1
|
Ma W, Tang S, Yao P, Zhou T, Niu Q, Liu P, Tang S, Chen Y, Gan L, Cao Y. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10:75. [PMID: 40050633 PMCID: PMC11885678 DOI: 10.1038/s41392-025-02127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
In recent years, the incidence of acute respiratory distress syndrome (ARDS) has been gradually increasing. Despite advances in supportive care, ARDS remains a significant cause of morbidity and mortality in critically ill patients. ARDS is characterized by acute hypoxaemic respiratory failure with diffuse pulmonary inflammation and bilateral edema due to excessive alveolocapillary permeability in patients with non-cardiogenic pulmonary diseases. Over the past seven decades, our understanding of the pathology and clinical characteristics of ARDS has evolved significantly, yet it remains an area of active research and discovery. ARDS is highly heterogeneous, including diverse pathological causes, clinical presentations, and treatment responses, presenting a significant challenge for clinicians and researchers. In this review, we comprehensively discuss the latest advancements in ARDS research, focusing on its heterogeneity, pathophysiological mechanisms, and emerging therapeutic approaches, such as cellular therapy, immunotherapy, and targeted therapy. Moreover, we also examine the pathological characteristics of COVID-19-related ARDS and discuss the corresponding therapeutic approaches. In the face of challenges posed by ARDS heterogeneity, recent advancements offer hope for improved patient outcomes. Further research is essential to translate these findings into effective clinical interventions and personalized treatment approaches for ARDS, ultimately leading to better outcomes for patients suffering from ARDS.
Collapse
Affiliation(s)
- Wen Ma
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Qingsheng Niu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Cao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China.
| |
Collapse
|
2
|
Borkar SA, Yin L, Venturi GM, Shen J, Chang KF, Fischer BM, Nepal U, Raplee ID, Sleasman JW, Goodenow MM. Youth Who Control HIV on Antiretroviral Therapy Display Unique Plasma Biomarkers and Cellular Transcriptome Profiles Including DNA Repair and RNA Processing. Cells 2025; 14:285. [PMID: 39996757 PMCID: PMC11853983 DOI: 10.3390/cells14040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Combination antiretroviral therapy (ART) suppresses detectible HIV-1 replication, but latent reservoirs and persistent immune activation contribute to residual viral-associated morbidities and potential viral reactivation. youth with HIV (YWH) virally suppressed on ART early in infection before CD4 T cell decline with fewer comorbidities compared to adults represent a critical population for identifying markers associated with viral control and predictors of viral breakthrough. This study employed a multi-omics approach to evaluate plasma biomarkers and cellular gene expression profiles in 52 participants, including 27 YWH on ART for 144 weeks and 25 youth with no infection (NI) (ages 18-24). Among the 27 YWH, 19 were virally suppressed (VS; <50 RNA copies/mL), while eight were non-suppressed (VNS; >50 RNA copies/mL). VS YWH displayed unique bioprofiles distinct from either VNS or NI. Early viral suppression mitigates inflammatory pathways and normalizes key biomarkers associated with HIV-related comorbidities. Genes upregulated in pathways linked to cellular homeostasis such as DNA repair, RNA processing, and transcription regulation may diminish viral breakthrough and maintain sustained HIV control on ART. Candidate markers and putative molecular mechanisms were identified, offering potential therapeutic targets to limit viral persistence, enhance HIV treatment strategies, and pave the way for improved clinical outcomes.
Collapse
Affiliation(s)
- Samiksha A. Borkar
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Li Yin
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Guglielmo M. Venturi
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; (G.M.V.); (B.M.F.); (J.W.S.)
| | - Jerry Shen
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Kai-Fen Chang
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Bernard M. Fischer
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; (G.M.V.); (B.M.F.); (J.W.S.)
| | - Upasana Nepal
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Isaac D. Raplee
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - John W. Sleasman
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; (G.M.V.); (B.M.F.); (J.W.S.)
| | - Maureen M. Goodenow
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| |
Collapse
|
3
|
Converse A, Perry MJ, Dipali SS, Isola JVV, Kelly EB, Varberg JM, Zelinski MB, Gerton JL, Stout MB, Pritchard MT, Duncan FE. Multinucleated giant cells are hallmarks of ovarian aging with unique immune and degradation-associated molecular signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626649. [PMID: 39677686 PMCID: PMC11642869 DOI: 10.1101/2024.12.03.626649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The ovary is one of the first organs to exhibit signs of aging, characterized by reduced tissue function, chronic inflammation, and fibrosis. Multinucleated giant cells (MNGCs), formed by macrophage fusion, typically occur in chronic immune pathologies, including infectious and non-infectious granulomas and the foreign body response 1 , but are also observed in the aging ovary 2-4 . The function and consequence of ovarian MNGCs remain unknown as their biological activity is highly context-dependent, and their large size has limited their isolation and analysis through technologies such as single-cell RNA sequencing. In this study, we define ovarian MNGCs through a deep analysis of their presence across age and species using advanced imaging technologies as well as their unique transcriptome using laser capture microdissection. MNGCs form complex interconnected networks that increase with age in both mouse and nonhuman primate ovaries. MNGCs are characterized by high Gpnmb expression, a putative marker of ovarian and non-ovarian MNGCs 5,6 . Pathway analysis highlighted functions in apoptotic cell clearance, lipid metabolism, proteolysis, immune processes, and increased oxidative phosphorylation and antioxidant activity. Thus, MNGCs have signatures related to degradative processes, immune function, and high metabolic activity. These processes were enriched in MNGCs compared to primary ovarian macrophages, suggesting discrete functionality. MNGCs express CD4 and colocalize with T-cells, which were enriched in regions of MNGCs, indicative of a close interaction between these immune cell types. These findings implicate MNGCs in modulation of the ovarian immune landscape during aging given their high penetrance and unique molecular signature that supports degradative and immune functions.
Collapse
|
4
|
Chen J, Hui Q, Titanji BK, So-Armah K, Freiberg M, Justice AC, Xu K, Zhu X, Gwinn M, Marconi VC, Sun YV. A multi-trait epigenome-wide association study identified DNA methylation signature of inflammation among men with HIV. Clin Epigenetics 2024; 16:152. [PMID: 39488703 PMCID: PMC11531128 DOI: 10.1186/s13148-024-01763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Inflammation underlies many conditions causing excess morbidity and mortality among people with HIV (PWH). A handful of single-trait epigenome-wide association studies (EWAS) have suggested that inflammation is associated with DNA methylation (DNAm) among PWH. Multi-trait EWAS may further improve statistical power and reveal pathways in common between different inflammatory markers. We conducted single-trait EWAS of three inflammatory markers (soluble CD14, D-dimers and interleukin-6) in the Veterans Aging Cohort Study (n = 920). The study population was all male PWH with an average age of 51 years, and 82.3% self-reported as Black. We then applied two multi-trait EWAS methods-CPASSOC and OmniTest-to combine single-trait EWAS results. CPASSOC and OmniTest identified 189 and 157 inflammation-associated DNAm sites, respectively, of which 112 overlapped. Among the identified sites, 56% were not significant in any single-trait EWAS. Top sites were mapped to inflammation-related genes including IFITM1, PARP9 and STAT1. These genes were significantly enriched in pathways such as "type I interferon signaling" and "immune response to virus." We demonstrate that multi-trait EWAS can improve the discovery of inflammation-associated DNAm sites, genes and pathways. These DNAm sites might hold the key to addressing persistent inflammation in PWH.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Qin Hui
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Boghuma K Titanji
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Kaku So-Armah
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Matthew Freiberg
- Cardiovascular Medicine Division, Vanderbilt University School of Medicine and Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Amy C Justice
- Connecticut Veteran Health System, West Haven, CT, USA
- Schools of Medicine and Public Health, Yale University, New Haven, CT, USA
| | - Ke Xu
- Connecticut Veteran Health System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Marta Gwinn
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Vincent C Marconi
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
- Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA.
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.
| |
Collapse
|
5
|
Carnevale R, Nocella C, Marocco R, Zuccalà P, Carraro A, Picchio V, Oliva A, Cangemi R, Miele MC, De Angelis M, Cancelli F, Casciaro GE, Cristiano L, Pignatelli P, Frati G, Venditti M, Pugliese F, Mastroianni CM, Violi F, Ridola L, Del Borgo C, Palmerio S, Valenzi E, Carnevale R, Alvaro D, Lichtner M, Cardinale V. Association Between NOX2-Mediated Oxidative Stress, Low-Grade Endotoxemia, Hypoalbuminemia, and Clotting Activation in COVID-19. Antioxidants (Basel) 2024; 13:1260. [PMID: 39456513 PMCID: PMC11505442 DOI: 10.3390/antiox13101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Low-grade endotoxemia by lipopolysaccharide (LPS) has been detected in COVID-19 and could favor thrombosis via eliciting a pro-inflammatory and pro-coagulant state. The aim of this study was to analyze the mechanism accounting for low-grade endotoxemia and its relationship with oxidative stress and clotting activation thrombosis in COVID-19. We measured serum levels of sNOX2-dp, zonulin, LPS, D-dimer, and albumin in 175 patients with COVID-19, classified as having or not acute respiratory distress syndrome (ARDS), and 50 healthy subjects. Baseline levels of sNOX2-dp, LPS, zonulin, D-dimer, albumin, and hs-CRP were significantly higher in COVID-19 compared to controls. In COVID-19 patients with ARDS, sNOX2-dp, LPS, zonulin, D-dimer, and hs-CRP were significantly higher compared to COVID-19 patients without ARDS. Conversely, concentration of albumin was lower in patients with ARDS compared with those without ARDS and inversely associated with LPS. In the COVID-19 cohort, the number of patients with ARDS progressively increased according to sNOX2-dp and LPS quartiles; a significant correlation between LPS and sNOX2-dp and LPS and D-dimer was detected in COVID-19. In a multivariable logistic regression model, LPS/albumin levels and D-dimer predicted thrombotic events. In COVID-19 patients, LPS is significantly associated with a hypercoagulation state and disease severity. In vitro, LPS can increase endothelial oxidative stress and coagulation biomarkers that were reduced by the treatment with albumin. In conclusion, impaired gut barrier permeability, increased NOX2 activation, and low serum albumin may account for low-grade endotoxemia and may be implicated in thrombotic events in COVID-19.
Collapse
Affiliation(s)
- Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.E.C.); (G.F.)
- IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (P.P.); (F.V.)
| | - Raffaella Marocco
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy; (R.M.); (P.Z.); (C.D.B.)
| | - Paola Zuccalà
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy; (R.M.); (P.Z.); (C.D.B.)
| | - Anna Carraro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | | | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.C.); (L.R.); (D.A.); (V.C.)
| | - Maria Claudia Miele
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Massimiliano De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Francesca Cancelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Giovanni Enrico Casciaro
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.E.C.); (G.F.)
| | | | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (P.P.); (F.V.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (G.E.C.); (G.F.)
- IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Francesco Pugliese
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (P.P.); (F.V.)
| | - Lorenzo Ridola
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.C.); (L.R.); (D.A.); (V.C.)
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Santa Maria (SM) Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy; (R.M.); (P.Z.); (C.D.B.)
| | - Silvia Palmerio
- Centro Ricerche Cliniche di Verona (CRC), 37134 Verona, Italy;
| | | | - Rita Carnevale
- Corso di Laurea di I Livello in Infermieristica, Università Sapienza di Roma–Polo Pontino–Sede di Terracina, 04019 Terracina, Italy;
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.C.); (L.R.); (D.A.); (V.C.)
| | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.C.); (A.O.); (M.C.M.); (M.D.A.); (F.C.); (M.V.); (C.M.M.); (M.L.)
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (R.C.); (L.R.); (D.A.); (V.C.)
| |
Collapse
|
6
|
Sørum ME, Gang AO, Tholstrup DM, Gudbrandsdottir S, Kissow H, Kornblit B, Müller K, Knop FK. Semaglutide treatment for PRevention Of Toxicity in high-dosE Chemotherapy with autologous haematopoietic stem-cell Transplantation (PROTECT): study protocol for a randomised, double-blind, placebo-controlled, investigator-initiated study. BMJ Open 2024; 14:e089862. [PMID: 39384243 PMCID: PMC11474865 DOI: 10.1136/bmjopen-2024-089862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Cancer treatment with high-dose chemotherapy damages the mucosal barrier of the gastrointestinal (GI) tract and is associated with severe toxicity involving mucositis, severe inflammation and organ dysfunction. Currently, there is no effective prophylaxis against this. Glucagon-like peptide 1 (GLP-1), a well-known regulator of blood glucose, has been suggested in mouse studies to possess trophic effects on gut epithelial cells as well as anti-inflammatory properties. In line with this, endogenous GLP-1 levels have been shown to be inversely correlated with toxicities after haematopoietic stem cell transplantation (HSCT) and treatment with a GLP-1 receptor agonist (GLP-1RA) was shown to limit chemotherapy-induced mucositis in rodents. This present study investigates the effects of the GLP-1RA semaglutide on GI mucositis severity score in patients with lymphoma undergoing high-dose chemotherapy followed by autologous (auto) HSCT. METHODS AND ANALYSIS This is a randomised, double-blind, placebo-controlled, two-centre investigator-initiated clinical study. Forty adult patients with malignant lymphoma referred for auto-HSCT will be randomised in a 1:1 manner to receive either semaglutide or placebo once-weekly for 8 weeks. This includes a run-in period of 3-4 weeks with semaglutide 0.25 mg prior to high-dose chemotherapy treatment followed by a period of 4-5 weeks with semaglutide 0.5 mg including the 1 week of high-dose chemotherapy treatment. Clinical assessment of endpoint measurements and safety will be performed weekly during treatment and in a follow-up period of 10 weeks. The primary endpoint is GI mucositis severity (mean severity grade (0-II) during week 1-4 after auto-HSCT). Secondary endpoints include C-reactive protein increment, quality of life and safety. Fever, bacteraemia, antibiotic use, weight loss, morphine consumption, duration of hospitalisation, use of parenteral nutrition, change in muscle mass and clinical and laboratory evidence of organ toxicities will also be assessed. ETHICS AND DISSEMINATION The study complies with Danish and European Union legislation and is approved by the Danish Medicines Agency, the Danish National Medical Research Ethics Committee (EU CT #2022-502139-20-00) and the Danish Data Protection Agency. The study is monitored by the Capital Region of Denmark's good clinical practice unit. All results, positive, negative and inconclusive, will be disseminated at national and international scientific meetings and in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT06449625.
Collapse
Affiliation(s)
- Maria Ebbesen Sørum
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ortved Gang
- Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Sif Gudbrandsdottir
- Department of Haematology, Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Kornblit
- Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus Müller
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| |
Collapse
|
7
|
Tosi A, Lorenzi M, Del Bianco P, Roma A, Pavan A, Scapinello A, Resi MV, Bonanno L, Frega S, Calabrese F, Guarneri V, Rosato A, Pasello G. Extensive-stage small-cell lung cancer in patients receiving atezolizumab plus carboplatin-etoposide: stratification of outcome based on a composite score that combines gene expression profiling and immune characterization of microenvironment. J Immunother Cancer 2024; 12:e008974. [PMID: 38955418 PMCID: PMC11218000 DOI: 10.1136/jitc-2024-008974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Small-cell lung cancer (SCLC) is an aggressive disease with a dismal prognosis. The addition of immune checkpoints inhibitors to standard platinum-based chemotherapy in first-line setting achieves a durable benefit only in a patient subgroup. Thus, the identification of predictive biomarkers is an urgent unmet medical need. EXPERIMENTAL DESIGN Tumor samples from naive extensive-stage (ES) SCLC patients receiving atezolizumab plus carboplatin-etoposide were analyzed by gene expression profiling and two 9-color multiplex immunofluorescence panels, to characterize the immune infiltrate and SCLC subtypes. Associations of tissue biomarkers with time-to-treatment failure (TTF), progression-free survival (PFS) and overall survival (OS), were assessed. RESULTS 42 patients were included. Higher expression of exhausted CD8-related genes was independently associated with a longer TTF and PFS while increased density of B lymphocytes correlated with longer TTF and OS. Higher percentage of M2-like macrophages close to tumor cells and of CD8+T cells close to CD4+T lymphocytes correlated with increased risk of TF and longer survival, respectively. A lower risk of TF, disease progression and death was associated with a higher density of ASCL1+tumor cells while the expression of POU2F3 correlated with a shorter survival. A composite score combining the expression of exhausted CD8-related genes, B lymphocyte density, ASCL1 tumor expression and quantification of CD163+macrophages close to tumor cells, was able to stratify patients into high-risk and low-risk groups. CONCLUSIONS In conclusion, we identified tissue biomarkers and a combined score that can predict a higher benefit from chemoimmunotherapy in ES-SCLC patients.
Collapse
Affiliation(s)
- Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Martina Lorenzi
- Department of Medical Oncology, Santa Chiara Hospital, Trento, Italy
| | - Paola Del Bianco
- Clinical Trials and Biostatistics, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Anna Roma
- Medical Oncology 3, Istituto Oncologico Veneto IOV-IRCCS, Castelfranco Veneto, Italy
| | - Alberto Pavan
- Department of Medical Oncology, AULSS 3 Serenissima, Venezia, Italy
| | | | - Maria Vittoria Resi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Laura Bonanno
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Stefano Frega
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Fiorella Calabrese
- Department of CardioThoracic Vascular Sciences and Public Health, Università degli Studi di Padova, Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| |
Collapse
|
8
|
Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol 2024; 42:347-373. [PMID: 38941603 DOI: 10.1146/annurev-immunol-090122-041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
9
|
Chen J, Hui Q, Titanji BK, So-Armah K, Freiberg M, Justice AC, Xu K, Zhu X, Gwinn M, Marconi VC, Sun YV. A multi-trait epigenome-wide association study identified DNA methylation signature of inflammation among people with HIV. RESEARCH SQUARE 2024:rs.3.rs-4419840. [PMID: 38854093 PMCID: PMC11160930 DOI: 10.21203/rs.3.rs-4419840/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inflammation underlies many conditions causing excess morbidity and mortality among people with HIV (PWH). A handful of single-trait epigenome-wide association studies (EWAS) have suggested that inflammation is associated with DNA methylation (DNAm) among PWH. Multi-trait EWAS may further improve statistical power and reveal pathways in common between different inflammatory markers. We conducted single-trait EWAS of three inflammatory markers (soluble CD14, D-dimers, and interleukin 6) in the Veteran Aging Cohort Study (n = 920). The study population was all male PWH with an average age of 51 years, and 82.3% self-reported as Black. We then applied two multi-trait EWAS methods-CPASSOC and OmniTest-to combine single-trait EWAS results. CPASSOC and OmniTest identified 189 and 157 inflammation-associated DNAm sites respectively, of which 112 overlapped. Among the identified sites, 56% were not significant in any single-trait EWAS. Top sites were mapped to inflammation-related genes including IFITM1, PARP9 and STAT1. These genes were significantly enriched in pathways such as "type I interferon signaling" and "immune response to virus". We demonstrate that multi-trait EWAS can improve the discovery of inflammation-associated DNAm sites, genes, and pathways. These DNAm sites suggest molecular mechanisms in response to inflammation associated with HIV and might hold the key to addressing persistent inflammation in PWH.
Collapse
Affiliation(s)
| | | | | | - Kaku So-Armah
- Boston University Chobanian and Avedisian School of Medicine
| | - Matthew Freiberg
- Vanderbilt University School of Medicine and Tennessee Valley Healthcare System
| | | | - Ke Xu
- Connecticut Veteran Health System
| | | | | | | | | |
Collapse
|
10
|
Galati D, Mallardo D, Nicastro C, Zanotta S, Capitelli L, Lombardi C, Baino B, Cavalcanti E, Sale S, Labonia F, Boenzi R, Atripaldi L, Ascierto PA, Bocchino M. The Dysregulation of the Monocyte-Dendritic Cell Interplay Is Associated with In-Hospital Mortality in COVID-19 Pneumonia. J Clin Med 2024; 13:2481. [PMID: 38731010 PMCID: PMC11084469 DOI: 10.3390/jcm13092481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The monocyte-phagocyte system (MPS), including monocytes/macrophages and dendritic cells (DCs), plays a key role in anti-viral immunity. We aimed to analyze the prognostic value of the MPS components on in-hospital mortality in a cohort of 58 patients (M/F; mean age ± SD years) with COVID-19 pneumonia and 22 age- and sex-matched healthy controls. Methods: We measured frequencies and absolute numbers of peripheral blood CD169+ monocytes, conventional CD1c+ and CD141+ (namely cDC2 and cDC1), and plasmacytoid CD303+ DCs by means of multi-parametric flow cytometry. A gene profile analysis of 770 immune-inflammatory-related human genes and 20 SARS-CoV-2 genes was also performed. Results: Median frequencies and absolute counts of CD169-expressing monocytes were significantly higher in COVID-19 patients than in controls (p 0.04 and p 0.01, respectively). Conversely, percentages and absolute numbers of all DC subsets were markedly depleted in patients (p < 0.0001). COVID-19 cases with absolute counts of CD169+ monocytes above the median value of 114.68/μL had significantly higher in-hospital mortality (HR 4.96; 95% CI: 1.42-17.27; p = 0.02). Interleukin (IL)-6 concentrations were significantly increased in COVID-19 patients (p < 0.0001 vs. controls), and negatively correlated with the absolute counts of circulating CD1c+ cDC2 (r = -0.29, p = 0.034) and CD303+ pDC (r = -0.29, p = 0.036) subsets. Viral genes were upregulated in patients with worse outcomes along with inflammatory mediators such as interleukin (IL)-1 beta, tumor necrosis-α (TNF-α) and the anticoagulant protein (PROS1). Conversely, surviving patients had upregulated genes related to inflammatory and anti-viral-related pathways along with the T cell membrane molecule CD4. Conclusions: Our results suggest that the dysregulated interplay between the different components of the MPS along with the imbalance between viral gene expression and host anti-viral immunity negatively impacts COVID-19 outcomes. Although the clinical scenario of COVID-19 has changed over time, a deepening of its pathogenesis remains a priority in clinical and experimental research.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Domenico Mallardo
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Carmine Nicastro
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Innovative Diagnostics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.G.); (S.Z.)
| | - Ludovica Capitelli
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Carmen Lombardi
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Bianca Baino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Silvia Sale
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Francesco Labonia
- Laboratory Medicine Unit, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (E.C.)
| | - Rita Boenzi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Luigi Atripaldi
- Clinical Biochemistry Unit, AORN dei Colli, Ospedale Monaldi, 80131 Naples, Italy; (C.N.); (S.S.); (R.B.); (L.A.)
| | - Paolo Antonio Ascierto
- Unit of Melanoma and Innovative Therapy, Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori–IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.M.); (P.A.A.)
| | - Marialuisa Bocchino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Monaldi Hospital, 80131 Naples, Italy; (L.C.); (C.L.); (B.B.)
| |
Collapse
|
11
|
Takashima Y, Inaba T, Matsuyama T, Yoshii K, Tanaka M, Matsumoto K, Sudo K, Tokuda Y, Omi N, Nakano M, Nakaya T, Fujita N, Sotozono C, Sawa T, Tashiro K, Ohta B. Potential marker subset of blood-circulating cytokines on hematopoietic progenitor-to-Th1 pathway in COVID-19. Front Med (Lausanne) 2024; 11:1319980. [PMID: 38476443 PMCID: PMC10927758 DOI: 10.3389/fmed.2024.1319980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, we analyzed a relatively large subset of proteins, including 109 kinds of blood-circulating cytokines, and precisely described a cytokine storm in the expression level and the range of fluctuations during hospitalization for COVID-19. Of the proteins analyzed in COVID-19, approximately 70% were detected with Bonferroni-corrected significant differences in comparison with disease severity, clinical outcome, long-term hospitalization, and disease progression and recovery. Specifically, IP-10, sTNF-R1, sTNF-R2, sCD30, sCD163, HGF, SCYB16, IL-16, MIG, SDF-1, and fractalkine were found to be major components of the COVID-19 cytokine storm. Moreover, the 11 cytokines (i.e., SDF-1, SCYB16, sCD30, IL-11, IL-18, IL-8, IFN-γ, TNF-α, sTNF-R2, M-CSF, and I-309) were associated with the infection, mortality, disease progression and recovery, and long-term hospitalization. Increased expression of these cytokines could be explained in sequential pathways from hematopoietic progenitor cell differentiation to Th1-derived hyperinflammation in COVID-19, which might also develop a novel strategy for COVID-19 therapy with recombinant interleukins and anti-chemokine drugs.
Collapse
Affiliation(s)
- Yasuo Takashima
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tohru Inaba
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kengo Yoshii
- Department of Mathematics and Statistics in Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masami Tanaka
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazumichi Matsumoto
- Faculty of Clinical Laboratory, University Hospital Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Sudo
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichi Tokuda
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Natsue Omi
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Fujita
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- University Hospital Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Bon Ohta
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Oh DS, Kim E, Lu G, Normand R, Shook LL, Lyall A, Jasset O, Demidkin S, Gilbert E, Kim J, Akinwunmi B, Tantivit J, Tirard A, Arnold BY, Slowikowski K, Goldberg MB, Filbin MR, Hacohen N, Nguyen LH, Chan AT, Yu XG, Li JZ, Yonker L, Fasano A, Perlis RH, Pasternak O, Gray KJ, Choi GB, Drew DA, Sen P, Villani AC, Edlow AG, Huh JR. SARS-CoV-2 infection elucidates unique features of pregnancy-specific immunity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24301794. [PMID: 38370801 PMCID: PMC10871456 DOI: 10.1101/2024.02.05.24301794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Pregnancy is a risk factor for increased severity of SARS-CoV-2 and other respiratory infections. The mechanisms underlying this risk have not been well-established, partly due to a limited understanding of how pregnancy shapes immune responses. To gain insight into the role of pregnancy in modulating immune responses at steady state and upon perturbation, we collected peripheral blood mononuclear cells (PBMC), plasma, and stool from 226 women, including 152 pregnant individuals (n = 96 with SARS-CoV-2 infection and n = 56 healthy controls) and 74 non-pregnant women (n = 55 with SARS-CoV-2 and n = 19 healthy controls). We found that SARS-CoV-2 infection was associated with altered T cell responses in pregnant compared to non-pregnant women. Differences included a lower percentage of memory T cells, a distinct clonal expansion of CD4-expressing CD8 + T cells, and the enhanced expression of T cell exhaustion markers, such as programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain-3 (Tim-3), in pregnant women. We identified additional evidence of immune dysfunction in severely and critically ill pregnant women, including a lack of expected elevation in regulatory T cell (Treg) levels, diminished interferon responses, and profound suppression of monocyte function. Consistent with earlier data, we found maternal obesity was also associated with altered immune responses to SARS-CoV-2 infection, including enhanced production of inflammatory cytokines by T cells. Certain gut bacterial species were altered in pregnancy and upon SARS-CoV-2 infection in pregnant individuals compared to non-pregnant women. Shifts in cytokine and chemokine levels were also identified in the sera of pregnant individuals, most notably a robust increase of interleukin-27 (IL-27), a cytokine known to drive T cell exhaustion, in the pregnant uninfected control group compared to all non-pregnant groups. IL-27 levels were also significantly higher in uninfected pregnant controls compared to pregnant SARS-CoV-2-infected individuals. Using two different preclinical mouse models of inflammation-induced fetal demise and respiratory influenza viral infection, we found that enhanced IL-27 protects developing fetuses from maternal inflammation but renders adult female mice vulnerable to viral infection. These combined findings from human and murine studies reveal nuanced pregnancy-associated immune responses, suggesting mechanisms underlying the increased susceptibility of pregnant individuals to viral respiratory infections.
Collapse
|
13
|
Molnár GA, Vokó Z, Sütő G, Rokszin G, Nagy D, Surján G, Surján O, Nagy P, Kenessey I, Wéber A, Pálosi M, Müller C, Kásler M, Wittmann I, Kiss Z. Effectiveness of SARS-CoV-2 primary vaccines and boosters in patients with type 2 diabetes mellitus in Hungary (HUN-VE 4 Study). BMJ Open Diabetes Res Care 2024; 12:e003777. [PMID: 38267204 PMCID: PMC10823926 DOI: 10.1136/bmjdrc-2023-003777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus is a risk factor for severe COVID-19 infection and is associated with increased risk of complications. The present study aimed to investigate effectiveness and persistence of different COVID vaccines in persons with or without diabetes during the Delta wave in Hungary. RESEARCH DESIGN AND METHODS Data sources were the national COVID-19 registry data from the National Public Health Center and the National Health Insurance Fund on the total Hungarian population. The adjusted incidence rate ratios and corresponding 95% CIs were derived from a mixed-effect negative binomial regression model. RESULTS A population of 672 240 cases with type 2 diabetes and a control group of 2 974 102 non-diabetic persons free from chronic diseases participated. Unvaccinated elderly persons with diabetes had 2.68 (95% CI 2.47 to 2.91) times higher COVID-19-related mortality rate as the 'healthy' controls. Primary immunization effectively equalized the risk of COVID-19 mortality between the two groups. Vaccine effectiveness declined over time, but the booster restored the effectiveness against mortality to over 90%. The adjusted vaccine effectiveness of the primary Pfizer-BioNTech against infection in the 14-120 days of postvaccination period was 71.6 (95% CI 66.3 to 76.1)% in patients aged 65-100 years with type 2 diabetes and 64.52 (95% CI 59.2 to 69.2)% in the controls. Overall, the effectiveness tended to be higher in individuals with diabetes than in controls. The booster vaccines could restore vaccine effectiveness to over 80% concerning risk of infection (eg, patients with diabetes aged 65-100 years: 89.1 (88.1-89.9)% with Pfizer-on-Pfizer, controls 65-100 years old: 86.9 (85.8-88.0)% with Pfizer-on-Pfizer, or patients with diabetes aged 65-100 years: 88.3 (87.2-89.2)% with Pfizer-on-Sinopharm, controls 65-100 years old: 87.8 (86.8-88.7)% with Pfizer-on-Sinopharm). CONCLUSIONS Our data suggest that people with type 2 diabetes may have even higher health gain when getting vaccinated as compared with non-diabetic persons, eliminating the marked, COVID-19-related excess risk of this population. Boosters could restore protection.
Collapse
Affiliation(s)
- Gergő A Molnár
- Second Department of Medicine and Nephrology-Diabetes Center, University of Pécs Medical School, Pécs, Hungary
| | - Zoltán Vokó
- Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
| | - Gábor Sütő
- Second Department of Medicine and Nephrology-Diabetes Center, University of Pécs Medical School, Pécs, Hungary
| | | | - Dávid Nagy
- Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
- Syreon Research Institute, Budapest, Hungary
| | - György Surján
- Institute of Digital Health Sciences, Semmelweis University, Budapest, Hungary
| | - Orsolya Surján
- National Center for Public Health and Pharmacy, Budapest, Hungary
| | - Péter Nagy
- National Institute of Oncology, Budapest, Hungary
- Institute of Oncochemistry, University of Debrecen, Debrecen, Hungary
| | - István Kenessey
- National Institute of Oncology, Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - András Wéber
- National Institute of Oncology, Budapest, Hungary
| | | | - Cecília Müller
- National Center for Public Health and Pharmacy, Budapest, Hungary
| | - Miklós Kásler
- National Institute of Oncology, Budapest, Hungary
- Central-Eastern European Academy of Oncology, Budapest, Hungary
| | - István Wittmann
- Second Department of Medicine and Nephrology-Diabetes Center, University of Pécs Medical School, Pécs, Hungary
| | - Zoltan Kiss
- Second Department of Medicine and Nephrology-Diabetes Center, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|
14
|
Reagin KL, Lee RL, Cocciolone L, Funk KE. Antigen non-specific CD8 + T cells accelerate cognitive decline in aged mice following respiratory coronavirus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573675. [PMID: 38260669 PMCID: PMC10802364 DOI: 10.1101/2024.01.02.573675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primarily a respiratory infection, numerous patients infected with SARS-CoV-2 present with neurologic symptoms, some continuing long after viral clearance as a persistent symptomatic phase termed "long COVID". Advanced age increases the risk of severe disease, as well as incidence of long COVID. We hypothesized that perturbations in the aged immune response predispose elderly individuals to severe coronavirus infection and post-infectious sequelae. Using a murine model of respiratory coronavirus, mouse hepatitis virus strain A59 (MHV-A59), we found that aging increased clinical illness and lethality to MHV infection, with aged animals harboring increased virus in the brain during acute infection. This was coupled with an unexpected increase in activated CD8+ T cells within the brains of aged animals but reduced antigen specificity of those CD8+ T cells. Aged animals demonstrated spatial learning impairment following MHV infection, which correlated with increased neuronal cell death and reduced neuronal regeneration in aged hippocampus. Using primary cell culture, we demonstrated that activated CD8+ T cells induce neuronal death, independent of antigen-specificity. Specifically, higher levels of CD8+ T cell-derived IFN-γ correlated with neuronal death. These results support the evidence that CD8+ T cells in the brain directly contribute to cognitive dysfunction following coronavirus infection in aged individuals.
Collapse
Affiliation(s)
- Katie L. Reagin
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Rae-Ling Lee
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Loren Cocciolone
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte
| |
Collapse
|
15
|
Hasan MF, Campbell AR, Croom-Perez TJ, Oyer JL, Dieffenthaller TA, Robles-Carrillo LD, Cash CA, Eloriaga JE, Kumar S, Andersen BW, Naeimi Kararoudi M, Tullius BP, Lee DA, Copik AJ. Knockout of the inhibitory receptor TIGIT enhances the antitumor response of ex vivo expanded NK cells and prevents fratricide with therapeutic Fc-active TIGIT antibodies. J Immunother Cancer 2023; 11:e007502. [PMID: 38081778 PMCID: PMC10729131 DOI: 10.1136/jitc-2023-007502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Inhibitory receptor T-cell Immunoreceptor with Ig and ITIM domains (TIGIT) expressed by Natural Killer (NK) and T cells regulates cancer immunity and has been touted as the next frontier in the development of cancer immunotherapeutics. Although early results of anti-TIGIT and its combinations with antiprogrammed death-ligand 1 were highly exciting, results from an interim analysis of phase III trials are disappointing. With mixed results, there is a need to understand the effects of therapeutic anti-TIGIT on the TIGIT+ immune cells to support its clinical use. Most of the TIGIT antibodies in development have an Fc-active domain, which binds to Fc receptors on effector cells. In mouse models, Fc-active anti-TIGIT induced superior immunity, while Fc receptor engagement was required for its efficacy. NK-cell depletion compromised the antitumor immunity of anti-TIGIT indicating the essential role of NK cells in the efficacy of anti-TIGIT. Since NK cells express TIGIT and Fc-receptor CD16, Fc-active anti-TIGIT may deplete NK cells via fratricide, which has not been studied. METHODS CRISPR-Cas9-based TIGIT knockout (KO) was performed in expanded NK cells. Phenotypic and transcriptomic properties of TIGIT KO and wild-type (WT) NK cells were compared with flow cytometry, CyTOF, and RNA sequencing. The effect of TIGIT KO on NK-cell cytotoxicity was determined by calcein-AM release and live cell imaging-based cytotoxicity assays. The metabolic properties of TIGIT KO and WT NK cells were compared with a Seahorse analyzer. The effect of the Fc-component of anti-TIGIT on NK-cell fratricide was determined by co-culturing WT and TIGIT KO NK cells with Fc-active and Fc-inactive anti-TIGIT. RESULTS TIGIT KO increased the cytotoxicity of NK cells against multiple cancer cell lines including spheroids. TIGIT KO NK cells upregulated mTOR complex 1 (mTORC1) signaling and had better metabolic fitness with an increased basal glycolytic rate when co-cultured with cancer cells compared with WT NK cells. Importantly, TIGIT KO prevented NK-cell fratricide when combined with Fc-active anti-TIGIT. CONCLUSIONS TIGIT KO in ex vivo expanded NK cells increased their cytotoxicity and metabolic fitness and prevented NK-cell fratricide when combined with Fc-active anti-TIGIT antibodies. These fratricide-resistant TIGIT KO NK cells have therapeutic potential alone or in combination with Fc-active anti-TIGIT antibodies to enhance their efficacy.
Collapse
Affiliation(s)
- Md Faqrul Hasan
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Amanda R Campbell
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Jeremiah L Oyer
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | | | - Liza D Robles-Carrillo
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Catherine A Cash
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jonathan E Eloriaga
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Sanjana Kumar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Brendan W Andersen
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, School of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Brian P Tullius
- Pediatric Cellular Therapies, AdventHealth for Children, Orlando, Florida, USA
| | - Dean A Lee
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
16
|
Morita S, Kikuchi H, Birch G, Matsui A, Morita A, Kobayashi T, Ruan Z, Huang P, Hernandez A, Coyne EM, Shin SM, Yarchoan M, Mino-Kenudson M, Romee R, Ho WJ, Duda DG. Preventing NK cell activation in the damaged liver induced by cabozantinib/PD-1 blockade increases survival in hepatocellular carcinoma models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563378. [PMID: 37961529 PMCID: PMC10634718 DOI: 10.1101/2023.10.20.563378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The addition of anti-VEGF antibody treatment to immune checkpoint blockade (ICB) has increased the efficacy of immunotherapy in advanced hepatocellular carcinoma (HCC). Despite an initial promise, adding multitargeted kinase inhibitors of VEGFR with ICB has failed to increase survival in HCC. To reveal the mechanisms underlying treatment failure, we studied the effects of cabozantinib/ICB using orthotopic murine HCC models with or without liver damage. We monitored tumor growth and liver function, recorded survival outcomes, and performed immune profiling studies for intra-tumoral and surrounding liver. Cabozantinib/ICB treatment led to tumor regression and significantly improved survival in mice with normal livers. However, consistent with the clinical findings, combination therapy failed to show survival benefits despite similar tumor control when tested in the same models but in mice with liver fibrosis. Moreover, preclinical and clinical data converged, showing that activating immune responses by cabozantinib/ICB treatment induced hepatoxicity. Immune profiling revealed that combination therapy effectively reprogrammed the tumor immune microenvironment and increased NK cell infiltration and activation in the damaged liver tissue. Surprisingly, systemic depletion of NK reduced hepatotoxicity elicited by the combination therapy without compromising its anti-cancer effect, and significantly enhanced the survival benefit even in mice with HCC and underlying liver fibrosis. These findings demonstrate that preventing NK activation allowed for maintaining a favorable therapeutic ratio when combining ICB with cabozantinib in advanced HCC models.
Collapse
|
17
|
Wallace RP, Refvik KC, Antane JT, Brünggel K, Tremain AC, Raczy MR, Alpar AT, Nguyen M, Solanki A, Slezak AJ, Watkins EA, Lauterbach AL, Cao S, Wilson DS, Hubbell JA. Synthetically mannosylated antigens induce antigen-specific humoral tolerance and reduce anti-drug antibody responses to immunogenic biologics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.534593. [PMID: 37066302 PMCID: PMC10104138 DOI: 10.1101/2023.04.07.534593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients, which reduces efficacy and increases adverse reactions. Our laboratory has previously shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer (p(Man)). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We found that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by Tregs. We identify increased TCR signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.
Collapse
|
18
|
Esrafili A, Kupfer J, Thumsi A, Jaggarapu MMCS, Suresh AP, Talitckii A, Khodaei T, Swaminathan SJ, Mantri S, Peet MM, Acharya AP. Exponentially decreasing exposure of antigen generates anti-inflammatory T-cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558014. [PMID: 37745575 PMCID: PMC10516048 DOI: 10.1101/2023.09.15.558014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Rheumatoid Arthritis (RA) is a chronic debilitating disease characterized by auto-immune reaction towards self-antigen such as collagen type II. In this study, we investigated the impact of exponentially decreasing levels of antigen exposure on pro-inflammatory T cell responses in the collagen-induced arthritis (CIA) mouse model. Using a controlled delivery experimental approach, we manipulated the collagen type II (CII) antigen concentration presented to the immune system. We observed that exponentially decreasing levels of antigen generated reduced pro-inflammatory T cell responses in secondary lymphoid organs in mice suffering from RA. Specifically, untreated mice exhibited robust pro-inflammatory T cell activation and increased paw inflammation, whereas, mice exposed to exponentially decreasing concentrations of CII demonstrated significantly reduced pro-inflammatory T cell responses, exhibited lower levels of paw inflammation, and decreased arthritis scores in right rear paw. The data also demonstrate that the decreasing antigen levels promoted the induction of regulatory T cells (Tregs), which play a crucial role in maintaining immune tolerance and suppressing excessive inflammatory responses. Our findings highlight the importance of antigen concentration in modulating pro-inflammatory T cell responses in the CIA model. These results provide valuable insights into the potential therapeutic strategies that target antigen presentation to regulate immune responses and mitigate inflammation in rheumatoid arthritis and other autoimmune diseases. Further investigations are warranted to elucidate the specific mechanisms underlying the antigen concentration-dependent modulation of T cell responses and to explore the translational potential of this approach for the development of novel therapeutic interventions in autoimmune disorders.
Collapse
Affiliation(s)
- Arezoo Esrafili
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Joshua Kupfer
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Abhirami Thumsi
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | | | - Abhirami P. Suresh
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Aleksandr Talitckii
- Aerospace and Mechanical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Taravat Khodaei
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
| | | | - Shivani Mantri
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
| | - Matthew M Peet
- Aerospace and Mechanical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
| | - Abhinav P. Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA, 85281
- Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA, 85281
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA, 85281
- Biodesign Center for Biomaterials Innovation and Translation, Arizona State University, Tempe, AZ, USA, 85281
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA, 44106
| |
Collapse
|
19
|
Zingaropoli MA, Pasculli P, Barbato C, Petrella C, Fiore M, Dominelli F, Latronico T, Ciccone F, Antonacci M, Liuzzi GM, Talarico G, Bruno G, Galardo G, Pugliese F, Lichtner M, Mastroianni CM, Minni A, Ciardi MR. Biomarkers of Neurological Damage: From Acute Stage to Post-Acute Sequelae of COVID-19. Cells 2023; 12:2270. [PMID: 37759493 PMCID: PMC10526816 DOI: 10.3390/cells12182270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Neurological symptoms (NS) in COVID-19 are related to both acute stage and long-COVID. We explored levels of brain injury biomarkers (NfL and GFAP) and myeloid activation marker (sCD163) and their implications on the CNS. Materials and Methods: In hospitalized COVID-19 patients plasma samples were collected at two time points: on hospital admission (baseline) and three months after hospital discharge (Tpost). Patients were stratified according to COVID-19 severity based on acute respiratory distress syndrome (ARDS) onset (severe and non-severe groups). A further stratification according to the presence of NS (with and without groups) at baseline (requiring a puncture lumbar for diagnostic purposes) and according to NS self-referred at Tpost was performed. Finally, cerebrospinal fluid (CSF) samples were collected from patients with NS present at baseline. Results: We enrolled 144 COVID-19 patients (62 female/82 male; median age [interquartile range, IQR]): 64 [55-77]) and 53 heathy donors (HD, 30 female/23 male; median age [IQR]: 64 [59-69]). At baseline, higher plasma levels of NfL, GFAP and sCD163 in COVID-19 patients compared to HD were observed (p < 0.0001, p < 0.0001 and p < 0.0001, respectively), especially in those with severe COVID-19 (p < 0.0001, p < 0.0001 and p < 0.0001, respectively). Patients with NS showed higher plasma levels of NfL, GFAP and sCD163 compared to those without (p = 0.0023, p < 0.0001 and 0.0370, respectively). At baseline, in COVID-19 patients with NS, positive correlations between CSF levels of sCD163 and CSF levels of NfL (ρ = 0.7536, p = 0.0017) and GFAP were observed (ρ = 0.7036, p = 0.0045). At Tpost, the longitudinal evaluation performed on 77 COVID-19 patients showed a significant reduction in plasma levels of NfL, GFAP and sCD163 compared to baseline (p < 0.0001, p < 0.0001 and p = 0.0413, respectively). Finally, at Tpost, in the severe group, higher plasma levels of sCD163 in patients with NS compared to those without were reported (p < 0.0001). Conclusions: High plasma levels of NfL, GFAP and sCD163 could be due to a proinflammatory systemic and brain response involving microglial activation and subsequent CNS damage. Our data highlight the association between myeloid activation and CNS perturbations.
Collapse
Affiliation(s)
- Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Christian Barbato
- Department of Sense Organs, Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Sapienza University of Rome, 00185 Rome, Italy; (C.B.); (C.P.); (M.F.)
| | - Carla Petrella
- Department of Sense Organs, Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Sapienza University of Rome, 00185 Rome, Italy; (C.B.); (C.P.); (M.F.)
| | - Marco Fiore
- Department of Sense Organs, Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Sapienza University of Rome, 00185 Rome, Italy; (C.B.); (C.P.); (M.F.)
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy; (T.L.); (G.M.L.)
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Michele Antonacci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy; (T.L.); (G.M.L.)
| | - Giuseppina Talarico
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.T.); (G.B.)
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.T.); (G.B.)
| | - Gioacchino Galardo
- Medical Emergency Unit, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation “Paride Stefanini”, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Miriam Lichtner
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, 00185 Latina, Italy;
- Department of Neurosciences, Mental Health, and Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy;
- Division of Otolaryngology-Head and Neck Surgery, ASL Rieti-Sapienza University, Ospedale San Camillo de Lellis, Viale Kennedy, 02100 Rieti, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| |
Collapse
|
20
|
Attia H, El Nagdy M, Abdel Halim RM. Preliminary Study of sCD14 and sCD163 as Predictors of Disease Severity and ICU Admission in COVID-19: Relation to Hematological Parameters, Blood Morphological Changes and Inflammatory Biomarkers. Mediterr J Hematol Infect Dis 2023; 15:e2023046. [PMID: 37705527 PMCID: PMC10497305 DOI: 10.4084/mjhid.2023.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023] Open
Abstract
Background and Objectives Research supports the role of monocyte/macrophage activation in COVID-19 immunopathology. This study aimed to evaluate sCD14 and sCD163 - the monocyte activation markers - and to investigate their relation to hematological parameters and blood morphology in COVID-19 infection. Methods This is a case-control study that included 70 COVID-19 patients. Patients were subdivided into two groups: 23 severely diseased ICU-admitted patients and another group of 47 non-ICU-admitted patients. sCD163 and sCD14 levels were determined using ELISA. Results sCD163 and sCD14 showed significantly higher levels in sera of patients compared to the control group, with significantly higher levels of sCD163 in ICU-admitted patients than non-ICU admitted patients. Receiver operating characteristic curve analysis demonstrated the usefulness of sCD163 with a cut-off value of 734 ng/mL as a potential marker to discriminate between ICU and non-ICU admitted COVID-19 patients (sensitivity of 81.16%; specificity of 96.67% and positive predictive value of 98% with area under the curve of 0.930). sCD163 levels showed a positive correlation with total white blood cells, absolute neutrophilic count, Neutrophil/Lymphocyte ratio, and a negative correlation with platelet count. sCD14 levels positively correlated with D-dimer values associated with a shift to the left and neutrophilic toxic granulations in blood morphology. Conclusion High sCD163 and sCD14 levels, hematological parameters, and blood morphology reflect monocyte activation in COVID-19 infection. sCD163 is a potential marker of disease severity. These findings support further study of therapeutics targeting macrophage activity in COVID-19 patients with high sCD163 levels.
Collapse
Affiliation(s)
- Hend Attia
- Clinical and Chemical Pathology-Haematology, School of Medicine, Newgiza University, Giza, Egypt
| | - Mona El Nagdy
- Clinical and Chemical Pathology, Kasr Alainy, Cairo University, Cairo, Egypt
| | - Radwa M Abdel Halim
- Clinical and Chemical Pathology, Kasr Alainy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Rolfes M, Harroud A, Zorn KC, Tubati A, Omura C, Kurtz K, Matloubian M, Berger A, Chiu CY, Wilson MR, Ramachandran PS. Complement Factor I Gene Variant as a Treatable Cause of Recurrent Aseptic Neutrophilic Meningitis: A Case Report. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200121. [PMID: 37339889 DOI: 10.1212/nxi.0000000000200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 06/22/2023]
Abstract
Mutations in the complement factor I (CFI) gene have previously been identified as causes of recurrent CNS inflammation. We present a case of a 26-year-old man with 18 episodes of recurrent meningitis, who had a variant in CFI(c.859G>A,p.Gly287Arg) not previously associated with neurologic manifestations. He achieved remission with canakinumab, a human monoclonal antibody targeted at interleukin-1 beta.
Collapse
Affiliation(s)
- Mary Rolfes
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Adil Harroud
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Kelsey C Zorn
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Asritha Tubati
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Charles Omura
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Kenneth Kurtz
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Mehrdad Matloubian
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Amy Berger
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Charles Y Chiu
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Michael R Wilson
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia
| | - Prashanth S Ramachandran
- From the Weill Institute for Neurosciences (M.R., M.R.W.), Department of Neurology, University of California, San Francisco; Montreal Neurological Institute and Hospital (A.H.), Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Biochemistry and Biophysics (K.C.Z., A.T.); Department of Laboratory Medicine (C.O., C.Y.C.); Kaiser Permanente Santa Rosa Medical Center (K.K.)Department of Medicine (M.M.), Division of Rheumatology; Department of Medicine (A.B.), Molecular Medicine Consult Service; Department of Medicine (C.Y.C.), Division of Infectious Diseases, University of California, San Francisco; The Peter Doherty Institute for Infection and Immunity (P.S.R.); Department of Neurology (P.S.R.), Royal Melbourne Hospital; and Department of Neurology (P.S.R.), St.Vincent's Hospital, University of Melbourne, Australia.
| |
Collapse
|
22
|
Daily KP, Badr A, Eltobgy M, Estfanous S, Whitham O, Tan MH, Carafice C, Krause K, McNamara A, Hamilton K, Houle S, Gupta S, Gupta GA, Madhu S, Fitzgerald J, Saadey AA, Laster B, Yan P, Webb A, Zhang X, Pietrzak M, Kokiko-Cochran ON, Ghoneim HE, Amer AO. DNA hypomethylation promotes the expression of CASPASE-4 which exacerbates neuroinflammation and amyloid-β deposition in Alzheimer's disease The Ohio State University College of Medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555526. [PMID: 37693600 PMCID: PMC10491177 DOI: 10.1101/2023.08.30.555526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alzheimer's Disease (AD) is the 6th leading cause of death in the US. It is established that neuroinflammation contributes to the synaptic loss, neuronal death, and symptomatic decline of AD patients. Accumulating evidence suggests a critical role for microglia, innate immune phagocytes of the brain. For instance, microglia release proinflammatory products such as IL-1β which is highly implicated in AD pathobiology. The mechanisms underlying the transition of microglia to proinflammatory promoters of AD remain largely unknown. To address this gap, we performed Reduced Representation Bisulfite Sequencing (RRBS) to profile global DNA methylation changes in human AD brains compared to no disease controls. We identified differential DNA methylation of CASPASE-4 (CASP4), which when expressed, can be involved in generation of IL-1β and is predominantly expressed in immune cells. DNA upstream of the CASP4 transcription start site was hypomethylated in human AD brains, which was correlated with increased expression of CASP4. Furthermore, microglia from a mouse model of AD (5xFAD) express increased levels of CASP4 compared to wild-type (WT) mice. To study the role of CASP4 in AD, we developed a novel mouse model of AD lacking the mouse ortholog of CASP4, CASP11, which is encoded by mouse Caspase-4 (5xFAD/Casp4-/-). The expression of CASP11 was associated with increased accumulation of pathologic protein aggregate amyloid-β (Aβ) and increased microglial production of IL-1β in 5xFAD mice. Utilizing RNA sequencing, we determined that CASP11 promotes unique transcriptomic phenotypes in 5xFAD mouse brains, including alterations of neuroinflammatory and chemokine signaling pathways. Notably, in vitro, CASP11 promoted generation of IL-1β from macrophages in response to cytosolic Aβ through cleavage of downstream effector Gasdermin D (G SDMD). We describe a role for CASP11 and GSDMD in the generation of IL-1β in response to Aβ and the progression of pathologic inflammation in AD. Overall, our results demonstrate that overexpression of CASP4 due to differential methylation in AD microglia contributes to the progression of AD pathobiology, thus identifying CASP4 as a potential target for immunotherapies for the treatment of AD.
Collapse
Affiliation(s)
- Kylene P. Daily
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Owen Whitham
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Michelle H. Tan
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Andrew McNamara
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Samuel Houle
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Spandan Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Gauruv A. Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shruthi Madhu
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Abbey A. Saadey
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Brooke Laster
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, USA; Department of Internal Medicine, The Ohio State University, USA; The Ohio State University, Columbus, OH 43210, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Hazem E. Ghoneim
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
23
|
Pedicillo MC, De Stefano IS, Zamparese R, Barile R, Meccariello M, Agostinone A, Villani G, Colangelo T, Serviddio G, Cassano T, Ronchi A, Franco R, Pannone P, Zito Marino F, Miele F, Municinò M, Pannone G. The Role of Toll-like Receptor-4 in Macrophage Imbalance in Lethal COVID-19 Lung Disease, and Its Correlation with Galectin-3. Int J Mol Sci 2023; 24:13259. [PMID: 37686069 PMCID: PMC10487501 DOI: 10.3390/ijms241713259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To the current data, there have been 6,955,141 COVID-19-related deaths worldwide, reported to WHO. Toll-like receptors (TLRs) implicated in bacterial and virus sensing could be a crosstalk between activation of persistent innate-immune inflammation, and macrophage's sub-population alterations, implicated in cytokine storm, macrophage over-activation syndrome, unresolved Acute Respiratory Disease Syndrome (ARDS), and death. The aim of this study is to demonstrate the association between Toll-like-receptor-4 (TLR-4)-induced inflammation and macrophage imbalance in the lung inflammatory infiltrate of lethal COVID-19 disease. Twenty-five cases of autopsy lung tissues were studied by digital pathology-based immunohistochemistry to evaluate expression levels of TLR-4 (CD 284), pan-macrophage marker CD68 (clone KP1), sub-population marker related to alveolar macrophage Galectin-3 (GAL-3) (clone 9C4), and myeloid derived CD163 (clone MRQ-26), respectively. SARS-CoV-2 viral persistence has been evaluated by in situ hybridation (ISH) method. This study showed TLR-4 up-regulation in a subgroup of patients, increased macrophage infiltration in both Spike-1(+) and Spike-1(-) lungs (p < 0.0001), and a macrophage shift with important down-regulation of GAL-3(+) alveolar macrophages associated with Spike-1 persistence (p < 0.05), in favor of CD163(+) myeloid derived monocyte-macrophages. Data show that TLR-4 expression induces a persistent activation of the inflammation, with inefficient resolution, and pathological macrophage shift, thus explaining one of the mechanisms of lethal COVID-19.
Collapse
Affiliation(s)
- Maria Carmela Pedicillo
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (A.A.)
| | - Ilenia Sara De Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (A.A.)
| | - Rosanna Zamparese
- Legal Medicine Unit, Ascoli Piceno Hospital C-G. Mazzoni, Viale Degli Iris 13, 63100 Ascoli Piceno, Italy;
| | - Raffaele Barile
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
| | - Mario Meccariello
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
| | - Alessio Agostinone
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (A.A.)
| | - Giuliana Villani
- Policlinico Riuniti, University-Hospital, Viale L.Pinto 1, 71122 Foggia, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
- Cancer Cell Signalling Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Fondazione Casa Sollievo della Sofferenza, Viale Cappuccini sc.c., San Giovanni Rotondo, 71013 Foggia, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (R.B.); (M.M.); (T.C.); (G.S.); (T.C.)
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L Vanvitelli”, via Luciano Armanni, 80138 Naples, Italy; (A.R.); (R.F.); (F.Z.M.)
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L Vanvitelli”, via Luciano Armanni, 80138 Naples, Italy; (A.R.); (R.F.); (F.Z.M.)
| | - Paola Pannone
- Federico II, Department of Clinical Medicine and Surgery, School of medicine and Surgery, University of Naples, via Sergio Pasini, 80131 Naples, Italy;
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “L Vanvitelli”, via Luciano Armanni, 80138 Naples, Italy; (A.R.); (R.F.); (F.Z.M.)
| | - Francesco Miele
- Department of Surgery, University of Campania “L Vanvitelli”, 80138 Naples, Italy;
| | - Maurizio Municinò
- Forensic Medicine Unit, “S. Giuliano” Hospital, via Giambattista Basile, 80014 Giugliano in Campania, Italy;
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L.Pinto 1, 71122 Foggia, Italy; (M.C.P.); (I.S.D.S.); (A.A.)
| |
Collapse
|
24
|
Soares NC, Hussein A, Muhammad JS, Semreen MH, ElGhazali G, Hamad M. Plasma metabolomics profiling identifies new predictive biomarkers for disease severity in COVID-19 patients. PLoS One 2023; 18:e0289738. [PMID: 37561777 PMCID: PMC10414581 DOI: 10.1371/journal.pone.0289738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Recently, numerous studies have reported on different predictive models of disease severity in COVID-19 patients. Herein, we propose a highly predictive model of disease severity by integrating routine laboratory findings and plasma metabolites including cytosine as a potential biomarker of COVID-19 disease severity. One model was developed and internally validated on the basis of ROC-AUC values. The predictive accuracy of the model was 0.996 (95% CI: 0.989 to 1.000) with an optimal cut-off risk score of 3 from among 6 biomarkers including five lab findings (D-dimer, ferritin, neutrophil counts, Hp, and sTfR) and one metabolite (cytosine). The model is of high predictive power, needs a small number of variables that can be acquired at minimal cost and effort, and can be applied independent of non-empirical clinical data. The metabolomics profiling data and the modeling work stemming from it, as presented here, could further explain the cause of COVID-19 disease prognosis and patient management.
Collapse
Affiliation(s)
- Nelson C. Soares
- University of Sharjah, Research Institute of Medical and Health Sciences, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry University of Sharjah, Department of Medicinal Chemistry, College of Pharmacy, Sharjah, United Arab Emirates
| | - Amal Hussein
- Department of Family and Community Medicine & Behavioral Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- University of Sharjah, Research Institute of Medical and Health Sciences, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H. Semreen
- University of Sharjah, Research Institute of Medical and Health Sciences, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry University of Sharjah, Department of Medicinal Chemistry, College of Pharmacy, Sharjah, United Arab Emirates
| | - Gehad ElGhazali
- Department of Immunology, Sheikh Khalifa Medical City- Union71- Purelab, Abu Dhabi and College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mawieh Hamad
- University of Sharjah, Research Institute of Medical and Health Sciences, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
25
|
He D, Yu Q, Zeng X, Feng J, Yang R, Wan H, Zhong Y, Yang Y, Zhao R, Lu J, Zhang J. Single-Cell RNA Sequencing and Transcriptome Analysis Revealed the Immune Microenvironment and Gene Markers of Acute Respiratory Distress Syndrome. J Inflamm Res 2023; 16:3205-3217. [PMID: 37547124 PMCID: PMC10404049 DOI: 10.2147/jir.s419576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is caused by severe pulmonary inflammation and the leading cause of death in the intensive care unit. Methods We used single-cell RNA sequencing to compare peripheral blood mononuclear cells from sepsis-induced ARDS (SEP-ARDS) and pneumonic ARDS (PNE-ARDS) patient. Then, we used the GSE152978 and GSE152979 datasets to identify molecular dysregulation mechanisms at the transcriptional level in ARDS. Results Markedly increased CD14 cells were the predominant immune cell type observed in SEP-ARDS and PNE-ARDS patients. Cytotoxic cells and natural killer (NK) T cells were exclusively identified in patients with PNE-ARDS. An enrichment analysis of differentially expressed genes (DEGs) suggested that Th1 cell differentiation and Th2 cell differentiation were enriched in cytotoxic cells, and that the IL-17 signaling pathway, NOD receptor signaling pathway, and complement and coagulation cascades were enriched in CD14 cells. Furthermore, according to GSE152978 and GSE152979, 1939 DEGs were identified in patients with ARDS and controls; they were mainly enriched in the Kyoto Encyclopedia of Genes and Genomes pathways. RBP7 had the highest area under the curve values among the 12 hub genes and was mainly expressed in CD14 cells. Additionally, hub genes were negatively correlated with NK cells and positively correlated with neutrophils, cytotoxic cells, B cells, and macrophages. Conclusion A severe imbalance in the proportion of immune cells and immune dysfunction were observed in SEP-ARDS and PNE-ARDS patients. RBP7 may be immunologically associated with CD14 cells and serve as a potential marker of ARDS.
Collapse
Affiliation(s)
- Dan He
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Qiao Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Xiaona Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Ruiqi Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Huan Wan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Ying Zhong
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Yanli Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Ruzhi Zhao
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, People’s Republic of China
| | - Jianfeng Zhang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, People’s Republic of China
| |
Collapse
|
26
|
Yi X, Fu D, Wang G, Wang L, Li J. Development and Validation of a Prediction Model of the Risk of Pneumonia in Patients with SARS-CoV-2 Infection. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:6696048. [PMID: 37496884 PMCID: PMC10368499 DOI: 10.1155/2023/6696048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Objective To establish a prediction model of pneumonia risk in SARS-CoV-2-infected patients to reduce unnecessary chest CT scans. Materials and Methods The model was constructed based on a retrospective cohort study. We selected SARS-CoV-2 test-positive patients and collected their clinical data and chest CT images from the outpatient and emergency departments of Hunan Provincial People's Hospital, China. Univariate and multivariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression were utilized to identify predictors of pneumonia risk for patients infected with SARS-CoV-2. These predictors were then incorporated into a nomogram to establish the model. To ensure its performance, the model was evaluated from the aspects of discrimination, calibration, and clinical validity. In addition, a smoothed curve was fitted using a generalized additive model (GAM) to explore the association between the pneumonia grade and the model's predicted probability of pneumonia. Results We selected 299 SARS-CoV-2 test-positive patients, of whom 205 cases were in the training cohort and 94 cases were in the validation cohort. Age, CRP natural log-transformed value (InCRP), and monocyte percentage (%Mon) were found to be valid predictors of pneumonia risk. This predictive model achieved good discrimination of AUC in the training and validation cohorts which was 0.7820 (95% CI: 0.7254-0.8439) and 0.8432 (95% CI: 0.7588-0.9151), respectively. At the cut-off value of 0.5, it had a sensitivity and specificity of 70.75% and 66.33% in the training cohort and 76.09% and 73.91% in the validation cohort, respectively. With suitable calibration accuracy shown in calibration curves, decision curve analysis indicated high clinical value in predicting pneumonia probability in SARS-CoV-2-infected patients. The probability of pneumonia predicted by the model was positively correlated with the actual pneumonia classification. Conclusion This study has developed a pneumonia risk prediction model that can be utilized for diagnostic purposes in predicting the probability of pneumonia in patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Xi Yi
- Department of Radiology, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Daiyan Fu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Guiliang Wang
- Department of Radiology, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Lile Wang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Jirong Li
- Department of Radiology, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| |
Collapse
|
27
|
Zaildo T, Santino TA, Chaves G, da Silva BAK, Alchieri JC, Patino CM, Leite S, Luz KG, Guerra RO, da Penha THS, da Silva GR, Jácome AC, Monteiro KS, de Mendonça KMPP. Barriers to and facilitators of populational adherence to prevention and control measures of COVID-19 and other respiratory infectious diseases: a qualitative evidence synthesis. Eur Respir Rev 2023; 32:220238. [PMID: 37343960 DOI: 10.1183/16000617.0238-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/03/2023] [Indexed: 06/23/2023] Open
Abstract
AIMS To summarise the evidence on barriers to and facilitators of population adherence to prevention and control measures for coronavirus disease 2019 (COVID-19) and other respiratory infectious diseases. METHODS A qualitative synthesis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis and the Cochrane Effective Practice and Organization of Care: Qualitative Evidence Synthesis. We performed an electronic search on MEDLINE, Embase and PsycINFO from their inception to March 2023. RESULTS We included 71 studies regarding COVID-19, pneumonia, tuberculosis, influenza, pertussis and H1N1, representing 5966 participants. The measures reported were vaccinations, physical distancing, stay-at-home policy, quarantine, self-isolation, facemasks, hand hygiene, contact investigation, lockdown, infection prevention and control guidelines, and treatment. Tuberculosis-related measures were access to care, diagnosis and treatment completion. Analysis of the included studies yielded 37 barriers and 23 facilitators. CONCLUSIONS This review suggests that financial and social support, assertive communication, trust in political authorities and greater regulation of social media enhance adherence to prevention and control measures for COVID-19 and infectious respiratory diseases. Designing and implementing effective educational public health interventions targeting the findings of barriers and facilitators highlighted in this review are key to reducing the impact of infectious respiratory diseases at the population level.
Collapse
Affiliation(s)
- Tácito Zaildo
- Department of Physical Therapy, Graduate Program in Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thayla Amorim Santino
- Department of Physical Therapy, State University of Paraiba, Campina Grande, PB, Brazil
| | | | | | - João Carlos Alchieri
- Department of Psychology, Graduate Program in Science, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cecilia M Patino
- Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Sarah Leite
- Department of Physical Therapy, Graduate Program in Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Kleber Giovanni Luz
- Department of Infectious Diseases, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ricardo Oliveira Guerra
- Department of Physical Therapy, Graduate Program in Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Tito Hugo Soares da Penha
- Department of Physical Therapy, Graduate Program in Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Gabriel Rodrigues da Silva
- Department of Physical Therapy, Graduate Program in Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ada Cristina Jácome
- Public Health Department of the State of Rio Grande do Norte, Natal, RN, Brazil
| | - Karolinne Souza Monteiro
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
28
|
Zingaropoli MA, Latronico T, Pasculli P, Masci GM, Merz R, Ciccone F, Dominelli F, Del Borgo C, Lichtner M, Iafrate F, Galardo G, Pugliese F, Panebianco V, Ricci P, Catalano C, Ciardi MR, Liuzzi GM, Mastroianni CM. Tissue Inhibitor of Matrix Metalloproteinases-1 (TIMP-1) and Pulmonary Involvement in COVID-19 Pneumonia. Biomolecules 2023; 13:1040. [PMID: 37509076 PMCID: PMC10377146 DOI: 10.3390/biom13071040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Background: The aim of the study was to longitudinally evaluate the association between MMP-2, MMP-9, TIMP-1 and chest radiological findings in COVID-19 patients. Methods: COVID-19 patients were evaluated based on their hospital admission (baseline) and three months after hospital discharge (T post) and were stratified into ARDS and non-ARDS groups. As a control group, healthy donors (HD) were enrolled. Results: At the baseline, compared to HD (n = 53), COVID-19 patients (n = 129) showed higher plasma levels of MMP-9 (p < 0.0001) and TIMP-1 (p < 0.0001) and the higher plasma activity of MMP-2 (p < 0.0001) and MMP-9 (p < 0.0001). In the ARDS group, higher plasma levels of MMP-9 (p = 0.0339) and TIMP-1 (p = 0.0044) and the plasma activity of MMP-2 (p = 0.0258) and MMP-9 (p = 0.0021) compared to non-ARDS was observed. A positive correlation between the plasma levels of TIMP-1 and chest computed tomography (CT) score (ρ = 0.2302, p = 0.0160) was observed. At the T post, a reduction in plasma levels of TIMP-1 (p < 0.0001), whereas an increase in the plasma levels of MMP-9 was observed (p = 0.0088). Conclusions: The positive correlation between TIMP-1 with chest CT scores highlights its potential use as a marker of fibrotic burden. At T post, the increase in plasma levels of MMP-9 and the reduction in plasma levels of TIMP-1 suggested that inflammation and fibrosis resolution were still ongoing.
Collapse
Affiliation(s)
- Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giorgio Maria Masci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberta Merz
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, 04100 Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, 04100 Latina, Italy
- Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Franco Iafrate
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gioacchino Galardo
- Medical Emergency Unit, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation "Paride Stefanini", Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Valeria Panebianco
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Paolo Ricci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Unit of Emergency Radiology, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
29
|
de Homdedeu M, Sanchez-Moral L, Violán C, Ràfols N, Ouchi D, Martín B, Peinado MA, Rodríguez-Cortés A, Arch-Sisquella M, Perez-Zsolt D, Muñoz-Basagoiti J, Izquierdo-Useros N, Salvador B, Matllo J, López-Serrano S, Segalés J, Vilaplana C, Torán-Monserrat P, Morros R, Monfà R, Sarrias MR, Cardona PJ. Mycobacterium manresensis induces trained immunity in vitro. iScience 2023; 26:106873. [PMID: 37250788 PMCID: PMC10182650 DOI: 10.1016/j.isci.2023.106873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
The COVID-19 pandemic posed a global health crisis, with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants weakening vaccine-driven protection. Trained immunity could help tackle COVID-19 disease. Our objective was to analyze whether heat-killed Mycobacterium manresensis (hkMm), an environmental mycobacterium, induces trained immunity and confers protection against SARS-CoV-2 infection. To this end, THP-1 cells and primary monocytes were trained with hkMm. The increased secretion of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, and IL-10, metabolic activity, and changes in epigenetic marks suggested hkMm-induced trained immunity in vitro. Healthcare workers at risk of SARS-CoV-2 infection were enrolled into the MANRECOVID19 clinical trial (NCT04452773) and were administered Nyaditum resae (NR, containing hkMm) or placebo. No significant differences in monocyte inflammatory responses or the incidence of SARS-CoV-2 infection were found between the groups, although NR modified the profile of circulating immune cell populations. Our results show that M. manresensis induces trained immunity in vitro but not in vivo when orally administered as NR daily for 14 days.
Collapse
Affiliation(s)
- Miquel de Homdedeu
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Lidia Sanchez-Moral
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Concepció Violán
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
- North Metropolitan Research Support Unit, Jordi Gol University Research Institute in Primary Care (IDIAP Jordi Gol), Mataró, Spain
- Northern Metropolitan Primary Care Management, Catalan Institute of Health, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Neus Ràfols
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Dan Ouchi
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Berta Martín
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Alhelí Rodríguez-Cortés
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Marta Arch-Sisquella
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- Centre for Biomedical Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Betlem Salvador
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Joan Matllo
- Department of Prevention and Risks, Germans Trias i Pujol University Hospital, Northern Metropolitan Territorial Management, Catalan Health Institute, 08916 Badalona, Spain
| | - Sergi López-Serrano
- Joint IRTA-UAB Research Unit in Animal Health, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Institute of Agrifood Research and Technology, Animal Health Program, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Joint IRTA-UAB Research Unit in Animal Health, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Direcció Clínica Territorial de Malalties Infeccioses i Salut Internacional de Gerència Territorial Metropolitana Nord, Barcelona, Spain
| | - Pere Torán-Monserrat
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
- North Metropolitan Research Support Unit, Jordi Gol University Research Institute in Primary Care (IDIAP Jordi Gol), Mataró, Spain
- Northern Metropolitan Primary Care Management, Catalan Institute of Health, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Rosa Morros
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Ramon Monfà
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centre for Biomedical Research on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Pere-Joan Cardona
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| |
Collapse
|
30
|
Benede NSB, Tincho MB, Walters A, Subbiah V, Ngomti A, Baguma R, Butters C, Mennen M, Skelem S, Adriaanse M, van Graan S, Balla SR, Moyo-Gwete T, Moore PL, Botha M, Workman L, Zar HJ, Ntusi NAB, Zühlke L, Webb K, Riou C, Burgers WA, Keeton RS. Distinct T cell functional profiles in SARS-CoV-2 seropositive and seronegative children associated with endemic human coronavirus cross-reactivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.16.23290059. [PMID: 37292954 PMCID: PMC10246143 DOI: 10.1101/2023.05.16.23290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
- Ntombi S. B. Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Vennesa Subbiah
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Strauss van Graan
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sashkia R. Balla
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Maresa Botha
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather J. Zar
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A. B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Liesl Zühlke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Kate Webb
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
- Crick African Network, The Francis Crick Institute, London, United Kingdom
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| |
Collapse
|
31
|
Rogne T, Wang R, Wang P, Deziel NC, Metayer C, Wiemels JL, Chen K, Warren JL, Ma X. High Ambient Temperature in Pregnancy and Risk of Childhood Acute Lymphoblastic Leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.19.23290227. [PMID: 37293058 PMCID: PMC10246165 DOI: 10.1101/2023.05.19.23290227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background High ambient temperature is increasingly common due to climate change and is associated with risk of adverse pregnancy outcomes. Acute lymphoblastic leukemia (ALL) is the most common malignancy in children, the incidence is increasing, and in the United States it disproportionately affects Latino children. We aimed to investigate the potential association between high ambient temperature in pregnancy and risk of childhood ALL. Methods We used data from California birth records (1982-2015) and California Cancer Registry (1988-2015) to identify ALL cases diagnosed <14 years and 50 times as many controls matched by sex, race/ethnicity, and date of last menstrual period. Ambient temperatures were estimated on a 1-km grid. Association between ambient temperature and ALL was evaluated per gestational week, restricted to May-September, adjusting for confounders. Bayesian meta-regression was applied to identify critical exposure windows. For sensitivity analyses, we evaluated a 90-day pre-pregnancy period (assuming no direct effect before pregnancy) and constructed an alternatively matched dataset for exposure contrast by seasonality. Findings Our study included 6,258 ALL cases and 307,579 controls. The peak association between ambient temperature and risk of ALL was observed in gestational week 8, where a 5 °C increase was associated with an odds ratio of 1.09 (95% confidence interval 1.04-1.14) and 1.05 (95% confidence interval 1.00-1.11) among Latino and non-Latino White children, respectively. The sensitivity analyses supported this. Interpretation Our findings suggest an association between high ambient temperature in early pregnancy and risk of childhood ALL. Further replication and investigation of mechanistic pathways may inform mitigation strategies.
Collapse
Affiliation(s)
- Tormod Rogne
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Pin Wang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, CA, USA
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
32
|
Eng J, Bucher E, Hu Z, Sanders M, Chakravarthy B, Gonzalez P, Pietenpol JA, Gibbs SL, Sears RC, Chin K. Robust biomarker discovery through multiplatform multiplex image analysis of breast cancer clinical cohorts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.525753. [PMID: 36778343 PMCID: PMC9915596 DOI: 10.1101/2023.01.31.525753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and enable development of spatial biomarkers to predict patient response to immunotherapy and other therapeutics. However, spatial biomarker discovery is often carried out on a single patient cohort or imaging technology, limiting statistical power and increasing the likelihood of technical artifacts. In order to analyze multiple patient cohorts profiled on different platforms, we developed methods for comparative data analysis from three disparate multiplex imaging technologies: 1) cyclic immunofluorescence data we generated from 102 breast cancer patients with clinical follow-up, in addition to publicly available 2) imaging mass cytometry and 3) multiplex ion-beam imaging data. We demonstrate similar single-cell phenotyping results across breast cancer patient cohorts imaged with these three technologies and identify cellular abundance and proximity-based biomarkers with prognostic value across platforms. In multiple platforms, we identified lymphocyte infiltration as independently associated with longer survival in triple negative and high-proliferation breast tumors. Then, a comparison of nine spatial analysis methods revealed robust spatial biomarkers. In estrogen receptor-positive disease, quiescent stromal cells close to tumor were more abundant in good prognosis tumors while tumor neighborhoods of mixed fibroblast phenotypes were enriched in poor prognosis tumors. In triple-negative breast cancer (TNBC), macrophage proximity to tumor and B cell proximity to T cells were greater in good prognosis tumors, while tumor neighborhoods of vimentin-positive fibroblasts were enriched in poor prognosis tumors. We also tested previously published spatial biomarkers in our ensemble cohort, reproducing the positive prognostic value of isolated lymphocytes and lymphocyte occupancy and failing to reproduce the prognostic value of tumor-immune mixing score in TNBC. In conclusion, we demonstrate assembly of larger clinical cohorts from diverse platforms to aid in prognostic spatial biomarker identification and validation.
Collapse
Affiliation(s)
- Jennifer Eng
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Zhi Hu
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Melinda Sanders
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bapsi Chakravarthy
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA, USA
| | - Paula Gonzalez
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA, USA
| | - Jennifer A. Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Summer L. Gibbs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Koei Chin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
33
|
Wilkinson MGL, Moulding D, McDonnell TCR, Orford M, Wincup C, Ting JYJ, Otto GW, Restuadi R, Kelberman D, Papadopoulou C, Castellano S, Eaton S, Deakin CT, Rosser EC, Wedderburn LR. Role of CD14+ monocyte-derived oxidised mitochondrial DNA in the inflammatory interferon type 1 signature in juvenile dermatomyositis. Ann Rheum Dis 2023; 82:658-669. [PMID: 36564154 PMCID: PMC10176342 DOI: 10.1136/ard-2022-223469] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To define the host mechanisms contributing to the pathological interferon (IFN) type 1 signature in Juvenile dermatomyositis (JDM). METHODS RNA-sequencing was performed on CD4+, CD8+, CD14+ and CD19+ cells sorted from pretreatment and on-treatment JDM (pretreatment n=10, on-treatment n=11) and age/sex-matched child healthy-control (CHC n=4) peripheral blood mononuclear cell (PBMC). Mitochondrial morphology and superoxide were assessed by fluorescence microscopy, cellular metabolism by 13C glucose uptake assays, and oxidised mitochondrial DNA (oxmtDNA) content by dot-blot. Healthy-control PBMC and JDM pretreatment PBMC were cultured with IFN-α, oxmtDNA, cGAS-inhibitor, TLR-9 antagonist and/or n-acetyl cysteine (NAC). IFN-stimulated gene (ISGs) expression was measured by qPCR. Total numbers of patient and controls for functional experiments, JDM n=82, total CHC n=35. RESULTS Dysregulated mitochondrial-associated gene expression correlated with increased ISG expression in JDM CD14+ monocytes. Altered mitochondrial-associated gene expression was paralleled by altered mitochondrial biology, including 'megamitochondria', cellular metabolism and a decrease in gene expression of superoxide dismutase (SOD)1. This was associated with enhanced production of oxidised mitochondrial (oxmt)DNA. OxmtDNA induced ISG expression in healthy PBMC, which was blocked by targeting oxidative stress and intracellular nucleic acid sensing pathways. Complementary experiments showed that, under in vitro experimental conditions, targeting these pathways via the antioxidant drug NAC, TLR9 antagonist and to a lesser extent cGAS-inhibitor, suppressed ISG expression in pretreatment JDM PBMC. CONCLUSIONS These results describe a novel pathway where altered mitochondrial biology in JDM CD14+ monocytes lead to oxmtDNA production and stimulates ISG expression. Targeting this pathway has therapeutical potential in JDM and other IFN type 1-driven autoimmune diseases.
Collapse
Affiliation(s)
- Meredyth G Ll Wilkinson
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Dale Moulding
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Thomas C R McDonnell
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Michael Orford
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Chris Wincup
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Joanna Y J Ting
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Georg W Otto
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Experimental and Personalised Medicine, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Restuadi Restuadi
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Daniel Kelberman
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Experimental and Personalised Medicine, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charalampia Papadopoulou
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Rheumatology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Sergi Castellano
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Eaton
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire T Deakin
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Lucy R Wedderburn
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| |
Collapse
|
34
|
Ziablitsev DS, Kozyk M, Strubchevska K, Dyadyk OO, Ziablitsev SV. Lung Expression of Macrophage Markers CD68 and CD163, Angiotensin Converting Enzyme 2 (ACE2), and Caspase-3 in COVID-19. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040714. [PMID: 37109672 PMCID: PMC10144424 DOI: 10.3390/medicina59040714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: The coronavirus (SARS-CoV-2) damages all systems and organs. Yet, to a greater extent, the lungs are particularly involved, due to the formation of diffuse exudative inflammation in the form of acute respiratory distress syndrome (ARDS) with next progression to pulmonary fibrosis. SARS-associated lung damage is accompanied by the pronounced activation of mononuclear cells, damage of the alveoli and microvessels, and the development of organized pneumonia. To study the expression of macrophage markers (CD68 and CD163), angiotensin-converting enzyme-2 (ACE2), and caspase-3 on the results of two fatal clinical observations of COVID-19. Materials and Methods: In both clinical cases, the female patients died from complications of confirmed COVID-19. Conventional morphological and immunohistochemical methods were used. Results: There was an acute exudative hemorrhagic pneumonia with the formation of hyaline membranes, focal organization of fibrin, stromal sclerosis, stasis, and thrombus formation in the lung vessels. Signs such as the formation of hyaline membranes, organization, and fibrosis were more pronounced in severe disease activity. The activation of CD68+/CD163+ macrophages could cause cell damage at an early stage of pneumonia development, and subsequently cause fibrotic changes in lung tissue. ACE2 expression in lung tissue was not detected in severe pneumonia, while in moderate pneumonia, weak expression was noted in individual cells of the alveolar epithelium and vascular endothelium. Conclusions: This finding could show the dependence of ACE2 expression on the severity of the inflammatory process in the lungs. The expression of caspase-3 was more pronounced in severe pneumonia.
Collapse
Affiliation(s)
- Denis S Ziablitsev
- Department of Pathophysiology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Marko Kozyk
- Department of Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Kateryna Strubchevska
- Department of Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Olena O Dyadyk
- Department of Pathologic and Topographic Anatomy, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine
| | - Sergiy V Ziablitsev
- Department of Pathophysiology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| |
Collapse
|
35
|
Silva-Junior AL, Oliveira LDS, Belezia NCT, Tarragô AM, Costa AGD, Malheiro A. Immune Dynamics Involved in Acute and Convalescent COVID-19 Patients. IMMUNO 2023; 3:86-111. [DOI: 10.3390/immuno3010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
COVID-19 is a viral disease that has caused millions of deaths around the world since 2020. Many strategies have been developed to manage patients in critical conditions; however, comprehension of the immune system is a key factor in viral clearance, tissue repairment, and adaptive immunity stimulus. Participation of immunity has been identified as a major factor, along with biomarkers, prediction of clinical outcomes, and antibody production after infection. Immune cells have been proposed not only as a hallmark of severity, but also as a predictor of clinical outcomes, while dynamics of inflammatory molecules can also induce worse consequences for acute patients. For convalescent patients, mild disease was related to higher antibody production, although the factors related to the specific antibodies based on a diversity of antigens were not clear. COVID-19 was explored over time; however, the study of immunological predictors of outcomes is still lacking discussion, especially in convalescent patients. Here, we propose a review using previously published studies to identify immunological markers of COVID-19 outcomes and their relation to antibody production to further contribute to the clinical and laboratorial management of patients.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Lucas da Silva Oliveira
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Nara Caroline Toledo Belezia
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Andréa Monteiro Tarragô
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
| | - Allyson Guimarães da Costa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| |
Collapse
|
36
|
Kelesidis T, Sharma M, Satta S, Tran E, Gupta R, Araujo JA, Middlekauff HR. Ectodomain shedding of proteins important for SARS-CoV-2 pathogenesis in plasma of tobacco cigarette smokers compared to electronic cigarette vapers: a cross-sectional study. J Mol Med (Berl) 2023; 101:327-335. [PMID: 36759357 PMCID: PMC9911331 DOI: 10.1007/s00109-023-02286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 02/11/2023]
Abstract
The impact of tobacco cigarette (TCIG) smoking and electronic cigarette (ECIG) vaping on the risk of development of severe COVID-19 is controversial. The present study investigated levels of proteins important for SARS-CoV-2 pathogenesis present in plasma because of ectodomain shedding in smokers, ECIG vapers, and non-smokers (NSs). Protein levels of soluble angiotensin-converting enzyme 2 (ACE2), angiotensin (Ang) II (the ligand of ACE2), Ang 1-7 (the main peptide generated from Ang II by ACE2 activity), furin (a protease that increases the affinity of the SARS-CoV-2 spike protein for ACE2), and products of ADAM17 shedding activity that predict morbidity in COVID-19 (IL-6/IL-6R alpha (IL-6/IL-6Rα) complex, soluble CD163 (sCD163), L-selectin) were determined in plasma from 45 NSs, 30 ECIG vapers, and 29 TCIG smokers using ELISA. Baseline characteristics of study participants did not differ among groups. TCIG smokers had increased sCD163, L-selectin compared to NSs and ECIG vapers (p < 0.001 for all comparisons). ECIG vapers had higher plasma furin compared to both NSs (p < 0.001) and TCIG smokers (p < 0.05). ECIG vaping and TCIG smoking did not impact plasma ACE2, Ang 1-7, Ang II, and IL-6 levels compared to NSs (p > 0.1 for all comparisons). Further studies are needed to determine if increased furin activity and ADAM17 shedding activity that is associated with increased plasma levels of sCD163 and L-selectin in healthy young TCIG smokers may contribute to the future development of severe COVID-19 and cardiovascular complications of post-acute COVID-19 syndrome.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, Division of Infectious Disease, David Geffen School of Medicine at UCLA, 47-100 CHS, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.
| | - Madhav Sharma
- Department of Medicine, Division of Infectious Disease, David Geffen School of Medicine at UCLA, 47-100 CHS, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA
| | - Sandro Satta
- Department of Medicine, Division of Infectious Disease, David Geffen School of Medicine at UCLA, 47-100 CHS, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA
| | - Elizabeth Tran
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rajat Gupta
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jesus A Araujo
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Environmental Health Sciences, Fielding School of Public Health at UCLA, Los Angeles, CA, USA
| | - Holly R Middlekauff
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
37
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdasait S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Sawyer WG. Three-Dimensional Bioconjugated Liquid-Like Solid (LLS) Enhance Characterization of Solid Tumor - Chimeric Antigen Receptor T cell interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529033. [PMID: 36865164 PMCID: PMC9980005 DOI: 10.1101/2023.02.17.529033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.
Collapse
Affiliation(s)
- Duy T. Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Ruixuan Liu
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elizabeth Ogando-Rivas
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Alfonso Pepe
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Diego Pedro
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Sadeem Qdasait
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Nhi Tran Yen Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Julia M. Lavrador
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Griffin R. Golde
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | | | - John Ligon
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - Linchun Jin
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Haipeng Tao
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | | | | | - Duane A. Mitchell
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elias J Sayour
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Jianping Huang
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Paul Castillo
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - W. Gregory Sawyer
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| |
Collapse
|
38
|
Yap YJ, Wong PF, AbuBakar S, Sam SS, Shunmugarajoo A, Soh YH, Misbah S, Ab Rahman AK. The clinical utility of CD163 in viral diseases. Clin Chim Acta 2023; 541:117243. [PMID: 36740088 DOI: 10.1016/j.cca.2023.117243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Macrophage activation and hypercytokinemia are notable presentations in certain viral infections leading to severe disease and poor prognosis. Viral infections can cause macrophage polarization into the pro-inflammatory M1 or anti-inflammatory M2 phenotype. Activated M1 macrophages usually restrict viral replication whereas activated M2 macrophages suppress inflammation and promote tissue repair. In response to inflammatory stimuli, macrophages polarize to the M2 phenotype expressing hemoglobin scavenger CD163 surface receptor. The CD163 receptor is shed as the soluble form, sCD163, into plasma or tissue fluids. sCD163 causes detoxification of pro-oxidative hemoglobin which produces anti-inflammatory metabolites that promote the resolution of inflammation. Hence, increased CD163 expression in tissues and elevated circulatory levels of sCD163 have been associated with acute and chronic inflammatory diseases. CD163 and other macrophage activation markers have been commonly included in the investigation of disease pathogenesis and progression. This review provides an overview of the involvement of CD163 in viral diseases. The clinical utility of CD163 in viral disease diagnosis, progression, prognosis and treatment evaluation is discussed.
Collapse
Affiliation(s)
- Yi-Jing Yap
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603 Kuala Lumpur, Malaysia; World Health Organization Collaborating Centre for Arbovirus Reference and Research (Dengue and Severe Dengue) MAA-12, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sing-Sin Sam
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anusha Shunmugarajoo
- Medical Department, Tengku Ampuan Rahimah Hospital, 41200 Klang, Selangor, Malaysia
| | - Yih-Harng Soh
- Centers for Disease Control and Prevention Unit, Central Melaka District Health Office, Jalan Bukit Baru, 75150 Melaka, Malaysia
| | - Suzana Misbah
- Biological Security and Sustainability Research Group (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Kashfi Ab Rahman
- Department of Medicine (Infectious Disease Unit), Sultanah Nur Zahirah Hospital, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
39
|
Vangeti S, Falck-Jones S, Yu M, Österberg B, Liu S, Asghar M, Sondén K, Paterson C, Whitley P, Albert J, Johansson N, Färnert A, Smed-Sörensen A. Human influenza virus infection elicits distinct patterns of monocyte and dendritic cell mobilization in blood and the nasopharynx. eLife 2023; 12:77345. [PMID: 36752598 PMCID: PMC9977282 DOI: 10.7554/elife.77345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Sang Liu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | | | | | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
- Department of Clinical Microbiology, Karolinska University HospitalStockholmSweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska InstitutetStockholmSweden
- Department of Infectious Diseases, Karolinska University HospitalStockholmSweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
40
|
Zinatizadeh MR, Zarandi PK, Ghiasi M, Kooshki H, Mohammadi M, Amani J, Rezaei N. Immunosenescence and inflamm-ageing in COVID-19. Ageing Res Rev 2023; 84:101818. [PMID: 36516928 PMCID: PMC9741765 DOI: 10.1016/j.arr.2022.101818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The destructive effects of coronavirus disease 2019 (COVID-19) on the elderly and people with cardiovascular disease have been proven. New findings shed light on the role of aging pathways on life span and health age. New therapies that focus on aging-related pathways may positively impact the treatment of this acute respiratory infection. Using new therapies that boost the level of the immune system can support the elderly with co-morbidities against the acute form of COVID-19. This article discusses the effect of the aging immune system against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathways affecting this severity of infection.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
41
|
Hubáček JA, Philipp T, Májek O, Dlouhá D, Adámková V, Dušek L. CD14 Polymorphism Is Not Associated with SARS-CoV-2 Infection in Central European Population. Folia Biol (Praha) 2023; 69:181-185. [PMID: 38583179 DOI: 10.14712/fb2023069050181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A 2021 in silico study highlighted an association between the CD14 polymorphism rs2569190 and increased susceptibility to SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19). The aim of our study was to confirm this finding. We analysed the CD14 polymorphism (C→T; rs2569190) in 516 individuals who tested positive for SARS-CoV-2, with differing disease severity (164 asymptomatic, 245 symptomatic, and 107 hospitalized). We then compared these patients with a sample from the general population consisting of 3,037 individuals using a case-control study design. In comparison with carriers of the C allele, TT homozygotes accounted for 21.7 % of controls and 20.5 % in SARS-CoV-2-positive individuals (P = 0.48; OR; 95 % CI - 0.92; 0.73-1.16). No significant differences in the distribution of genotypes were found when considering co-dominant and recessive genetic models or various between-group comparisons. The CD14 polymorphism is unlikely to be an important predictor of COVID-19 in the Caucasian population in Central Europe.
Collapse
Affiliation(s)
- Jaroslav A Hubáček
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Third Department of Medicine, Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Tom Philipp
- Clinic of Rheumatology and Physiotherapy, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Ondřej Májek
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| | - Dana Dlouhá
- Third Department of Medicine, Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Věra Adámková
- Preventive Cardiology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
42
|
Carlson PM, Patel RB, Birstler J, Rodriquez M, Sun C, Erbe AK, Bates AM, Marsh I, Grudzinski J, Hernandez R, Pieper AA, Feils AS, Rakhmilevich AL, Weichert JP, Bednarz BP, Sondel PM, Morris ZS. Radiation to all macroscopic sites of tumor permits greater systemic antitumor response to in situ vaccination. J Immunother Cancer 2023; 11:e005463. [PMID: 36639155 PMCID: PMC9843201 DOI: 10.1136/jitc-2022-005463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The antitumor effects of external beam radiation therapy (EBRT) are mediated, in part, by an immune response. We have reported that a single fraction of 12 Gy EBRT combined with intratumoral anti-GD2 hu14.18-IL2 immunocytokine (IC) generates an effective in situ vaccine (ISV) against GD2-positive murine tumors. This ISV is effective in eradicating single tumors with sustained immune memory; however, it does not generate an adequate abscopal response against macroscopic distant tumors. Given the immune-stimulatory capacity of radiation therapy (RT), we hypothesized that delivering RT to all sites of disease would augment systemic antitumor responses to ISV. METHODS We used a syngeneic B78 murine melanoma model consisting of a 'primary' flank tumor and a contralateral smaller 'secondary' flank tumor, treated with 12 Gy EBRT and intratumoral IC immunotherapy to the primary and additional EBRT to the secondary tumor. As a means of delivering RT to all sites of disease, both known and occult, we also used a novel alkylphosphocholine analog, NM600, conjugated to 90Y as a targeted radionuclide therapy (TRT). Tumor growth, overall survival, and cause of death were measured. Flow cytometry was used to evaluate immune population changes in both tumors. RESULTS Abscopal effects of local ISV were amplified by delivering as little as 2-6 Gy of EBRT to the secondary tumor. When the primary tumor ISV regimen was delivered in mice receiving 12 Gy EBRT to the secondary tumor, we observed improved overall survival and more disease-free mice with immune memory compared with either ISV or 12 Gy EBRT alone. Similarly, TRT combined with ISV resulted in improved overall survival and a trend towards reduced tumor growth rates when compared with either treatment alone. Using flow cytometry, we identified an influx of CD8+ T cells with a less exhausted phenotype in both the ISV-targeted primary and the distant secondary tumor following the combination of secondary tumor EBRT or TRT with primary tumor ISV. CONCLUSIONS We report a novel use for low-dose RT, not as a direct antitumor modality but as an immunomodulator capable of driving and expanding antitumor immunity against metastatic tumor sites following ISV.
Collapse
Affiliation(s)
- Peter M Carlson
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ravi B Patel
- Radiation Oncology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Jen Birstler
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Rodriquez
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Claire Sun
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy K Erbe
- Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amber M Bates
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ian Marsh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph Grudzinski
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Alexander A Pieper
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Arika S Feils
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander L Rakhmilevich
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P Weichert
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bryan P Bednarz
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul M Sondel
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachary S Morris
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Cardelli M, Pierpaoli E, Marchegiani F, Marcheselli F, Piacenza F, Giacconi R, Recchioni R, Casoli T, Stripoli P, Provinciali M, Matacchione G, Giuliani A, Ramini D, Sabbatinelli J, Bonafè M, Di Rosa M, Cherubini A, Di Pentima C, Spannella F, Antonicelli R, Bonfigli AR, Olivieri F, Lattanzio F. Biomarkers of cell damage, neutrophil and macrophage activation associated with in-hospital mortality in geriatric COVID-19 patients. Immun Ageing 2022; 19:65. [PMID: 36522763 PMCID: PMC9751505 DOI: 10.1186/s12979-022-00315-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The risk for symptomatic COVID-19 requiring hospitalization is higher in the older population. The course of the disease in hospitalised older patients may show significant variation, from mild to severe illness, ultimately leading to death in the most critical cases. The analysis of circulating biomolecules involved in mechanisms of inflammation, cell damage and innate immunity could lead to identify new biomarkers of COVID-19 severity, aimed to improve the clinical management of subjects at higher risk of severe outcomes. In a cohort of COVID-19 geriatric patients (n= 156) who required hospitalization we analysed, on-admission, a series of circulating biomarkers related to neutrophil activation (neutrophil elastase, LL-37), macrophage activation (sCD163) and cell damage (nuclear cfDNA, mithocondrial cfDNA and nuclear cfDNA integrity). The above reported biomarkers were tested for their association with in-hospital mortality and with clinical, inflammatory and routine hematological parameters. Aim of the study was to unravel prognostic parameters for risk stratification of COVID-19 patients. RESULTS Lower n-cfDNA integrity, higher neutrophil elastase and higher sCD163 levels were significantly associated with an increased risk of in-hospital decease. Median (IQR) values observed in discharged vs. deceased patients were: 0.50 (0.30-0.72) vs. 0.33 (0.22-0.62) for n-cfDNA integrity; 94.0 (47.7-154.0) ng/ml vs. 115.7 (84.2-212.7) ng/ml for neutrophil elastase; 614.0 (370.0-821.0) ng/ml vs. 787.0 (560.0-1304.0) ng/ml for sCD163. The analysis of survival curves in patients stratified for tertiles of each biomarker showed that patients with n-cfDNA integrity < 0.32 or sCD163 in the range 492-811 ng/ml had higher risk of in-hospital decease than, respectively, patients with higher n-cfDNA integrity or lower sCD163. These associations were further confirmed in multivariate models adjusted for age, sex and outcome-related clinical variables. In these models also high levels of neutrophil elastase (>150 ng/ml) appeared to be independent predictor of in-hospital death. An additional analysis of neutrophil elastase in patients stratified for n-cfDNA integrity levels was conducted to better describe the association of the studied parameters with the outcome. CONCLUSIONS On the whole, biomarkers of cell-free DNA integrity, neutrophil and macrophage activation might provide a valuable contribution to identify geriatric patients with high risk of COVID-19 in-hospital mortality.
Collapse
Affiliation(s)
- M. Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - E. Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - F. Marchegiani
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - F. Marcheselli
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - F. Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - R. Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - R. Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - T. Casoli
- Center for Neurobiology of Aging, Scientific Technological Area, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | - P. Stripoli
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - M. Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - G. Matacchione
- grid.7010.60000 0001 1017 3210Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - A. Giuliani
- grid.7010.60000 0001 1017 3210Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - D. Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - J. Sabbatinelli
- grid.411490.90000 0004 1759 6306SOD Medicina di Laboratorio, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - M. Bonafè
- grid.6292.f0000 0004 1757 1758Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - M. Di Rosa
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, Cosenza, Italy
| | - A. Cherubini
- Geriatria, Accettazione geriatrica e Centro di Ricerca per l’invecchiamento, IRCCS INRCA, Ancona, Italy
| | - C. Di Pentima
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy
| | - F. Spannella
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy
| | | | - A. R. Bonfigli
- Scientific Direction and Geriatric Unit, IRCCS INRCA, Ancona, Italy
| | - F. Olivieri
- grid.7010.60000 0001 1017 3210Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy
| | - F. Lattanzio
- Scientific Direction and Geriatric Unit, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
44
|
Dang W, Tao Y, Xu X, Zhao H, Zou L, Li Y. The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res 2022; 71:1417-1432. [PMID: 36264361 PMCID: PMC9582389 DOI: 10.1007/s00011-022-01645-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.
Collapse
Affiliation(s)
- Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Lijuan Zou
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
45
|
Mortezaee K, Majidpoor J. Cellular immune states in SARS-CoV-2-induced disease. Front Immunol 2022; 13:1016304. [PMID: 36505442 PMCID: PMC9726761 DOI: 10.3389/fimmu.2022.1016304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The general immune state plays important roles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cells of the immune system are encountering rapid changes during the acute phase of SARS-CoV-2-induced disease. Reduced fraction of functional CD8+ T cells, disrupted cross-talking between CD8+ T cells with dendritic cells (DCs), and impaired immunological T-cell memory, along with the higher presence of hyperactive neutrophils, high expansion of myeloid-derived suppressor cells (MDSCs) and non-classical monocytes, and attenuated cytotoxic capacity of natural killer (NK) cells, are all indicative of low efficient immunity against viral surge within the body. Immune state and responses from pro- or anti-inflammatory cells of the immune system to SARS-CoV-2 are discussed in this review. We also suggest some strategies to enhance the power of immune system against SARS-CoV-2-induced disease.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,*Correspondence: Keywan Mortezaee, ;
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
46
|
Macrophage-Targeted Sodium Chlorite (NP001) Slows Progression of Amyotrophic Lateral Sclerosis (ALS) through Regulation of Microbial Translocation. Biomedicines 2022; 10:biomedicines10112907. [PMID: 36428474 PMCID: PMC9687998 DOI: 10.3390/biomedicines10112907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous, progressive, and universally fatal neurodegenerative disease. A subset of ALS patients has measurable plasma levels of lipopolysaccharide (LPS) and C-reactive protein (CRP) consistent with low-grade microbial translocation (MT). Unless interrupted, MT sets up a self-perpetuating loop of inflammation associated with systemic macrophage activation. To test whether MT contributed to ALS progression, blood specimens from a phase 2 study of NP001 in ALS patients were evaluated for changes in activity in treated patients as compared to controls over the 6-month study. In this post hoc analysis, plasma specimens from baseline and six-month timepoints were analyzed. Compared with baseline values, biomarkers related to MT were significantly decreased (LPS, LPS binding protein (LBP), IL-18, Hepatocyte growth factor (HGF), soluble CD163 (sCD163)) in NP001-treated patients as compared to controls, whereas wound healing and immunoregulatory factors were increased (IL-10, Epidermal growth factor (EGF), neopterin) by the end of study. These biomarker results linked to the positive clinical trial outcome confirm that regulation of macrophage activation may be an effective approach for the treatment of ALS and, potentially, other neuroinflammatory diseases related to MT.
Collapse
|
47
|
Volfovitch Y, Tsur AM, Gurevitch M, Novick D, Rabinowitz R, Mandel M, Achiron A, Rubinstein M, Shoenfeld Y, Amital H. The intercorrelations between blood levels of ferritin, sCD163, and IL-18 in COVID-19 patients and their association to prognosis. Immunol Res 2022; 70:817-828. [PMID: 36222965 PMCID: PMC9555272 DOI: 10.1007/s12026-022-09312-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is associated with immune dysregulation, severe respiratory failure, and multiple organ dysfunction caused by a cytokine storm involving high blood levels of ferritin and IL-18. Furthermore, there is a resemblance between COVID-19 and macrophage activation syndrome (MAS) characterized by high concentrations of soluble CD163 (sCD163) receptor and IL-18. High levels of ferritin, IL-18, and sCD163 receptor are associated with “hyperferritinemic syndrome”, a family of diseases that appears to include COVID-19. In this retrospective cohort study, we tested the association and intercorrelations in the serum levels of ferritin, sCD163, and IL-18 and their impact on the prognosis of COVID-19. We analyzed data of 70 hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The levels of sCD163, ferritin, and IL-18 were measured and the correlation of these parameters with the respiratory deterioration and overall 30-day survival was assessed. Among the 70 patients, 60 survived 30 days from hospitalization. There were substantial differences between the subjects who were alive following 30 days compared to those who expired. The differences were referring to lymphocyte and leukocyte count, CRP, D-dimer, ferritin, sCD163, and IL-18. Results showed high levels of IL-18 (median, 444 pg/mL in the survival group compared with 916 pg/mL in the mortality group, p-value 8.54 × 10–2), a statistically significant rise in levels of ferritin (median, 484 ng/mL in the survival group compared with 1004 ng/mL in the mortality group p-value, 7.94 × 10–3), and an elevated value of in sCD163 (mean, 559 ng/mL in the survival group compared with 840 ng/mL in the mortality group, p-value 1.68 × 10–2). There was no significant correlation between the rise of ferritin and the levels sCD163 or IL-18. Taken together, sCD163, ferritin, and IL-18 were found to correlate with the severity of COVID-19 infection. Although these markers are associated with COVID-19 and might contribute to the cytokine storm, no intercorrelation was found among them. It cannot be excluded though that the results depend on the timing of sampling, assuming that they play distinct roles in different stages of the disease course. The data represented herein may provide clinical benefit in improving our understanding of the pathological course of the disease. Furthermore, measuring these biomarkers during the disease progression may help target them at the right time and refine the decision-making regarding the requirement for hospitalization.
Collapse
Affiliation(s)
- Yuval Volfovitch
- Department of Medicine 'B', Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishai M Tsur
- Department of Medicine 'B', Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Israel Defense Forces Medical Corps, Ramat Gan, Israel.,Department of Military Medicine, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
| | - Michael Gurevitch
- Department of Medicine 'B', Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Daniela Novick
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Roy Rabinowitz
- Department of Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mathilda Mandel
- Department of Medicine 'B', Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Anat Achiron
- Department of Medicine 'B', Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Menachem Rubinstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Yehuda Shoenfeld
- Department of Medicine 'B', Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.,Ariel University, Ariel, Israel.,Zabludowicz Center for Autoimmune Diseases, H. Sheba Medical Center, Tel Hashomer, Israel
| | - Howard Amital
- Department of Medicine 'B', Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
| |
Collapse
|
48
|
Casarrubios M, Provencio M, Nadal E, Insa A, Del Rosario García-Campelo M, Lázaro-Quintela M, Dómine M, Majem M, Rodriguez-Abreu D, Martinez-Marti A, De Castro Carpeño J, Cobo M, López Vivanco G, Del Barco E, Bernabé R, Viñolas N, Barneto Aranda I, Massuti B, Sierra-Rodero B, Martinez-Toledo C, Fernández-Miranda I, Serna-Blanco R, Romero A, Calvo V, Cruz-Bermúdez A. Tumor microenvironment gene expression profiles associated to complete pathological response and disease progression in resectable NSCLC patients treated with neoadjuvant chemoimmunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005320. [PMID: 36171009 PMCID: PMC9528578 DOI: 10.1136/jitc-2022-005320] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Neoadjuvant chemoimmunotherapy for non-small cell lung cancer (NSCLC) has improved pathological responses and survival rates compared with chemotherapy alone, leading to Food and Drug Administration (FDA) approval of nivolumab plus chemotherapy for resectable stage IB-IIIA NSCLC (AJCC 7th edition) without ALK or EGFR alterations. Unfortunately, a considerable percentage of tumors do not completely respond to therapy, which has been associated with early disease progression. So far, it is impossible to predict these events due to lack of knowledge. In this study, we characterized the gene expression profile of tumor samples to identify new biomarkers and mechanisms behind tumor responses to neoadjuvant chemoimmunotherapy and disease recurrence after surgery. METHODS Tumor bulk RNA sequencing was performed in 16 pretreatment and 36 post-treatment tissue samples from 41 patients with resectable stage IIIA NSCLC treated with neoadjuvant chemoimmunotherapy from NADIM trial. A panel targeting 395 genes related to immunological processes was used. Tumors were classified as complete pathological response (CPR) and non-CPR, based on the total absence of viable tumor cells in tumor bed and lymph nodes tested at surgery. Differential-expressed genes between groups and pathway enrichment analysis were assessed using DESeq2 and gene set enrichment analysis. CIBERSORTx was used to estimate the proportions of immune cell subtypes. RESULTS CPR tumors had a stronger pre-established immune infiltrate at baseline than non-CPR, characterized by higher levels of IFNG, GZMB, NKG7, and M1 macrophages, all with a significant area under the receiver operating characteristic curve (ROC) >0.9 for CPR prediction. A greater effect of neoadjuvant therapy was also seen in CPR tumors with a reduction of tumor markers and IFNγ signaling after treatment. Additionally, the higher expression of several genes, including AKT1, BST2, OAS3, or CD8B; or higher dendritic cells and neutrophils proportions in post-treatment non-CPR samples, were associated with relapse after surgery. Also, high pretreatment PD-L1 and tumor mutational burden levels influenced the post-treatment immune landscape with the downregulation of proliferation markers and type I interferon signaling molecules in surgery samples. CONCLUSIONS Our results reinforce the differences between CPR and non-CPR responses, describing possible response and relapse immune mechanisms, opening the possibility of therapy personalization of immunotherapy-based regimens in the neoadjuvant setting of NSCLC.
Collapse
Affiliation(s)
- Marta Casarrubios
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Mariano Provencio
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Ernest Nadal
- Medical Oncology, Catalan Institute of Oncology, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, L'Hospitalet, Barcelona, Spain
| | - Amelia Insa
- Medical Oncology, Fundación INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | | | - Manuel Dómine
- Medical Oncology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Margarita Majem
- Medical Oncology, Hospital de la Santa Creu i Sant Pau Servei de Oncologia Medica, Barcelona, Spain
| | - Delvys Rodriguez-Abreu
- Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas, Canarias, Spain
| | - Alex Martinez-Marti
- Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain, Barcelona, Barcelona, Spain
| | | | - Manuel Cobo
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | | | - Edel Del Barco
- Medical Oncology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Reyes Bernabé
- Medical Oncology, Hospital U. Virgen Rocio, Seville, Spain
| | | | | | | | - Belén Sierra-Rodero
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Cristina Martinez-Toledo
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Ismael Fernández-Miranda
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Roberto Serna-Blanco
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Atocha Romero
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Virginia Calvo
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| | - Alberto Cruz-Bermúdez
- Medical Oncology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda-Madrid, Spain
| |
Collapse
|
49
|
Hara Y, Tsukiji J, Yabe A, Onishi Y, Hirose H, Yamamoto M, Kudo M, Kaneko T, Ebina T. Heme oxygenase-1 as an important predictor of the severity of COVID-19. PLoS One 2022; 17:e0273500. [PMID: 36001619 PMCID: PMC9401165 DOI: 10.1371/journal.pone.0273500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/09/2022] [Indexed: 01/08/2023] Open
Abstract
Background and objective
A cytokine storm is caused by inflammatory cells, including pro-inflammatory macrophage phenotype (M1), and play a critical role in the pathogenesis of COVID-19, in which diffuse alveolar damage occurs in the lungs due to oxidative stress exposure. Heme oxygenase (HO)-1 is a stress-induced protein produced by the anti-inflammatory / anti-oxidative macrophage phenotype (M2), which also produces soluble CD163 (sCD163). In our study, we investigated and determined that serum HO-1 can be a predictive biomarker for assessing both the severity and the outcome of COVID-19 patients.
Method
The serum concentrations of HO-1 and sCD163 of COVID-19 patients were measured on admission. The relationship between these biomarkers and other clinical parameters and outcomes were evaluated.
Results
Sixty-four COVID-19 patients (11 mild, 38 moderate, and 15 severe cases) were assessed. The serum HO-1 tended to increase (11.0 ng/mL vs. 24.3 ng/mL vs. 59.6 ng/mL with severity). Serum HO-1 correlated with serum lactate dehydrogenase (R = 0.422), C-reactive protein (R = 0.463), and the ground glass opacity (GGO) and consolidation score (R = 0.625) of chest computed tomography. The serum HO-1 showed a better area under the curve (AUC) for predicting ICU admission than the serum sCD163 (HO-1; 0.816 and sCD163; 0.743). In addition, composite parameters including serum HO-1 and the GGO and consolidation score showed a higher AUC for predicting ICU admission than the AUC of a single parameter.
Conclusion
Clinically, serum HO-1, reflecting the activation of M2, could be a very useful marker for evaluating disease severity and predicting prognoses for COVID-19 patients. In addition, controlling activated M2 might be a preventative COVID-19 therapeutic target.
Collapse
Affiliation(s)
- Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Jun Tsukiji
- Department of Prevention and Infection Control, Kanagawa Cancer Center, Yokohama, Japan
- * E-mail:
| | - Aya Yabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshika Onishi
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, Yokohama, Japan
| | - Haruka Hirose
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, Yokohama, Japan
| | - Masaki Yamamoto
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Makoto Kudo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshiaki Ebina
- Department of Laboratory Medicine and Clinical Investigation, Yokohama City University Medical Center, Yokohama, Japan
| |
Collapse
|
50
|
Serrano GE, Walker JE, Tremblay C, Piras IS, Huentelman MJ, Belden CM, Goldfarb D, Shprecher D, Atri A, Adler CH, Shill HA, Driver-Dunckley E, Mehta SH, Caselli R, Woodruff BK, Haarer CF, Ruhlen T, Torres M, Nguyen S, Schmitt D, Rapscak SZ, Bime C, Peters JL, Alevritis E, Arce RA, Glass MJ, Vargas D, Sue LI, Intorcia AJ, Nelson CM, Oliver J, Russell A, Suszczewicz KE, Borja CI, Cline MP, Hemmingsen SJ, Qiji S, Hobgood HM, Mizgerd JP, Sahoo MK, Zhang H, Solis D, Montine TJ, Berry GJ, Reiman EM, Röltgen K, Boyd SD, Pinsky BA, Zehnder JL, Talbot P, Desforges M, DeTure M, Dickson DW, Beach TG. SARS-CoV-2 Brain Regional Detection, Histopathology, Gene Expression, and Immunomodulatory Changes in Decedents with COVID-19. J Neuropathol Exp Neurol 2022; 81:666-695. [PMID: 35818336 PMCID: PMC9278252 DOI: 10.1093/jnen/nlac056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brains of 42 COVID-19 decedents and 107 non-COVID-19 controls were studied. RT-PCR screening of 16 regions from 20 COVID-19 autopsies found SARS-CoV-2 E gene viral sequences in 7 regions (2.5% of 320 samples), concentrated in 4/20 subjects (20%). Additional screening of olfactory bulb (OB), amygdala (AMY) and entorhinal area for E, N1, N2, RNA-dependent RNA polymerase, and S gene sequences detected one or more of these in OB in 8/21 subjects (38%). It is uncertain whether these RNA sequences represent viable virus. Significant histopathology was limited to 2/42 cases (4.8%), one with a large acute cerebral infarct and one with hemorrhagic encephalitis. Case-control RNAseq in OB and AMY found more than 5000 and 700 differentially expressed genes, respectively, unrelated to RT-PCR results; these involved immune response, neuronal constituents, and olfactory/taste receptor genes. Olfactory marker protein-1 reduction indicated COVID-19-related loss of OB olfactory mucosa afferents. Iba-1-immunoreactive microglia had reduced area fractions in cerebellar cortex and AMY, and cytokine arrays showed generalized downregulation in AMY and upregulation in blood serum in COVID-19 cases. Although OB is a major brain portal for SARS-CoV-2, COVID-19 brain changes are more likely due to blood-borne immune mediators and trans-synaptic gene expression changes arising from OB deafferentation.
Collapse
Affiliation(s)
- Geidy E Serrano
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Jessica E Walker
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Cécilia Tremblay
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Danielle Goldfarb
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - David Shprecher
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alireza Atri
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles H Adler
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Holly A Shill
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Shyamal H Mehta
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Richard Caselli
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bryan K Woodruff
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | | | - Thomas Ruhlen
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Maria Torres
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Steve Nguyen
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | - Dasan Schmitt
- Banner Boswell Medical Center, Sun City, Arizona, USA
| | | | | | | | | | - Richard A Arce
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Michael J Glass
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Daisy Vargas
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Courtney M Nelson
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Javon Oliver
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Aryck Russell
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA (AR)
| | | | - Claryssa I Borja
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Madison P Cline
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Sanaria Qiji
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly M Hobgood
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Haiyu Zhang
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University, Stanford, California, USA
| | | | - Katharina Röltgen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University, Stanford, California, USA
- Division of Infectious Disease & Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - James L Zehnder
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Pierre Talbot
- Laboratory of Neuroimmunology, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Marc Desforges
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, Florida, USA
- Laboratory of Virology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Michael DeTure
- Département de microbiologie, infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Dennis W Dickson
- Mayo Clinic College of Medicine, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Thomas G Beach
- From the Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|