1
|
Betjes MGH, Klepper M, Smits G, van der Valk E, van der List ACJ, Litjens NHR. Recognition of different subsets of alloreactive T cells by activation-induced markers. Transpl Immunol 2025; 90:102227. [PMID: 40204006 DOI: 10.1016/j.trim.2025.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Alloreactive T-cells can be visualized using activation-induced markers (AIMs) including CD69, CD134, CD137 and CD154. Whether these AIMs recognize similar subsets of alloreactive T-cells is largely unknown. AIM-expressing alloreactive CD4+ T cells were analyzed in detail for phenotype by dissecting different T-cell subsets using antibodies directed to CCR7 and CD45RA. Moreover, detailed functional analysis was performed by determining proportions of cytokine producing cells within AIM-expressing CD4+ T cells using multiparameter flowcytometry. CD154 was predominantly expressed by naïve and central-memory alloreactive CD4+ T cells, CD134 by central-memory alloreactive CD4+ T cells and CD137 by CD4+ alloreactive memory T cells. Alloreactive CD8+ T cells could only be recognized by CD137 expression. The majority of alloreactive CD4+ T cells were single AIM-positive (72 %) and co-expression of all AIMs was infrequent. Polyclonal stimulation with anti-CD3/anti-CD28 resulted in a high frequency of CD4+ T cells co-expressing AIMs which was a dose-dependent phenomenon. Alloreactive memory CD4+ T cells expressing >1 AIM showed the highest proportion of polyfunctional cells. Allogeneic stimulation of sorted naïve CD4+ T cells yielded a population of proliferating T cells, progressing to effector-memory T cells expressing >1 AIM. In conclusion, different AIMs are preferentially expressed by different subsets of circulating alloreactive CD4+ T cells and expression of AIMs is determined by proliferation/differentiation and strength of the T cell receptor (TCR)-stimulation.
Collapse
Affiliation(s)
- Michiel G H Betjes
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Mariska Klepper
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Guido Smits
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Elodie van der Valk
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Amy C J van der List
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands
| | - Nicolle H R Litjens
- Erasmus MC Transplantation Institute, Department of Internal Medicine, Division of Nephrology & Transplantation, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Chang E, Cavallo K, Behar SM. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. Nat Commun 2025; 16:2636. [PMID: 40097414 PMCID: PMC11914476 DOI: 10.1038/s41467-025-57819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
While most people contain Mycobacterium tuberculosis infection, some individuals develop active disease, usually within two years of infection. Why immunity fails after initially controlling infection is unknown. C57BL/6 mice control Mycobacterium tuberculosis for up to a year but ultimately succumb to disease. We hypothesize that the development of CD4 T cell dysfunction permits bacterial recrudescence. We developed a reductionist model to assess antigen-specific T cells during chronic infection and found evidence of CD4 T cell senescence and exhaustion. In C57BL/6 mice, CD4 T cells upregulate coinhibitory receptors and lose effector cytokine production. Single cell RNAseq shows that only a small number of CD4 T cells in the lungs of chronically infected mice are polyfunctional. While the origin and causal relationship between T-cell dysfunction and recrudescence remains uncertain, we propose T cell dysfunction leads to a feed-forward loop that causes increased bacillary numbers, greater T cell dysfunction, and progressive disease.
Collapse
Affiliation(s)
- Evelyn Chang
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, Worcester, MA, USA
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelly Cavallo
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel M Behar
- Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, Worcester, MA, USA.
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Chang E, Cavallo K, Behar SM. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634376. [PMID: 39896548 PMCID: PMC11785196 DOI: 10.1101/2025.01.22.634376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
While most people contain Mycobacterium tuberculosis infection, some individuals develop active disease, usually within two years of infection. Why immunity fails after initially controlling infection is unknown. C57BL/6 mice control Mycobacterium tuberculosis for up to a year but ultimately succumb to disease. We hypothesize that the development of CD4 T cell dysfunction permits bacterial recrudescence. We developed a reductionist model to assess antigen-specific T cells during chronic infection and found evidence of CD4 T cell senescence and exhaustion. In C57BL/6 mice, CD4 T cells upregulate coinhibitory receptors and lose effector cytokine production. Single cell RNAseq shows that only a small number of CD4 T cells in the lungs of chronically infected mice are polyfunctional. While the origin and causal relationship between T-cell dysfunction and recrudescence remains uncertain, we propose T cell dysfunction leads to a feed-forward loop that causes increased bacillary numbers, greater T cell dysfunction, and progressive disease.
Collapse
Affiliation(s)
- Evelyn Chang
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Wang X, Zhang J, Zhong P, Wei X. Exhaustion of T cells after renal transplantation. Front Immunol 2024; 15:1418238. [PMID: 39165360 PMCID: PMC11333218 DOI: 10.3389/fimmu.2024.1418238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Renal transplantation is a life-saving treatment for patients with end-stage renal disease. However, the challenge of transplant rejection and the complications associated with immunosuppressants necessitates a deeper understanding of the underlying immune mechanisms. T cell exhaustion, a state characterized by impaired effector functions and sustained expression of inhibitory receptors, plays a dual role in renal transplantation. While moderate T cell exhaustion can aid in graft acceptance by regulating alloreactive T cell responses, excessive exhaustion may impair the recipient's ability to control viral infections and tumors, posing significant health risks. Moreover, drugs targeting T cell exhaustion to promote graft tolerance and using immune checkpoint inhibitors for cancer treatment in transplant recipients are areas deserving of further attention and research. This review aims to provide a comprehensive understanding of the changes in T cell exhaustion levels after renal transplantation and their implications for graft survival and patient outcomes. We discuss the molecular mechanisms underlying T cell exhaustion, the role of specific exhaustion markers, the potential impact of immunosuppressive therapies, and the pharmaceutical intervention on T cell exhaustion levels. Additionally, we demonstrate the potential to modulate T cell exhaustion favorably, enhancing graft survival. Future research should focus on the distinctions of T cell exhaustion across different immune states and subsets, as well as the interactions between exhausted T cells and other immune cells. Understanding these dynamics is crucial for optimizing transplant outcomes and ensuring long-term graft survival while maintaining immune competence.
Collapse
Affiliation(s)
- Xiujia Wang
- Department of 1st Urology Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinghui Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pingshan Zhong
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xiuwang Wei
- Department of 1st Urology Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
5
|
Litjens NHR, van der List ACJ, Klepper M, Reijerkerk D, Prevoo F, Betjes MGH. Older age is associated with a distinct and marked reduction of functionality of both alloreactive CD4+ and CD8+ T cells. Front Immunol 2024; 15:1406716. [PMID: 39044836 PMCID: PMC11263037 DOI: 10.3389/fimmu.2024.1406716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Older recipient age is associated with a significant decreased risk for rejection after kidney transplantation which is incompletely understood. Methods In a longitudinal study, circulating alloreactive T cells were assessed of young (≤45 years) and older (≥55 years) stable kidney transplant recipients. Alloreactive T-cells were identified by CD137-expression and phenotype, cytokine producing and proliferative capacity, were evaluated using multiparameter flowcytometry. Results The results show that before transplantation frequencies of alloreactive CD4+ and CD8+ T-cells in older KT-recipients are significantly higher and shifted towards an effector memory-phenotype. However, the frequency of polyfunctional (≥2 pro-inflammatory cytokines) CD4+ T-cells was significantly lower and less IL2 was produced. The frequency of polyfunctional alloreactive CD4+ T-cells and proliferation of alloreactive T-cells donor-specifically declined after transplantation reaching a nadir at 12 months after transplantation, irrespective of age. A striking difference was observed for the proliferative response of alloreactive CD8+ T-cells. This was not only lower in older compared to younger recipients but could also not be restored by exogenous IL2 or IL15 in the majority of older recipients while the response to polyclonal stimulation was unaffected. Conclusion In conclusion, older age is associated with a distinct and marked reduction of functionality of both alloreactive CD4+ and CD8+ T-cells.
Collapse
|
6
|
Zhong X, Xie H, Wang S, Ren T, Chen J, Huang Y, Yang N. TIGIT regulates CD4 + T cell immunity against polymicrobial sepsis. Front Immunol 2024; 15:1290564. [PMID: 38545097 PMCID: PMC10965661 DOI: 10.3389/fimmu.2024.1290564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Background Sepsis is one of the major causes of death and increased health care burden in modern intensive care units. Immune checkpoints have been prompted to be key modulators of T cell activation, T cell tolerance and T cell exhaustion. This study was designed to investigate the role of the negative immune checkpoint, T cell immunoglobulin and ITIM domain (TIGIT), in the early stage of sepsis. Method An experimental murine model of sepsis was developed by cecal ligation and puncture (CLP). TIGIT and CD155 expression in splenocytes at different time points were assessed using flow cytometry. And the phenotypes of TIGIT-deficient (TIGIT-/-) and wild-type (WT) mice were evaluated to explore the engagement of TIGIT in the acute phase of sepsis. In addition, the characteristics were also evaluated in the WT septic mice pretreated with anti-TIGIT antibody. TIGIT and CD155 expression in tissues was measured using real-time quantitative PCR and immunofluorescence staining. Proliferation and effector function of splenic immune cells were evaluated by flow cytometry. Clinical severity and tissue injury were scored to evaluate the function of TIGIT on sepsis. Additionally, tissue injury biomarkers in peripheral blood, as well as bacterial load in peritoneal lavage fluid and liver were also measured. Results The expression of TIGIT in splenic T cells and NK cells was significantly elevated at 24 hours post CLP.TIGIT and CD155 mRNA levels were upregulated in sepsis-involved organs when mice were challenged with CLP. In CLP-induced sepsis, CD4+ T cells from TIGIT-/- mice shown increased proliferation potency and cytokine production when compared with that from WT mice. Meanwhile, innate immune system was mobilized in TIGIT-/- mice as indicated by increased proportion of neutrophils and macrophages with potent effector function. In addition, tissue injury and bacteria burden in the peritoneal cavity and liver was reduced in TIGIT-/- mice with CLP induced sepsis. Similar results were observed in mice treated with anti-TIGIT antibody. Conclusion TIGIT modulates CD4+ T cell response against polymicrobial sepsis, suggesting that TIGIT could serve as a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Xuexin Zhong
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiping Xie
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Wang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Ren
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlin Chen
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefang Huang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Betjes MGH, Kal-van Gestel J, Roodnat JI, de Weerd AE. The Incidence of Antibody-Mediated Rejection Is Age-Related, Plateaus Late After Kidney Transplantation, and Contributes Little to Graft Loss in the Older Recipients. Transpl Int 2023; 36:11751. [PMID: 38188697 PMCID: PMC10768842 DOI: 10.3389/ti.2023.11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
It is not known whether antibody-mediated rejection (ABMR) is age-related, whether it plateaus late after transplantation, and to what extent it contributes to graft loss in older recipients. Patients transplanted between 2010 and 2015 (n = 1,054) in a single center had regular follow-up until January 2023. Recipients were divided into age groups at transplantation: 18-39 years ("young"), 40-55 years ("middle age"), and >55 years ("elderly"). Ten years after transplantation the cumulative % of recipients with ABMR was 17% in young, 15% in middle age, and 12% in elderly recipients (p < 0.001). The cumulative incidence of ABMR increased over time and plateaued 8-10 years after transplantation. In the elderly, with a median follow-up of 7.5 years, on average 30% of the recipients with ABMR died with a functional graft and ABMR contributed only 4% to overall graft loss in this group. These results were cross-validated in a cohort of recipients with >15 years follow-up. Multivariate cox-regression analysis showed that increasing recipient age was independently associated with decreasing risk for ABMR. In conclusion, the cumulative risk for ABMR is age-dependent, plateaus late after transplantation, and contributes little to overall graft loss in older recipients.
Collapse
Affiliation(s)
- Michiel G. H. Betjes
- Rotterdam Transplantation Institute, Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | |
Collapse
|
8
|
Del Bello A, Treiner E. Immune Checkpoints in Solid Organ Transplantation. BIOLOGY 2023; 12:1358. [PMID: 37887068 PMCID: PMC10604300 DOI: 10.3390/biology12101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Allogenic graft acceptance is only achieved by life-long immunosuppression, which comes at the cost of significant toxicity. Clinicians face the challenge of adapting the patients' treatments over long periods to lower the risks associated with these toxicities, permanently leveraging the risk of excessive versus insufficient immunosuppression. A major goal and challenge in the field of solid organ transplantation (SOT) is to attain a state of stable immune tolerance specifically towards the grafted organ. The immune system is equipped with a set of inhibitory co-receptors known as immune checkpoints (ICs), which physiologically regulate numerous effector functions. Insufficient regulation through these ICs can lead to autoimmunity and/or immune-mediated toxicity, while excessive expression of ICs induces stable hypo-responsiveness, especially in T cells, a state sometimes referred to as exhaustion. IC blockade has emerged in the last decade as a powerful therapeutic tool against cancer. The opposite action, i.e., subverting IC for the benefit of establishing a state of specific hypo-responsiveness against auto- or allo-antigens, is still in its infancy. In this review, we will summarize the available literature on the role of ICs in SOT and the relevance of ICs with graft acceptance. We will also discuss the possible influence of current immunosuppressive medications on IC functions.
Collapse
Affiliation(s)
- Arnaud Del Bello
- Department of Nephrology, University Hospital of Toulouse, 31400 Toulouse, France
- Metabolic and Cardiovascular Research Institute (I2MC), Inserm UMR1297, CEDEX 4, 31432 Toulouse, France
- Faculty of Medicine, University Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Emmanuel Treiner
- Faculty of Medicine, University Toulouse III Paul Sabatier, 31062 Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, 31024 Toulouse, France
| |
Collapse
|
9
|
Litjens NHR, van der List ACJ, Klepper M, Prevoo F, Boer K, Hesselink DA, Betjes MGH. Polyfunctional donor-reactive T cells are associated with acute T-cell-mediated rejection of the kidney transplant. Clin Exp Immunol 2023; 213:371-383. [PMID: 37070703 PMCID: PMC10571010 DOI: 10.1093/cei/uxad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
Acute T-cell-mediated rejection (aTCMR) still remains a clinical problem after kidney transplantation despite significant improvements in immunosuppressive regimens. Polyfunctional T cells, i.e. T cells producing multiple pro-inflammatory cytokines, are believed to be the most relevant T cells in an immune response. The aim of this study was to determine whether polyfunctional donor-reactive T cells are associated with aTCMR. In a case-control study, 49 kidney transplant recipients with a biopsy-proven aTCMR in the first year after transplantation were included, as well as 51 controls without aTCMR. Circulating donor-reactive T cells were identified by the expression of CD137 after short-term co-culture with donor antigen-presenting cells. Polyfunctional donor-reactive T cells were further characterized by dissection into different T-cell subsets encompassing the spectrum of naïve to terminally differentiated effector T cells. Prior to kidney transplantation, proportions of donor-reactive CD4+ (0.03% versus 0.02%; P < 0.01) and CD8+ (0.18% versus 0.10%; P < 0.01) CD137++ T cells were significantly higher in recipients with a biopsy-proven aTCMR versus non-rejectors. Polyfunctionality was higher (P = 0.03) in this subset of CD137-expressing T cells. These cells were predominantly of the EM/EMRA-phenotype, with polyfunctional donor-reactive CD137++CD4+ T cells predominantly co-expressing CD28 whereas approximately half of the polyfunctional CD137++CD8+ T cells co-expressed CD28. In addition, at the time of aTCMR, polyfunctional donor-reactive CD137++ CD4+, but not CD8+, T cells, were specifically decreased by 75% compared to before transplantation in recipients with as well as those without an aTCMR. Prior to transplantation, the proportion of polyfunctional donor-reactive CD137++ T cells is associated with the occurrence of a biopsy-proven aTCMR within the first year after transplantation.
Collapse
Affiliation(s)
- Nicolle H R Litjens
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Amy C J van der List
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mariska Klepper
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fréderique Prevoo
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Karin Boer
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michiel G H Betjes
- Erasmus MC Transplant Institute, Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
10
|
van der List ACJ, Litjens NHR, Brouwer RWW, Klepper M, den Dekker AT, van Ijcken WFJ, Betjes MGH. Single-Cell RNA Sequencing of Donor-Reactive T Cells Reveals Role of Apoptosis in Donor-Specific Hyporesponsiveness of Kidney Transplant Recipients. Int J Mol Sci 2023; 24:14463. [PMID: 37833911 PMCID: PMC10572284 DOI: 10.3390/ijms241914463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
After kidney transplantation (KT), donor-specific hyporesponsiveness (DSH) of recipient T cells develops over time. Recently, apoptosis was identified as a possible underlying mechanism. In this study, both transcriptomic profiles and complete V(D)J variable regions of TR transcripts from individual alloreactive T cells of kidney transplant recipients were determined with single-cell RNA sequencing. Alloreactive T cells were identified by CD137 expression after stimulation of peripheral blood mononuclear cells obtained from KT recipients (N = 7) prior to and 3-5 years after transplantation with cells of their donor or a third party control. The alloreactive T cells were sorted, sequenced and the transcriptome and T cell receptor profiles were analyzed using unsupervised clustering. Alloreactive T cells retain a highly polyclonal T Cell Receptor Alpha/Beta repertoire over time. Post transplantation, donor-reactive CD4+ T cells had a specific downregulation of genes involved in T cell cytokine-mediated pathways and apoptosis. The CD8+ donor-reactive T cell profile did not change significantly over time. Single-cell expression profiling shows that activated and pro-apoptotic donor-reactive CD4+ T cell clones are preferentially lost after transplantation in stable kidney transplant recipients.
Collapse
Affiliation(s)
- Amy C. J. van der List
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| | - Nicolle H. R. Litjens
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| | - Rutger W. W. Brouwer
- Erasmus MC Center for Biomics, University Medical Center, 3015 CN Rotterdam, The Netherlands; (R.W.W.B.); (A.T.d.D.); (W.F.J.v.I.)
| | - Mariska Klepper
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| | - Alexander T. den Dekker
- Erasmus MC Center for Biomics, University Medical Center, 3015 CN Rotterdam, The Netherlands; (R.W.W.B.); (A.T.d.D.); (W.F.J.v.I.)
| | - Wilfred F. J. van Ijcken
- Erasmus MC Center for Biomics, University Medical Center, 3015 CN Rotterdam, The Netherlands; (R.W.W.B.); (A.T.d.D.); (W.F.J.v.I.)
| | - Michiel G. H. Betjes
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, 3015 CN Rotterdam, The Netherlands; (A.C.J.v.d.L.); (N.H.R.L.); (M.K.)
| |
Collapse
|
11
|
Betjes MGH, De Weerd A. Lowering maintenance immune suppression in elderly kidney transplant recipients; connecting the immunological and clinical dots. Front Med (Lausanne) 2023; 10:1215167. [PMID: 37502354 PMCID: PMC10368955 DOI: 10.3389/fmed.2023.1215167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
The management of long-term immune suppressive medication in kidney transplant recipients is a poorly explored field in the area of transplant medicine. In particular, older recipients are at an increased risk for side effects and have an exponentially increased risk of infection-related death. In contrast, an aged immune system decreases the risk of acute T-cell-mediated rejection in older recipients. Recent advances in alloimmunity research have shown a rapid and substantial decline in polyfunctional, high-risk CD4+ T cells post-transplantation. This lowers the direct alloreactivity responsible for T-cell-mediated rejection, also known as donor-specific hyporesponsiveness. Chronic antibody-mediated rejection (c-aABMR) is the most frequent cause of kidney graft loss in the long term. However, in older adults, c-aABMR as a cause of graft loss is outnumbered by death with a functioning graft. In addition, DSA development and a diagnosis of c-aABMR plateau ~10 years after transplantation, resulting in a very low risk for rejection thereafter. The intensity of immune suppression regimes could likely be reduced accordingly, but trials in this area are scarce. Tacrolimus monotherapy for 1 year after transplantation seems feasible in older kidney transplant recipients with standard immunological risk, showing the expected benefits of fewer infections and better vaccination responses.
Collapse
|
12
|
Noel S, Lee K, Gharaie S, Kurzhagen JT, Pierorazio PM, Arend LJ, Kuchroo VK, Cahan P, Rabb H. Immune Checkpoint Molecule TIGIT Regulates Kidney T Cell Functions and Contributes to AKI. J Am Soc Nephrol 2023; 34:755-771. [PMID: 36747315 PMCID: PMC10125646 DOI: 10.1681/asn.0000000000000063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/02/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT T cells mediate pathogenic and reparative processes during AKI, but the exact mechanisms regulating kidney T cell functions are unclear. This study identified upregulation of the novel immune checkpoint molecule, TIGIT, on mouse and human kidney T cells after AKI. TIGIT-expressing kidney T cells produced proinflammatory cytokines and had effector (EM) and central memory (CM) phenotypes. TIGIT-deficient mice had protection from both ischemic and nephrotoxic AKI. Single-cell RNA sequencing led to the discovery of possible downstream targets of TIGIT. TIGIT mediates AKI pathophysiology, is a promising novel target for AKI therapy, and is being increasingly studied in human cancer therapy trials. BACKGROUND T cells play pathogenic and reparative roles during AKI. However, mechanisms regulating T cell responses are relatively unknown. We investigated the roles of the novel immune checkpoint molecule T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) in kidney T cells and AKI outcomes. METHODS TIGIT expression and functional effects were evaluated in mouse kidney T cells using RNA sequencing (RNA-Seq) and flow cytometry. TIGIT effect on AKI outcomes was studied with TIGIT knockout (TIGIT-KO) mice in ischemia reperfusion (IR) and cisplatin AKI models. Human kidney T cells from nephrectomy samples and single cell RNA sequencing (scRNA-Seq) data from the Kidney Precision Medicine Project were used to assess TIGIT's role in humans. RESULTS RNA-Seq and flow cytometry analysis of mouse kidney CD4+ T cells revealed increased expression of TIGIT after IR injury. Ischemic injury also increased TIGIT expression in human kidney T cells, and TIGIT expression was restricted to T/natural killer cell subsets in patients with AKI. TIGIT-expressing kidney T cells in wild type (WT) mice had an effector/central memory phenotype and proinflammatory profile at baseline and post-IR. Kidney regulatory T cells were predominantly TIGIT+ and significantly reduced post-IR. TIGIT-KO mice had significantly reduced kidney injury after IR and nephrotoxic injury compared with WT mice. scRNA-Seq analysis showed enrichment of genes related to oxidative phosphorylation and mTORC1 signaling in Th17 cells from TIGIT-KO mice. CONCLUSIONS TIGIT expression increases in mouse and human kidney T cells during AKI, worsens AKI outcomes, and is a novel therapeutic target for AKI.
Collapse
Affiliation(s)
- Sanjeev Noel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Kyungho Lee
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sepideh Gharaie
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Philip M. Pierorazio
- Department of Surgery, Division of Urology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lois J. Arend
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Molecular Biology & Genetics, Johns Hopkins University, Baltimore, Maryland
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Zhang D, Liu Y, Ma J, Xu Z, Duan C, Wang Y, Li X, Han J, Zhuang R. Competitive binding of CD226/TIGIT with PVR regulates macrophage polarization and is involved in vascularized skin graft rejection. Am J Transplant 2023:S1600-6135(23)00404-5. [PMID: 37054890 DOI: 10.1016/j.ajt.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
End-stage organ failure often requires solid organ transplantation. Nevertheless, transplant rejection remains an unresolved issue. The induction of donor-specific tolerance is the ultimate goal in transplantation research. Here, an allograft vascularized skin rejection model using BALB/c-C57/BL6 mice was established to evaluate the regulation of the poliovirus receptor signaling pathway via CD226 knockout (KO) or TIGIT-Fc recombinant protein treatment. In the TIGIT-Fc-treated and CD226KO groups, graft survival time was significantly prolonged, with a Treg cell proportion increase and M2-type macrophage polarization. Donor-reactive recipient T cells became hyporesponsive while responding normally after a third-party antigen challenge. In both groups, serum IL-1β, IL-6, IL-12p70, IL-17A, TNF-α, IFN-γ, and monocyte chemoattractant protein-1 levels decreased, and the IL-10 level increased. In vitro, M2 markers, such as Arg1 and IL-10, were markedly increased by TIGIT-Fc, whereas iNOS, IL-1β, IL-6, IL-12p70, TNF-α, and IFN-γ levels decreased. CD226-Fc had the opposite effect. TIGIT suppressed Th1 and Th17 differentiation by inhibiting macrophage SHP-1 phosphorylation and enhanced ERK1/2-MSK1 phosphorylation and nuclear translocation of CREB. In conclusion, CD226 and TIGIT competitively bind to PVR with activating and inhibitory functions, respectively. Mechanistically, TIGIT promotes IL-10 transcription from macrophages by activating the ERK1/2-MSK1-CREB pathway and enhancing M2-type polarization. CD226/TIGIT-PVR are crucial regulatory molecules of allograft rejection.
Collapse
Affiliation(s)
- Dongliang Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yitian Liu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhigang Xu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xuemei Li
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
14
|
Abstract
Single-cell technologies open up new opportunities to explore the behavior of cells at the individual level. For solid organ transplantation, single-cell technologies can provide in-depth insights into the underlying mechanisms of the immunological processes involved in alloimmune responses after transplantation by investigating the role of individual cells in tolerance and rejection. Here, we review the value of single-cell technologies, including cytometry by time-of-flight and single-cell RNA sequencing, in the context of solid organ transplantation research. Various applications of single-cell technologies are addressed, such as the characterization and identification of immune cell subsets involved in rejection or tolerance. In addition, we explore the opportunities for analyzing specific alloreactive T- or B-cell clones by linking phenotype data to T- or B-cell receptor data, and for distinguishing donor- from recipient-derived immune cells. Moreover, we discuss the use of single-cell technologies in biomarker identification and risk stratification, as well as the remaining challenges. Together, this review highlights that single-cell approaches contribute to a better understanding of underlying immunological mechanisms of rejection and tolerance, thereby potentially accelerating the development of new or improved therapies to avoid allograft rejection.
Collapse
|
15
|
Cao W, Lu J, Li S, Song F, Xu J. Transcriptomic analysis of graft liver provides insight into the immune response of rat liver transplantation. Front Immunol 2022; 13:947437. [DOI: 10.3389/fimmu.2022.947437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
BackgroundAs an “immune-privileged organ”, the liver has higher rates of both spontaneous tolerance and operational tolerance after being transplanted compared with other solid organs. Also, a large number of patients still need to take long-term immunosuppression regimens. Liver transplantation (LT) rejection involves varieties of pathophysiological processes and cell types, and a deeper understanding of LT immune response is urgently needed.MethodsHomogenic and allogeneic rat LT models were established, and recipient tissue was collected on postoperative day 7. The degree of LT rejection was evaluated by liver pathological changes and liver function. Differentially expressed genes (DEGs) were detected by transcriptome sequencing and confirmed by reverse transcription-polymerase chain reaction. The functional properties of DEGs were characterized by the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses. The cells infiltrating the graft and recipient spleen and peripheral blood were evaluated by immunofluorescence and flow cytometry.ResultA total of 1,465 DEGs were screened, including 1,177 up-regulated genes and 288 down-regulated genes. GO enrichment and KEGG pathway analysis indicated that DEGs were involved in several immunobiological processes, including T cell activation, Th1, Th2 and Th17 cell differentiation, cytokine-cytokine receptor interaction and other immune processes. Reactome results showed that PD-1 signaling was enriched. Further research confirmed that mRNA expression of multiple immune cell markers increased and markers of T cell exhaustion significantly changed. Flow cytometry showed that the proportion of Treg decreased, and that of PD-1+CD4+ T cells and PD-1+CD8+ T cells increased in the allogeneic group.ConclusionUsing an omic approach, we revealed that the development of LT rejection involved multiple immune cells, activation of various immune pathways, and specific alterations of immune checkpoints, which would benefit risk assessment in the clinic and understanding of pathogenesis regarding LT tolerance. Further clinical validations are warranted for our findings.
Collapse
|
16
|
de Weerd AE, Fatly ZA, Boer-Verschragen M, Kal-van Gestel JA, Roelen DL, Dieterich M, Betjes MGH. Tacrolimus Monotherapy is Safe in Immunologically Low-Risk Kidney Transplant Recipients: A Randomized-Controlled Pilot Study. Transpl Int 2022; 35:10839. [PMID: 36353052 PMCID: PMC9637544 DOI: 10.3389/ti.2022.10839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022]
Abstract
In this randomized-controlled pilot study, the feasibility and safety of tacrolimus monotherapy in immunologically low-risk kidney transplant recipients was evaluated [NTR4824, www.trialregister.nl]. Low immunological risk was defined as maximal 3 HLA mismatches and the absence of panel reactive antibodies. Six months after transplantation, recipients were randomized if eGFR >30 ml/min, proteinuria <50 mg protein/mmol creatinine, no biopsy-proven rejection after 3 months, and no lymphocyte depleting therapy given. Recipients were randomized to tacrolimus/mycophenolate mofetil (TAC/MMF) or to taper and discontinue MMF at month 9 (TACmono). 79 of the 121 recipients were randomized to either TACmono (n = 38) or TAC/MMF (n = 41). Mean recipient age was 59 years and 59% received a living donor transplant. The median follow-up was 62 months. After randomization, 3 TACmono and 4 TAC/MMF recipients experienced a biopsy-proven rejection. At 5 years follow-up, patient survival was 84% in TACmono versus 76% in TAC/MMF with death-censored graft survival of 97% for both groups and no differences in eGFR and proteinuria. Eleven TACmono recipients had an infectious episode versus 22 TAC/MMF recipients (p < 0.03). Donor-specific anti-HLA antibodies were not detected during follow-up in both groups. Tacrolimus monotherapy in selected immunologically low-risk kidney transplant recipients appears safe and reduces the number of infections.
Collapse
Affiliation(s)
- Annelies E. de Weerd
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, Netherlands
| | - Zainab Al Fatly
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, Netherlands
| | - Marieken Boer-Verschragen
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, Netherlands
| | - Judith A. Kal-van Gestel
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, Netherlands
| | - Dave L. Roelen
- Department of Immunology, HLA Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, Netherlands
| | - Michiel G. H. Betjes
- Department of Internal Medicine, University Medical Center Rotterdam, Erasmus MC Transplant Institute, Rotterdam, Netherlands
| |
Collapse
|
17
|
van der List ACJ, Litjens NHR, Klepper M, Prevoo F, Betjes MGH. Progressive Loss of Donor-Reactive CD4 +Effector Memory T Cells due to Apoptosis Underlies Donor-Specific Hyporesponsiveness in Stable Renal Transplant Recipients. THE JOURNAL OF IMMUNOLOGY 2022; 209:1389-1400. [DOI: 10.4049/jimmunol.2200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
|
18
|
The Ratio of CD226 and TIGIT Expression in Tfh and PD-1 +ICOS +Tfh Cells Are Potential Biomarkers for Chronic Antibody-Mediated Rejection in Kidney Transplantation. J Immunol Res 2022; 2022:5326083. [PMID: 35733922 PMCID: PMC9206998 DOI: 10.1155/2022/5326083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
Kidney transplantation is the ideal treatment for end-stage renal disease (ESRD). Chronic antibody-mediated rejection (CAMR) is the main cause of graft failure. Tfh and B cells are key immune cells that play important roles in CAMR. In this study, the populations of different Tfh cell phenotypes and B cell subsets in CAMR were investigated in a total of 36 patients. Based on Banff-2019, 15 patients were diagnosed with CAMR (CAMR group), 11 recipients were diagnosed with recurrent or de novo IgA nephropathy (IgAN group), and 10 patients displayed stable renal function (stable group). The Tfh and B cell subsets were analyzed by flow cytometry. The percentage and absolute number of PD-1+ICOS+Tfh cells were significantly higher in CAMR (p < 0.05), as was the ratio of CD226+Tfh cells to TIGIT+Tfh cells (p < 0.05). Compared with stable recipients, CAMR patients had lower naïve B cells and higher unswitched memory B cells, which were also significantly related to renal function (p < 0.05). Using the logistic regression model, we concluded that the estimated glomerular filtration rate (eGFR), absolute number of PD-1+ICOS+Tfh cells, and ratio of CD226+Tfh cells to TIGIT+Tfh cells were independent risk factors for CAMR. The combination of eGFR, PD-1+ICOS+Tfh cells, and the ratio of CD226+Tfh cells to TIGIT+Tfh cells showed better diagnostic efficacy for CAMR than each single parameter. The collective findings show that monitoring different Tfh phenotypes and B cell subsets is beneficial to kidney transplant recipients and implicate the combination of eGFR, number of PD-1+ICOS+Tfh cells, and ratio of CD226+Tfh cells to TIGIT+Tfh cells as a biomarker for diagnosing CAMR. The findings may also inform new strategies to identify and treat CAMR.
Collapse
|
19
|
Yue C, Gao S, Li S, Xing Z, Qian H, Hu Y, Wang W, Hua C. TIGIT as a Promising Therapeutic Target in Autoimmune Diseases. Front Immunol 2022; 13:911919. [PMID: 35720417 PMCID: PMC9203892 DOI: 10.3389/fimmu.2022.911919] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022] Open
Abstract
Co-inhibitory receptors (IRs) are molecules that protect host against autoimmune reactions and maintain peripheral self-tolerance, playing an essential role in maintaining immune homeostasis. In view of the substantial clinical progresses of negative immune checkpoint blockade in cancer treatment, the role of IRs in autoimmune diseases is also obvious. Several advances highlighted the substantial impacts of T cell immunoglobulin and ITIM domain (TIGIT), a novel IR, in autoimmunity. Blockade of TIGIT pathway exacerbates multiple autoimmune diseases, whereas enhancement of TIGIT function has been shown to alleviate autoimmune settings in mice. These data suggested that TIGIT pathway can be manipulated to achieve durable tolerance to treat autoimmune disorders. In this review, we provide an overview of characteristics of TIGIT and its role in autoimmunity. We then discuss recent approaches and future directions to leverage our knowledge of TIGIT as therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hengrong Qian
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Hu
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|