regarding return to sport, employment, and education. Unfortunately, reliance on subjective evaluations may fail to accurately reflect the resolution of neuropathology, exposing individuals with mTBI to an increased risk of further head trauma. No objective technique currently exists to assess the microstructural alterations to brain tissue which characterise mTBI. MRI-based T2 relaxation is a quantitative imaging technique that is susceptible to detecting fluid properties in the brain and is hypothesised to indicate neuroinflammation. This study aimed to investigate the potential of individual-level T2 relaxometry to evaluate cellular damage from mTBI. 20 male participants with acute sports-related mTBI (within 14 days post-injury) and 44 healthy controls were recruited for this study. Each mTBI participant's voxel-wise T2 relaxometry map was analysed against healthy control averages using a voxel-wise z-test with false discovery rate correction. Five participants were re-scanned after clinical recovery and results were compared to their acute T2 relaxometry maps to assess reduction in potential neuroinflammation. T2 relaxation times were significantly increased in 19/20 (95 %) mTBI participants compared to healthy controls, in regions including the hippocampus, frontal cortex, parietal cortex, insula, cingulate cortex and cerebellum. Results suggest the presence of increased cerebral fluid in individuals with mTBI. Longitudinal results indicated a reduction in T2 relaxation for all five participants, indicating a possible resolution over time. This research highlights the potential of individual-level T2 relaxometry MRI as a non-invasive method for assessing subtle brain pathology in mTBI. Identifying and monitoring changes in the fluid content in the brain could aid in predicting recovery and developing individualised treatment plans for individuals with mTBI. Future research should validate this measure with other markers of inflammation (e.g. from blood biomarkers) to test whether T2-relaxometry is related to subtle brain inflammation in mTBI. In addition, future research should utilise larger control groups to establish normative ranges and compute robust z-score analyses.
Collapse
Affiliation(s)
- Mayan J Bedggood
- Department of Psychology and Neuroscience & TBI Network, Auckland University of Technology (AUT), New Zealand.
| | - Christi A Essex
- Department of Psychology and Neuroscience & TBI Network, Auckland University of Technology (AUT), New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience & TBI Network, Auckland University of Technology (AUT), New Zealand
| | - Samantha J Holdsworth
- Mātai Medical Research Institute, Gisborne, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, The University of Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, The University of Auckland, New Zealand
| | - Mangor Pedersen
- Department of Psychology and Neuroscience & TBI Network, Auckland University of Technology (AUT), New Zealand
| |
Collapse
|
12
|
Guida F, Iannotta M, Lauritano A, Infantino R, Salviati E, Verde R, Luongo L, Sommella EM, Iannotti FA, Campiglia P, Maione S, Di Marzo V, Piscitelli F. Early biomarkers in the presymptomatic phase of cognitive impairment: changes in the endocannabinoidome and serotonergic pathways in Alzheimer's-prone mice after mTBI. Acta Neuropathol Commun 2024; 12:113. [PMID: 38992700 PMCID: PMC11241935 DOI: 10.1186/s40478-024-01820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aβ1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.
Collapse
Affiliation(s)
- Francesca Guida
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Rosmara Infantino
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Emanuela Salviati
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Livio Luongo
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Pietro Campiglia
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Sabatino Maione
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, Canada.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
| |
Collapse
|
13
|
Chiollaz AC, Pouillard V, Habre C, Seiler M, Romano F, Spigariol F, Ritter Schenk C, Korff C, Maréchal F, Wyss V, Gruaz L, Montaner J, Manzano S, Sanchez JC. Diagnostic potential of IL6 and other blood-based inflammatory biomarkers in mild traumatic brain injury among children. Front Neurol 2024; 15:1432217. [PMID: 39055316 PMCID: PMC11270961 DOI: 10.3389/fneur.2024.1432217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Objectives Inflammatory biomarkers, as indicators of biological states, provide a valuable approach for accurate and reproducible measurements, crucial for the effective management of mild traumatic brain injury (mTBI) in pediatric patients. This study aims to assess the diagnostic utility of blood-based inflammatory markers IL6, IL8, and IL10 in children with mTBI, including those who did not undergo computed tomography (CT) scans. Methods A prospective multicentric cohort study involving 285 pediatric mTBI patients was conducted, stratified into CT-scanned and non-CT-scanned groups within 24 h post-trauma, alongside 74 control subjects. Biomarker levels were quantitatively analyzed using ELISA. Sensitivity and specificity metrics were calculated to determine the diagnostic efficacy of each biomarker. Results A total of 223 mTBI patients (78%) did not undergo CT scan examination but were kept in observation for symptoms monitoring at the emergency department (ED) for more than 6 h (in-hospital-observation patients). Among CT-scanned patients (n = 62), 14 (23%) were positive (CT+). Elevated levels of IL6 and IL10 were found in mTBI children compared to controls. Within mTBI patients, IL6 was significantly increased in CT+ patients compared to both CT- and in-hospital-observation patients. No significant differences were observed for IL8 among the compared groups. IL6 yielded a specificity of 48% in identifying CT- and in-hospital-observation patients, with 100% sensitivity in excluding all CT+ cases. These performances were maintained whether IL6 was measured within 6 h or within 24 h after the trauma. Conclusion The inflammatory marker IL6 emerges as a robust biomarker, showing promising stratification value for pediatric mTBI patients undergoing CT scans or staying in observation in a pediatric ED.
Collapse
Affiliation(s)
- Anne-Cécile Chiollaz
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Pouillard
- Pediatric Neurology Unit, Department of the Woman, Child and Adolescent, Geneva University Hospitals, Geneva, Switzerland
| | - Céline Habre
- Division of Radiology, University Hospitals of Geneva, Geneva, Switzerland
| | - Michelle Seiler
- Department of Pediatric Emergency, University Children's Hospital Zurich, Zürich, Switzerland
| | - Fabrizio Romano
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabian Spigariol
- Department of Pediatric Emergency, Neuchâtel Hospital (RHNE), Neuchâtel, Switzerland
| | | | - Christian Korff
- Pediatric Neurology Unit, Department of the Woman, Child and Adolescent, Geneva University Hospitals, Geneva, Switzerland
| | - Fabienne Maréchal
- Platform of Pediatric Clinical Research, Department of Woman, Child and Adolescent, Geneva University Hospitals, Geneva, Switzerland
| | - Verena Wyss
- Department of Pediatric Emergency, University Children's Hospital Zurich, Zürich, Switzerland
| | - Lyssia Gruaz
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joan Montaner
- Neurovascular Research Group, Institute of Biomedicine of Seville, IBiS/Virgen Macarena University Hospital/CSIC/University of Seville, Seville, Spain
| | - Sergio Manzano
- Department of Pediatric Emergency, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Ye C, Ho R, Moberg KH, Zheng JQ. Sexual Dimorphism in Age-Dependent Neurodegeneration After Mild Head Trauma in Drosophila : Unveiling the Adverse Impact of Female Reproductive Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583747. [PMID: 38496515 PMCID: PMC10942469 DOI: 10.1101/2024.03.06.583747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify Sex Peptide (SP) signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.
Collapse
|
15
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Griffin MN, Dammer EB, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg-AD mice exposed to successive mild traumatic brain injuries. J Neuroinflammation 2024; 21:156. [PMID: 38872143 PMCID: PMC11177462 DOI: 10.1186/s12974-024-03128-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aβ pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.
Collapse
Affiliation(s)
- Alyssa F Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alivia Rohrer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Arushi Khaitan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felix Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kareena Udeshi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brae Davies
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin N Griffin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
16
|
Finnegan E, Daly E, Ryan L. Nutritional Considerations of Irish Performance Dietitians and Nutritionists in Concussion Injury Management. Nutrients 2024; 16:497. [PMID: 38398823 PMCID: PMC10891776 DOI: 10.3390/nu16040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Sport-related concussion incidence has increased in many team-based sports, such as rugby, Gaelic (camogie, hurling, football), and hockey. Concussion disrupts athletes' brain function, causing an "energy crisis" that requires energy and nutrient support to restore function and heal. Performance dietitians and nutritionists play a role in supporting athletes' post-injury nutritional demands. This study aimed to investigate Irish performance dietitians' and nutritionists' knowledge and implementation of nutritional strategies to manage and support athletes' recovery following concussion. In-depth, semi-structured interviews were conducted with seventeen (n = 17) Irish performance dietitians and nutritionists recruited from the Sport and Exercise Nutrition register and other sporting body networks across Ireland. Participants practised or had practised with amateur and/or professional athletes within the last ten years. All interviews and their transcripts were thematically analysed to extract relevant insights. These data provided valuable insights revealing performance dietitians and nutritionists: (1) their awareness of concussion events and (2) their use of nutritional supports for concussion management. Furthermore, the research highlighted their implementation of 'novel nutritional protocols' specifically designed to support and manage athletes' concussion recovery. There was a clear contrast between participants who had an awareness and knowledge of the importance of nutrition for brain recovery after sport-related concussion(s) and those who did not. Participants presenting with a practical understanding mentioned re-emphasising certain foods and supplements they were already recommending to athletes in the event of a concussion. Performance dietitians and nutritionists were keeping up to date with nutrition research on concussions, but limited evidence has prevented them from implementing protocols in practice. Meanwhile, participants mentioned trialling/recommending nutritional protocols, such as carbohydrate reloading, reducing omega-6 intake, and acutely supplementing creatine, omega-3 fish oils high in Docosahexaenoic acid, and probiotics to support brain healing. Performance dietitians' and nutritionists' use of nutrition protocols with athletes following concussion was linked to their knowledge and the limited scientific evidence available. Nutrition implementation, therefore, may be overlooked or implemented with uncertainty, which could negatively affect athletes' recovery following sports-related concussions.
Collapse
Affiliation(s)
| | | | - Lisa Ryan
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), H91 T8NW Galway, Ireland; (E.F.); (E.D.)
| |
Collapse
|
17
|
Di Battista AP, Rhind SG, Shiu M, Hutchison MG. Whole blood stimulation provides preliminary evidence of altered immune function following SRC. BMC Immunol 2024; 25:6. [PMID: 38218771 PMCID: PMC10788016 DOI: 10.1186/s12865-023-00595-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024] Open
Abstract
PURPOSE To implement an approach combining whole blood immune stimulation and causal modelling to estimate the impact of sport-related concussion (SRC) on immune function. METHODS A prospective, observational cohort study was conducted on athletes participating across 13 university sports at a single academic institute; blood was drawn from 52 athletes, comprised of 22 athletes (n = 11 male, n = 11 female) within seven days of a physician-diagnosed SRC, and 30 healthy athletes (n = 18 female, n = 12 male) at the beginning of their competitive season. Blood samples were stimulated for 24 h under two conditions: (1) lipopolysaccharide (lps, 100ng/mL) or (2) resiquimod (R848, 1uM) using the TruCulture® system. The concentration of 45 cytokines and chemokines were quantitated in stimulated samples by immunoassay using the highly sensitive targeted Proximity Extension Assays (PEA) on the Olink® biomarker platform. A directed acyclic graph (DAG) was used as a heuristic model to make explicit scientific assumptions regarding the effect of SRC on immune function. A latent factor analysis was used to derive two latent cytokine variables representing immune function in response to LPS and R848 stimulation, respectively. The latent variables were then modelled using student-t regressions to estimate the total causal effect of SRC on immune function. RESULTS There was an effect of SRC on immune function in males following SRC, and it varied according to prior concussion history. In males with no history of concussion, those with an acute SRC had lower LPS reactivity compared to healthy athletes with 93% posterior probability (pprob), and lower R848 reactivity with 77% pprob. Conversely, in males with a history of SRC, those with an acute SRC had higher LPS reactivity compared to healthy athletes with 85% pprob and higher R848 reactivity with 82%. In females, irrespective of concussion history, SRC had no effect on LPS reactivity. However, in females with no concussion history, those with an acute SRC had higher R848 reactivity compared to healthy athletes with 86% pprob. CONCLUSION Whole blood stimulation can be used within a causal framework to estimate the effect of SRC on immune function. Preliminary evidence suggests that SRC affects LPS and R848 immunoreactivity, that the effect is stronger in male athletes, and differs based on concussion history. Replication of this study in a larger cohort with a more sophisticated causal model is necessary.
Collapse
Affiliation(s)
- Alex P Di Battista
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Maria Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Michael G Hutchison
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- Centre for Sport-Related Concussion Research, Innovation, and Knowledge, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Obenaus A, Noarbe BP, Lee JB, Panchenko PE, Noarbe SD, Lee YC, Badaut J. Progressive lifespan modifications in the corpus callosum following a single juvenile concussion in male mice monitored by diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572925. [PMID: 38187748 PMCID: PMC10769374 DOI: 10.1101/2023.12.21.572925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction The sensitivity of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, particularly in preclinical rodent models, there is lacking a comprehensive longitudinal study spanning the lifespan of the mouse. We previously reported early modifications to WM using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi. For the first time, we assess corpus callosum (CC) integrity across the lifespan after a single juvenile concussion utilizing diffusion MRI (dMRI). Methods C57Bl/6 mice were exposed to sham or two severities of closed-head concussion (Grade 1, G1, speed 2 m/sec, depth 1mm; Grade 2, G2, 3m/sec, 3mm) using an electromagnetic impactor at postnatal day 17. In vivo diffusion tensor imaging was conducted at 1, 3, 6, 12 and 18 mpi (21 directions, b=2000 mm2/sec) and processed for dMRI parametric maps: fractional anisotropy (FA), axial (AxD), radial (RD) and mean diffusivity (MD). Whole CC and regional CC data were extracted. To identify the biological basis of altered dMRI metrics, astrocyte and microglia in the CC were characterized at 1 and 12 mpi by immunohistochemistry. Results Whole CC analysis revealed altered FA and RD trajectories following juvenile concussion. Shams exhibited a temporally linear increase in FA with age while G1/G2 mice had plateaued FA values. G2 concussed mice exhibited high variance of dMRI metrics at 12mpi, which was attributed to the heterogeneity of TBI on the anterior CC. Regional analysis of dMRI metrics at the impact site unveiled significant differences between G2 and sham mice. The dMRI findings appear to be driven, in part, by loss of astrocyte process lengths and increased circularity and decreased cell span ratios in microglia. Conclusion For the first time, we demonstrate progressive perturbations to WM of male mice after a single juvenile concussion across the mouse lifespan. The CC alterations were dependent on concussion severity with elevated sensitivity in the anterior CC that was related to astrocyte and microglial morphology. Our findings suggest that long-term monitoring of children with juvenile concussive episodes using dMRI is warranted, focusing on vulnerable WM tracts.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jeong Bin Lee
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, US
| | | | - Sean D. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Yu Chiao Lee
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Huang YQ, Wu Z, Lin S, Chen XR. The benefits of rehabilitation exercise in improving chronic traumatic encephalopathy: recent advances and future perspectives. Mol Med 2023; 29:131. [PMID: 37740180 PMCID: PMC10517475 DOI: 10.1186/s10020-023-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Traumatic encephalopathy syndrome (TES) is used to describe the clinical manifestations of chronic traumatic encephalopathy (CTE). However, effective treatment and prevention strategies are lacking. Increasing evidence has shown that rehabilitation training could prevent cognitive decline, enhance brain plasticity, and effectively improve neurological function in neurodegenerative diseases. Therefore, the mechanisms involved in the effects of rehabilitation exercise therapy on the prognosis of CTE are worth exploring. The aim of this article is to review the pathogenesis of CTE and provide a potential clinical intervention strategy for CTE.
Collapse
Affiliation(s)
- Yin-Qiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhe Wu
- Department of Neuronal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Xiang-Rong Chen
- Department of Neuronal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
20
|
Malik S, Alnaji O, Malik M, Gambale T, Farrokhyar F, Rathbone MP. Inflammatory cytokines associated with mild traumatic brain injury and clinical outcomes: a systematic review and meta-analysis. Front Neurol 2023; 14:1123407. [PMID: 37251220 PMCID: PMC10213278 DOI: 10.3389/fneur.2023.1123407] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Mild traumatic brain injuries (mTBIs) trigger a neuroinflammatory response, which leads to perturbations in the levels of inflammatory cytokines, resulting in a distinctive profile. A systematic review and meta-analysis were conducted to synthesize data related to levels of inflammatory cytokines in patients with mTBI. The electronic databases EMBASE, MEDLINE, and PUBMED were searched from January 2014 to December 12, 2021. A total of 5,138 articles were screened using a systematic approach based on the PRISMA and R-AMSTAR guidelines. Of these articles, 174 were selected for full-text review and 26 were included in the final analysis. The results of this study demonstrate that within 24 hours, patients with mTBI have significantly higher levels of Interleukin-6 (IL-6), Interleukin-1 Receptor Antagonist (IL-1RA), and Interferon-γ (IFN-γ) in blood, compared to healthy controls in majority of the included studies. Similarly one week following the injury, patients with mTBI have higher circulatory levels of Monocyte Chemoattractant Protein-1/C-C Motif Chemokine Ligand 2 (MCP-1/CCL2), compared to healthy controls in majority of the included studies. The results of the meta-analysis also confirmed these findings by demonstrating significantly elevated blood levels of IL-6, MCP-1/CCL2, and Interleukin-1 beta (IL-1β) in the mTBI population compared to healthy controls (p < 0.0001), particularly in the acute stages (<7 days). Furthermore, it was found that IL-6, Tumor Necrosis Factor-alpha (TNF-α), IL-1RA, IL-10, and MCP-1/CCL2 were associated with poor clinical outcomes following the mTBI. Finally, this research highlights the lack of consensus in the methodology of mTBI studies that measure inflammatory cytokines in the blood, and also provides direction for future mTBI research.
Collapse
Affiliation(s)
- Shazia Malik
- Neurosciences Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Omar Alnaji
- Faculty of Life Sciences, McMaster University, Hamilton, ON, Canada
| | - Mahnoor Malik
- Bachelor of Health Sciences Program, McMaster University, Hamilton, ON, Canada
| | - Teresa Gambale
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Forough Farrokhyar
- Department of Surgery and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Michel P. Rathbone
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Dilimulati D, Zhang F, Shao S, Lv T, Lu Q, Cao M, Jin Y, Jia F, Zhang X. Ketogenic Diet Modulates Neuroinflammation via Metabolites from Lactobacillus reuteri After Repetitive Mild Traumatic Brain Injury in Adolescent Mice. Cell Mol Neurobiol 2023; 43:907-923. [PMID: 35499776 PMCID: PMC11415207 DOI: 10.1007/s10571-022-01226-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Repetitive mild traumatic brain injury (rmTBI) is associated with a range of neural changes which is characterized by axonal injury and neuroinflammation. Ketogenic diet (KD) is regarded as a potential therapy for facilitating recovery after moderate-severe traumatic brain injury (TBI). However, its effect on rmTBI has not been fully studied. In this study, we evaluated the anti-neuroinflammation effects of KD after rmTBI in adolescent mice and explored the potential mechanisms. Experimentally, specific pathogen-free (SPF) adolescent male C57BL/6 mice received a sham surgery or repetitive mild controlled cortical impacts consecutively for 7 days. The uninjured mice received the standard diet, and the mice with rmTBI were fed either the standard diet or KD for 7 days. One week later, all mice were subjected to behavioral tests and experimental analysis. Results suggest that KD significantly increased blood beta-hydroxybutyrate (β-HB) levels and improved neurological function. KD also reduced white matter damage, microgliosis, and astrogliosis induced by rmTBI. Aryl hydrocarbon receptor (AHR) signaling pathway, which was mediated by indole-3-acetic acid (3-IAA) from Lactobacillus reuteri (L. reuteri) in gut and activated in microglia and astrocytes after rmTBI, was inhibited by KD. The expression level of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) in inflammatory cells, which mediates the NF-κB pathway, was also attenuated by KD. Taken together, our results indicated that KD can promote recovery following rmTBI in adolescent mice. KD may modulate neuroinflammation by altering L. reuteri in gut and its metabolites. The inhibition of indole/AHR pathway and the downregulation of TLR4/MyD88 may play a role in the beneficial effect of KD against neuroinflammation in rmTBI mice.
Collapse
Affiliation(s)
- Dilirebati Dilimulati
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Fengchen Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Qing Lu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Mengqiu Cao
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Yichao Jin
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
23
|
Pathak D, Sriram K. Molecular Mechanisms Underlying Neuroinflammation Elicited by Occupational Injuries and Toxicants. Int J Mol Sci 2023; 24:2272. [PMID: 36768596 PMCID: PMC9917383 DOI: 10.3390/ijms24032272] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Occupational injuries and toxicant exposures lead to the development of neuroinflammation by activating distinct mechanistic signaling cascades that ultimately culminate in the disruption of neuronal function leading to neurological and neurodegenerative disorders. The entry of toxicants into the brain causes the subsequent activation of glial cells, a response known as 'reactive gliosis'. Reactive glial cells secrete a wide variety of signaling molecules in response to neuronal perturbations and thus play a crucial role in the progression and regulation of central nervous system (CNS) injury. In parallel, the roles of protein phosphorylation and cell signaling in eliciting neuroinflammation are evolving. However, there is limited understanding of the molecular underpinnings associated with toxicant- or occupational injury-mediated neuroinflammation, gliosis, and neurological outcomes. The activation of signaling molecules has biological significance, including the promotion or inhibition of disease mechanisms. Nevertheless, the regulatory mechanisms of synergism or antagonism among intracellular signaling pathways remain elusive. This review highlights the research focusing on the direct interaction between the immune system and the toxicant- or occupational injury-induced gliosis. Specifically, the role of occupational injuries, e.g., trips, slips, and falls resulting in traumatic brain injury, and occupational toxicants, e.g., volatile organic compounds, metals, and nanoparticles/nanomaterials in the development of neuroinflammation and neurological or neurodegenerative diseases are highlighted. Further, this review recapitulates the recent advancement related to the characterization of the molecular mechanisms comprising protein phosphorylation and cell signaling, culminating in neuroinflammation.
Collapse
Affiliation(s)
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
24
|
Teng J, Mi C, Liu W, Shi J, Li N. mTBI-DSANet: A deep self-attention model for diagnosing mild traumatic brain injury using multi-level functional connectivity networks. Comput Biol Med 2023; 152:106354. [PMID: 36481760 DOI: 10.1016/j.compbiomed.2022.106354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
The main approach for analyzing resting-state functional magnetic resonance imaging (rs-fMRI) is the low-order functional connectivity network (LoFCN) based on the correlation between two brain regions. Based on LoFCN, researchers recently proposed the topographical high-order FCN (tHoFCN) and the associated high-order FCN (aHoFCN) to explore the high-order interactions among brain regions. In this work, we designed a Deep Self-Attention (DSA) framework called mTBI-DSANet to diagnose mild traumatic brain injury (mTBI) using multi-level FCNs, including LoFCN, tHoFCN, and aHoFCN. The multilayer perceptron and self-attention mechanism in mTBI-DSANet were designed to capture important features for the mTBI diagnosis. We evaluated the mTBI-DSANet's performance on the real rs-fMRI dataset, which was collected by Third Xiangya Hospital of Central South University from April 2014 to February 2021. We compared the performance of mTBI-DSANet with distinct FCNs and their combinations under 10-fold cross-validation. Based on the LoFCN+aHoFCN combination, the average performance of mTBI-DSANet achieved the best accuracy of 0.834, which is significantly better than peer methods. The experiments demonstrated the potential of the mTBI-DSANet in assisting mTBI diagnosis.
Collapse
Affiliation(s)
- Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China.
| | - Chunlin Mi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China.
| | - Wuyi Liu
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China.
| | - Jian Shi
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
25
|
Pierre K, Molina V, Shukla S, Avila A, Fong N, Nguyen J, Lucke-Wold B. Chronic traumatic encephalopathy: Diagnostic updates and advances. AIMS Neurosci 2022; 9:519-535. [PMID: 36660076 PMCID: PMC9826753 DOI: 10.3934/neuroscience.2022030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that occurs secondary to repetitive mild traumatic brain injury. Current clinical diagnosis relies on symptomatology and structural imaging findings which often vary widely among those with the disease. The gold standard of diagnosis is post-mortem pathological examination. In this review article, we provide a brief introduction to CTE, current diagnostic workup and the promising research on imaging and fluid biomarker diagnostic techniques. For imaging, we discuss quantitative structural analyses, DTI, fMRI, MRS, SWI and PET CT. For fluid biomarkers, we discuss p-tau, TREM2, CCL11, NfL and GFAP.
Collapse
Affiliation(s)
- Kevin Pierre
- University of Florida Department of Radiology, Gainesville 32603, Florida, USA
| | - Vanessa Molina
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Shil Shukla
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Anthony Avila
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Nicholas Fong
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Jessica Nguyen
- Sam Houston State University of Osteopathic Medicine, Conroe 77304, Texas, USA
| | - Brandon Lucke-Wold
- University of Florida Department of Neurosurgery, Gainesville 32603, Florida, USA
| |
Collapse
|
26
|
Finnegan E, Daly E, Pearce AJ, Ryan L. Nutritional interventions to support acute mTBI recovery. Front Nutr 2022; 9:977728. [PMID: 36313085 PMCID: PMC9614271 DOI: 10.3389/fnut.2022.977728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 01/09/2023] Open
Abstract
When mild traumatic brain injury (mTBI) occurs following an impact on the head or body, the brain is disrupted leading to a series of metabolic events that may alter the brain's ability to function and repair itself. These changes may place increased nutritional demands on the body. Little is known on whether nutritional interventions are safe for patients to implement post mTBI and whether they may improve recovery outcomes. To address this knowledge gap, we conducted a systematic review to determine what nutritional interventions have been prescribed to humans diagnosed with mTBI during its acute period (<14 days) to support, facilitate, and result in measured recovery outcomes. Methods Databases CINAHL, PubMed, SPORTDiscus, Web of Science, and the Cochrane Library were searched from inception until January 6, 2021; 4,848 studies were identified. After removing duplicates and applying the inclusion and exclusion criteria, this systematic review included 11 full papers. Results Patients that consumed enough food to meet calorie and macronutrient (protein) needs specific to their injury severity and sex within 96 h post mTBI had a reduced length of stay in hospital. In addition, patients receiving nutrients and non-nutrient support within 24-96 h post mTBI had positive recovery outcomes. These interventions included omega-3 fatty acids (DHA and EPA), vitamin D, mineral magnesium oxide, amino acid derivative N-acetyl cysteine, hyperosmolar sodium lactate, and nootropic cerebrolysin demonstrated positive recovery outcomes, such as symptom resolution, improved cognitive function, and replenished nutrient deficiencies (vitamin D) for patients post mTBI. Conclusion Our findings suggest that nutrition plays a positive role during acute mTBI recovery. Following mTBI, patient needs are unique, and this review presents the potential for certain nutritional therapies to support the brain in recovery, specifically omega-3 fatty acids. However, due to the heterogenicity nature of the studies available at present, it is not possible to make definitive recommendations. Systematic review registration The systematic review conducted following the PRISMA guidelines protocol was registered (CRD42021226819), on Prospero.
Collapse
Affiliation(s)
- Emma Finnegan
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), Galway, Ireland
| | - Ed Daly
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), Galway, Ireland
| | - Alan J. Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Lisa Ryan
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), Galway, Ireland
| |
Collapse
|
27
|
Stem Cell Therapy for Sequestration of Traumatic Brain Injury-Induced Inflammation. Int J Mol Sci 2022; 23:ijms231810286. [PMID: 36142198 PMCID: PMC9499317 DOI: 10.3390/ijms231810286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disabilities in the world. TBI is a signature disease for soldiers and veterans, but also affects civilians, including adults and children. Following TBI, the brain resident and immune cells turn into a “reactive” state, characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Other injuries to the brain, including radiation exposure, may trigger TBI-like pathology, characterized by inflammation. Currently there are no treatments to prevent or reverse the deleterious consequences of brain trauma. The recognition that TBI predisposes stem cell alterations suggests that stem cell-based therapies stand as a potential treatment for TBI. Here, we discuss the inflamed brain after TBI and radiation injury. We further review the status of stem cells in the inflamed brain and the applications of cell therapy in sequestering inflammation in TBI.
Collapse
|
28
|
Dunn CS, Ferreira LA, Venier SM, Ali SF, Wolchok JC, Balachandran K. Functional Analysis of the Cortical Transcriptome and Proteome Reveal Neurogenesis, Inflammation, and Cell Death after Repeated Traumatic Brain Injury In vivo. Neurotrauma Rep 2022; 3:224-239. [PMID: 35919509 PMCID: PMC9279125 DOI: 10.1089/neur.2021.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathological effects of repeated traumatic brain injuries (TBIs) are largely unknown. To gain a detailed understanding of the cortical tissue acute biological response after one or two TBIs, we utilized RNA-sequencing and protein mass spectrometry techniques. Using our previously validated C57Bl/6 weight-drop model, we administered one or two TBIs of a mild or moderate severity. Double injury conditions were spaced 7 days apart, and cortical tissue was isolated 24 h after final injury. Analysis was carried out through functional gene annotation, utilizing Gene Ontology, for both the proteome and transcriptome. Major themes across the four different conditions include: neurogenesis; inflammation and immune response; cell death; angiogenesis; protein modification; and cell communication. Proteins associated with neurogenesis were found to be upregulated after single injuries. Transcripts associated with angiogenesis were upregulated in the moderate single, mild double, and moderate double TBI conditions. Genes associated with inflammation and immune response were upregulated in every condition, with the moderate single condition reporting the most functional groups. Proteins or genes involved in cell death, or apoptosis, were upregulated in every condition. Our results emphasize the significant differences found in proteomic and transcriptomic changes in single versus double injuries. Further, cortical omics analysis offers important insights for future studies aiming to deepen current knowledge on the development of secondary injuries and neurobehavioral impairments after brain trauma.
Collapse
Affiliation(s)
- Celeste S. Dunn
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Laís A. Ferreira
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sara M. Venier
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Syed F. Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, Arkansas, USA
- Center for Integrativve Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, USA
| | - Jeffrey C. Wolchok
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kartik Balachandran
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
29
|
Role of Inflammation in Traumatic Brain Injury-Associated Risk for Neuropsychiatric Disorders: State of the Evidence and Where Do We Go From Here. Biol Psychiatry 2022; 91:438-448. [PMID: 34955170 DOI: 10.1016/j.biopsych.2021.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, there has been an increasing awareness that traumatic brain injury (TBI) and concussion substantially increase the risk for developing psychiatric disorders. Even mild TBI increases the risk for depression and anxiety disorders such as posttraumatic stress disorder by two- to threefold, predisposing patients to further functional impairment. This strong epidemiological link supports examination of potential mechanisms driving neuropsychiatric symptom development after TBI. One potential mechanism for increased neuropsychiatric symptoms after TBI is via inflammatory processes, as central nervous system inflammation can last years after initial injury. There is emerging preliminary evidence that TBI patients with posttraumatic stress disorder or depression exhibit increased central and peripheral inflammatory markers compared with TBI patients without these comorbidities. Growing evidence has demonstrated that immune signaling in animals plays an integral role in depressive- and anxiety-like behaviors after severe stress or brain injury. In this review, we will 1) discuss current evidence for chronic inflammation after TBI in the development of neuropsychiatric symptoms, 2) highlight potential microglial activation and cytokine signaling contributions, and 3) discuss potential promise and pitfalls for immune-targeted interventions and biomarker strategies to identify and treat TBI patients with immune-related neuropsychiatric symptoms.
Collapse
|
30
|
Gottshall JL, Guedes VA, Pucci JU, Brooks D, Watson N, Sheth P, Gabriel A, Mithani S, Leete JJ, Lai C, Qu BX, Devoto C, Gill JM, Kenney K, Werner JK. Poor Sleep Quality is Linked to Elevated Extracellular Vesicle-Associated Inflammatory Cytokines in Warfighters With Chronic Mild Traumatic Brain Injuries. Front Pharmacol 2022; 12:762077. [PMID: 35153739 PMCID: PMC8829004 DOI: 10.3389/fphar.2021.762077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Elevations of inflammatory cytokine levels occur immediately after mild traumatic brain injury (mTBI) and can persist for years. These elevations have been associated with neuropsychological outcomes, including depression and PTSD symptoms. Sleep disorders, another common sequelae of mTBI, are independently associated with inflammation in otherwise healthy individuals. However, whether sleep and inflammation are linked in chronic mTBI has not been reported. Methods: A retrospective cross-sectional cohort of warfighters was used to investigate the hypothesis that inflammation may be linked to sleep quality in chronic mTBI. Clinical history, peripheral blood samples, and sleep quality scores were collected from 182 warfighters (n = 138 mTBI; n = 44 controls) during enrollment in the Chronic Effects of Neurotrauma Consortium study. Biomarkers of inflammation (IL-6, IL-10, TNFα cytokines) from plasma and plasma-derived extracellular vesicles (EVs) were quantified using single molecule array. Relationships between sleep quality and cytokine levels were assessed, controlling for age, sex, and BMI. Using clinical cutoff scores for sleep quality, mTBI patients were then divided into “good” and “poor” sleepers and cytokine levels compared between groups. Results: In mTBI participants, sleep quality was significantly associated with EV levels of IL-10 [ß (SE) = 0.11 (0.04), p = 0.01] and TNFα [ß (SE) = 0.07 (0.03), p < 0.01]. When divided according to “good” versus “poor” sleepers, those reporting poor sleep had significantly elevated EV IL-10 compared to those reporting good sleep [ß (SE) = 0.12 (0.04), p < 0.01]. Plasma-derived associations were not significant. No associations were found between sleep quality and cytokine levels in controls. Conclusion: These results suggest a significant relationship between sleep quality and chronic inflammation in mTBI patients. Clinically, mTBI patients with a high likelihood of sleep disorders demonstrate elevated levels of inflammatory cytokines. Signal from EVs, though smaller in magnitude, may have stronger clinical associations than from plasma. Sleep-focused interventions may also serve to regulate chronic inflammatory processes in these patients. Larger prospective studies are needed to investigate the mechanisms and therapeutic implications of the likely bi-directional relationship between sleep and inflammation following mTBI.
Collapse
Affiliation(s)
- Jackie L. Gottshall
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- *Correspondence: Jackie L. Gottshall, ; J. Kent Werner,
| | - Vivian A. Guedes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Josephine U. Pucci
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Daniel Brooks
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Nora Watson
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Phorum Sheth
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ainslee Gabriel
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- United States Naval Academy, Annapolis, MD, United States
| | - Sara Mithani
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jacqueline J. Leete
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Bao-Xi Qu
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Christina Devoto
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jessica M. Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - J. Kent Werner
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- *Correspondence: Jackie L. Gottshall, ; J. Kent Werner,
| |
Collapse
|
31
|
Malik S, Alnaji O, Malik M, Gambale T, Rathbone MP. Correlation between Mild Traumatic Brain Injury-Induced Inflammatory Cytokines and Emotional Symptom Traits: A Systematic Review. Brain Sci 2022; 12:brainsci12010102. [PMID: 35053845 PMCID: PMC8773760 DOI: 10.3390/brainsci12010102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Both mild traumatic brain injuries (mTBI) and systemic injuries trigger a transient neuroinflammatory response that result in similar clinical outcome. The ensuing physical, cognitive, and emotional symptoms fail to subside in approximately 15–20% of the concussed population. Emotional impairments, particularly depression, anxiety, and post-traumatic stress disorder (PTSD), are commonly associated with poor recovery following mTBI. These emotional impairments also have a significant neuroinflammatory component. We hypothesized that the inflammatory cytokines seen in mTBI patients with emotional symptoms would coincide with those commonly seen in patients with emotional symptoms without mTBI. A systematic review was conducted to identify the most common neuroinflammatory cytokines in the mTBI population with psychological symptoms (depression, anxiety, PTSD). The electronic databases EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), PUBMED, and PSYCINFO were searched from data inception to 31 August 2021. A systematic screening approach was employed from screening to data analysis. A total of 994 articles were screened, 108 were selected for full article review, and 8 were selected for data analysis. The included studies consisted of 875 patients of which 81.3% were male. The mean sample size of patients with at least one mTBI was 73.8 ± 70.3 (range, 9–213), with a mean age of 33.9 ± 4.8 years. The most common cytokines associated with poor psychological outcomes involving PTSD and/or depression in the chronic mTBI population were IL-6, TNFα, IL-10, and CRP.
Collapse
Affiliation(s)
- Shazia Malik
- Neurosciences Graduate Program, McMaster University, Hamilton, ON L8S 4L8, Canada
- Correspondence:
| | - Omar Alnaji
- Faculty of Life Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Mahnoor Malik
- Bachelor of Health Sciences Program, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Teresa Gambale
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (T.G.); (M.P.R.)
| | - Michel Piers Rathbone
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (T.G.); (M.P.R.)
| |
Collapse
|
32
|
Cai S, Lu Z. Effect of Mild Hypothermia after Craniotomy on the Function of Related Organs in Patients with Traumatic Brain Injury. Emerg Med Int 2021; 2021:4105406. [PMID: 34659832 PMCID: PMC8519674 DOI: 10.1155/2021/4105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To investigate the effect of mild hypothermia after craniotomy on the function of related organs in patients with traumatic brain injury. METHOD A total of 240 patients with craniocerebral injury from January 2017 to December 2020 were retrospectively analyzed. Patients were randomly divided into a control group and an experimental group, with 120 cases in each group. The control group was treated with craniotomy decompression, and the experimental group was treated with early mild hypothermia based on craniotomy decompression. Patients' venous blood was collected before operation (T 0), at the end of operation (T 1), 24 h after operation (T 2), and 2 weeks after operation (T 3) to detect the serum levels of the beta-subunit of S100 protein (S100-β); soluble growth stimulation expressed gene 2 (sST2), neutrophil gelatinase-associated lipocalin (NGAL), and interleukin 6 (IL-6). The prognostic effect was evaluated after 2 weeks of treatment. RESULTS After mild hypothermia treatment after craniotomy and decompression, the patients' serum S100-β, sST2, NGAL, and IL-6 levels at different time points were significantly lower than the control group, and the total effective rate was higher than that of the control group. CONCLUSION The treatment of mild hypothermia after craniotomy can reduce the related organs function damage indicators and inflammatory stress response, thus improving clinical efficacy and prognosis.
Collapse
Affiliation(s)
- Shu Cai
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Haian 226600, Nantong, Jiangsu, China
| | - Zheng Lu
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Haian 226600, Nantong, Jiangsu, China
| |
Collapse
|
33
|
Neuroimmune cleanup crews in brain injury. Trends Immunol 2021; 42:480-494. [PMID: 33941486 DOI: 10.1016/j.it.2021.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability. Mounting evidence indicates that the immune system is critically involved in TBI pathogenesis, where it is deployed to dispose of neurotoxic material generated from head trauma and to instruct the wound healing process. However, the immune response to brain damage must be carefully held in check as aberrant regulation of immune signaling can lead to deleterious neuroinflammation, brain pathology, and neurological dysfunction. Efficient clearance of neurotoxic material by microglia (the brain's resident phagocytes) and the glymphatic-meningeal lymphatic drainage system are paramount to keeping the immune system in balance following head trauma. In this review, we highlight emerging evidence that defines pivotal roles for microglia and the recently discovered glymphatic-meningeal lymphatic system in TBI pathogenesis.
Collapse
|