1
|
Alemán OR, Blanco-Camarillo C, Naranjo-Pinto N, Mora N, Rosales C. Fc gamma receptors activate different protein kinase C isoforms in human neutrophils. J Leukoc Biol 2025; 117:qiaf019. [PMID: 39946245 DOI: 10.1093/jleuko/qiaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025] Open
Abstract
Receptors for FcγR on human neutrophils constitute an important mechanism for the recognition of opsonized microorganisms and for cell activation. Human neutrophils express 2 FcγR: FcγRIIa and FcγRIIIb. Previously, it has been reported that activation of each FcγR induces different neutrophil responses by triggering distinct signal transduction pathways, although what particular signal transduction pathway is triggered by each FcγR has not been completely elucidated. It has also been reported that PKC is important for FcγR signaling and that each FcγR may activate different PKC isoforms. Therefore, we explored whether FcγRIIa or FcγRIIIb activates different PKC isoforms in human neutrophils and whether activation of these PKC isoforms results in different neutrophil responses. Hence, either FcγRIIa or FcγRIIIb was selectively cross-linked by monoclonal antibodies in the presence or absence of pharmacological inhibitors for various PKC isoforms. Inhibition of PKCα or PKCδ blocked FcγRIIa-induced reactive oxygen species productions. In contrast, inhibition of PKCα and/or PKCβ blocked FcγRIIIb-induced reactive oxygen species production. Also, inhibition of all PKC isoforms did not affect the FcγRIIa-induced increase in intracellular calcium concentration ([Ca2+]i), while inhibition of PKCα blocked FcγRIIIb-induced increase in [Ca2+]i. Additionally, inhibition of PKCδ blocked FcγRIIa-induced ERK phosphorylation, while inhibition of PKCα prevented FcγRIIIb-induced ERK phosphorylation. These results suggest that both FcγRIIa and FcγRIIIb activate unique PKC isoforms and that activation of these PKC isoforms can selectively regulate different neutrophil functions. These findings also reinforce the idea that each FcγR in human neutrophils triggers distinct signal transduction pathways.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Carlos Blanco-Camarillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado Edificio D primer piso, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nathalia Naranjo-Pinto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Nancy Mora
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Mackin SR, Sariol A, Diamond MS. Antibody-mediated control mechanisms of viral infections. Immunol Rev 2024; 328:205-220. [PMID: 39162394 PMCID: PMC11661935 DOI: 10.1111/imr.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Antibodies generated after vaccination or natural pathogen exposure are essential mediators of protection against many infections. Most studies with viruses have focused on antibody neutralization, in which protection is conferred by the fragment antigen binding region (Fab) through targeting of different steps in the viral lifecycle including attachment, internalization, fusion, and egress. Beyond neutralization, the fragment crystallizable (Fc) region of antibodies can integrate innate and adaptive immune responses by engaging complement components and distinct Fc gamma receptors (FcγR) on different host immune cells. In this review, we discuss recent advances in our understanding of antibody neutralization and Fc effector functions, and the assays used to measure them. Additionally, we describe the contexts in which these mechanisms are associated with protection against viruses and highlight how Fc-FcγR interactions can improve the potency of antibody-based therapies.
Collapse
Affiliation(s)
- Samantha R. Mackin
- Department of Medicine, Washington University School of Medicine, MO 63110, USA
- Department of Pathology & Immunology and Center for Genome Sciences, Lab & Genomic Medicine, Washington University School of Medicine, MO 63110, USA
| | - Alan Sariol
- Department of Medicine, Washington University School of Medicine, MO 63110, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, MO 63110, USA
- Department of Pathology & Immunology and Center for Genome Sciences, Lab & Genomic Medicine, Washington University School of Medicine, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Gao H, Sun T, Wang W, Li J, Zhang M, Hou Y, Bai G. Self-Illuminating Copper-Luminol Coordination Polymers for Bioluminescence Imaging of Oxidative Damage. Anal Chem 2024; 96:16434-16442. [PMID: 39363423 DOI: 10.1021/acs.analchem.4c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Timely detection of reactive oxygen species (ROS) accumulated during inflammation is essential for an early disease diagnosis. Compared to fluorescence probes with limited sensitivity and accuracy, chemiluminescence (CL) imaging offers the potential for highly sensitive molecular visualization of ROS by minimizing background interferences. However, the development of bright and easily manufacturable CL probes for ROS imaging remains challenging. In this study, a novel chemiluminescent nanoprobe named Cu-Lum@NPs for ROS imaging in inflammation was synthesized by using a one-step solvothermal method. The Cu-Lum@NPs, which are composed of coordination polymers containing copper ions and luminol (Lum), demonstrate intrinsic peroxidase-like activity that relies on Cu(I) as the catalytic active center to initiate the Fenton reaction. This catalytic process facilitates the decomposition of hydrogen peroxide (H2O2) into hydroxyl radicals (•OH) and superoxide anion radicals (O2•-), leading to the oxidation of Lum and inducing strong luminescence. Cu-Lum@NPs, displaying nanozyme characteristics, were observed to accelerate and enhance the ROS-responsive luminescence (10-1600-fold in solution and over 100-fold in neutrophils) and notably extend persistent luminescence. The Cu-Lum@NPs allowed for CL imaging of endogenous ROS in living cells and animals with an outstanding signal-to-noise ratio exceeding 96 and facilitated oxidative damage luminescence imaging for tissue-specific detection. The study presents Cu-Lum@NPs, a highly sensitive and easily manufacturable chemiluminescent nanoprobe for ROS imaging both in vitro and in vivo, exhibiting enhanced luminescence and prolonged persistence for ROS-related disease detection.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Tong Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Wenshuang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Junjie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| |
Collapse
|
5
|
Gan SY, Tye GJ, Chew AL, Lai NS. Current development of Fc gamma receptors (FcγRs) in diagnostics: a review. Mol Biol Rep 2024; 51:937. [PMID: 39190190 DOI: 10.1007/s11033-024-09877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The ability of the immune system to fight against pathogens relies on the intricate collaboration between antibodies and Fc gamma receptors (FcγRs). These receptors are a group of transmembrane glycoprotein molecules, which can specifically detect and bind to the Fc portion of immunoglobulin G (IgG) molecules. They are distributed on a diverse array of immune cells, forming a strong defence system to eliminate invading threats. FcγRs have gained increasing attention as potential biomarkers for various diseases in recent years due to their ability to reflect immune dysregulation and disease pathogenesis. Increasing lines of evidence have shed new light on the remarkable association of FcγRs polymorphisms with the susceptibility of autoimmune diseases such as systemic lupus erythematosus (SLE) and lupus nephritis. Several studies have also reported the application of FcγR as a novel biomarker for the diagnosis of infection and cancer. Due to the surge in interest and concern regarding the potential of FcγRs as promising diagnostic biomarkers, this review, thereby, serves to provide a comprehensive overview of the structural characteristics, functional roles, and expression patterns of FcγRs, with a particular focus on their evolving role as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Shin Yi Gan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Penang, 11700, Malaysia
| | - Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
6
|
Qiu W, Guo R, Yu H, Chen X, Chen Z, Ding D, Zhong J, Yang Y, Fang F. Single-cell atlas of human gingiva unveils a NETs-related neutrophil subpopulation regulating periodontal immunity. J Adv Res 2024:S2090-1232(24)00312-6. [PMID: 39084404 DOI: 10.1016/j.jare.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Exaggerated neutrophil recruitment and activation are the major features of pathological alterations in periodontitis, in which neutrophil extracellular traps (NETs) are considered to be responsible for inflammatory periodontal lesions. Despite the critical role of NETs in the development and progression of periodontitis, their specific functions and mechanisms remain unclear. OBJECTIVES To demonstrate the important functions and specific mechanisms of NETs involved in periodontal immunopathology. METHODS We performed single-cell RNA sequencing on gingival tissues from both healthy individuals and patients diagnosed with periodontitis. High-dimensional weighted gene co-expression network analysis and pseudotime analysis were then applied to characterize the heterogeneity of neutrophils. Animal models of periodontitis were treated with NETs inhibitors to investigate the effects of NETs in severe periodontitis. Additionally, we established a periodontitis prediction model based on NETs-related genes using six types of machine learning methods. Cell-cell communication analysis was used to identify ligand-receptor pairs among the major cell groups within the immune microenvironment. RESULTS We constructed a single-cell atlas of the periodontal microenvironment and obtained nine major cell populations. We further identified a NETs-related subgroup (NrNeu) in neutrophils. An in vivo inhibition experiment confirmed the involvement of NETs in gingival inflammatory infiltration and alveolar bone absorption in severe periodontitis. We further screened three key NETs-related genes (PTGS2, MME and SLC2A3) and verified that they have the potential to predict periodontitis. Moreover, our findings revealed that gingival fibroblasts had the most interactions with NrNeu and that they might facilitate the production of NETs through the MIF-CD74/CXCR4 axis in periodontitis. CONCLUSION This study highlights the pathogenic role of NETs in periodontal immunity and elucidates the specific regulatory relationship by which gingival fibroblasts activate NETs, which provides new insights into the clinical diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruiming Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxin Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dian Ding
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jindou Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yumeng Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Chollet S, Hernandez Padilla AC, Daix T, Gaschet M, François B, Piguet C, Gachard N, Da Re S, Jeannet R, Ploy MC. Phagosomal granulocytic ROS in septic patients induce the bacterial SOS response. iScience 2024; 27:109825. [PMID: 38799552 PMCID: PMC11126768 DOI: 10.1016/j.isci.2024.109825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/14/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Septic patients with worst clinical prognosis have increased circulating immature granulocytes (IG), displaying limited phagocytosis and reactive oxygen species (ROS) production. Here, we developed an ex vivo model of incubation of human granulocytes, from septic patients or healthy donors, with Escherichia coli. We showed that the ROS production in Sepsis-IG is lower due to decreased activation and protein expression of the NADPH oxidase complex. We also demonstrated that the low level of ROS production and lower phagocytosis of IG in sepsis induce the bacterial SOS response, leading to the expression of the SOS-regulated quinolone resistance gene qnrB2. Without antimicrobial pressure, the sepsis immune response alone may promote antibiotic resistance expression.
Collapse
Affiliation(s)
- Stecy Chollet
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | | | - Thomas Daix
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
- CHU Limoges, Service de Réanimation Polyvalente, Limoges, France
- Inserm CIC 1435, Limoges, France
| | - Margaux Gaschet
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Bruno François
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
- CHU Limoges, Service de Réanimation Polyvalente, Limoges, France
- Inserm CIC 1435, Limoges, France
| | | | - Nathalie Gachard
- CHU Limoges, Laboratoire d’hématologie, Limoges, France
- CNRS UMR 7276, Inserm UMR 1262, Université de Limoges, Limoges, France
| | - Sandra Da Re
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Robin Jeannet
- Inserm CIC 1435, Limoges, France
- CNRS UMR 7276, Inserm UMR 1262, Université de Limoges, Limoges, France
| | - Marie-Cécile Ploy
- University Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| |
Collapse
|
8
|
Chen Z, Cheng Z, Ding C, Cao T, Chen L, Wang H, Li J, Huang X. ROS-Activated TRPM2 Channel: Calcium Homeostasis in Cardiovascular/renal System and Speculation in Cardiorenal Syndrome. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07531-3. [PMID: 38108918 DOI: 10.1007/s10557-023-07531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel is a nonselective calcium channel that is sensitive to oxidative stress (OS), and is widely expressed in multiple organs, such as the heart, kidney, and brain, which is inextricably related to calcium dyshomeostasis and downstream pathological events. Due to the increasing global burden of kidney or cardiovascular diseases (CVDs), safe and efficient drugs specific to novel targets are imperatively needed. Notably, investigation of the possibility to regard the TRPM2 channel as a new therapeutic target in ROS-related CVDs or renal diseases is urgently required because the roles of the TRPM2 channel in heart or kidney diseases have not received enough attention and thus have not been fully elaborated. Therefore, we aimed to review the involvement of the TRPM2 channel in cardiovascular disorders related to kidney or typical renal diseases and attempted to speculate about TRPM2-mediated mechanisms of cardiorenal syndrome (CRS) to provide representative perspectives for future research about novel and effective therapeutic strategies.
Collapse
Affiliation(s)
- Zihan Chen
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, China
| | - Zaihua Cheng
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Congcong Ding
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianyu Cao
- Biological anthropology, University of California, Santa Barbara, CA, USA
| | - Ling Chen
- Department of Cardiology, the First People's Hospital of Jiujiang, Jiujiang, China
| | - Hong Wang
- Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Junpei Li
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiao Huang
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Alemán OR, Rosales C. Human neutrophil Fc gamma receptors: different buttons for different responses. J Leukoc Biol 2023; 114:571-584. [PMID: 37437115 DOI: 10.1093/jleuko/qiad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Neutrophils are fundamental cells in host defense. These leukocytes are quickly recruited from the blood to sites of infection or tissue damage. At these sites, neutrophils initiate several innate immune responses, including phagocytosis, production of reactive oxygen species, degranulation to release proteases and other antimicrobial compounds, production of inflammatory mediators, and formation of neutrophil extracellular traps. In addition to their role in innate immunity, neutrophils are now recognized as cells that also regulate adaptive immunity, via interaction with dendritic cells and lymphocytes. Neutrophils also respond to adaptive immunity by interacting with antibody molecules. Indeed, antibody molecules allow neutrophils to have antigen-specific responses. Neutrophils express different receptors for antibodies. The receptors for immunoglobulin G molecules are known as Fcγ receptors. Upon Fcγ receptor aggregation on the cell membrane, these receptors trigger distinct signal transduction cascades that activate particular cellular responses. In this review, we describe the major Fcγ receptors expressed on human neutrophils and discuss how each Fcγ receptor activates a choice of signaling pathways to stimulate particular neutrophil responses.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
10
|
Niu M, Zhao F, Chen R, Li P, Bi L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front Immunol 2023; 14:1127277. [PMID: 36926330 PMCID: PMC10013686 DOI: 10.3389/fimmu.2023.1127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the augment of vascular permeability, increased inflammatory cells infiltration, dysregulated immune cells activation, pannus formation and unbearable pain hyperalgesia. Ca2+ affect almost every aspect of cellular functions, involving cell migration, signal transduction, proliferation, and apoptosis. Transient receptor potential channels (TRPs) as a type of non-selective permeable cation channels, can regulate Ca2+ entry and intracellular Ca2+ signal in cells including immune cells and neurons. Researches have demonstrated that TRPs in the mechanisms of inflammatory diseases have achieved rapid progress, while the roles of TRPs in RA pathogenesis and pain hyperalgesia are still not well understood. To solve this problem, this review presents the evidence of TRPs on vascular endothelial cells in joint swelling, neutrophils activation and their trans-endothelial migration, as well as their bridging role in the reactive oxygen species/TRPs/Ca2+/peptidyl arginine deiminases networks in accelerating citrullinated proteins formation. It also points out the distinct functions of TRPs subfamilies expressed in the nervous systems of joints in cold hyperalgesia and neuro-inflammation mutually influenced inflammatory pain in RA. Thus, more attention could be paid on the impact of TRPs in RA and TRPs are useful in researches on the molecular mechanisms of anti-inflammation and analgesic therapeutic strategies.
Collapse
Affiliation(s)
- Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Liu X, Lu Y, Huang J, Xing Y, Dai H, Zhu L, Li S, Feng J, Zhou B, Li J, Xia Q, Li J, Huang M, Gu Y, Su S. CD16 + fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition. Cancer Cell 2022; 40:1341-1357.e13. [PMID: 36379207 DOI: 10.1016/j.ccell.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
The leukocyte Fcγ receptor (FcγR)-mediated response is important for the efficacy of therapeutic antibodies; however, little is known about the role of FcγRs in other cell types. Here we identify a subset of fibroblasts in human breast cancer that express CD16 (FcγRIII). An abundance of these cells in HER2+ breast cancer patients is associated with poor prognosis and response to trastuzumab. Functionally, upon trastuzumab stimulation, CD16+ fibroblasts reduce drug delivery by enhancing extracellular matrix stiffness. Interaction between trastuzumab and CD16 activates the intracellular SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A pathway, leading to elevated contractile force and matrix production. Targeting of a Rho family guanine nucleotide exchange factor, VAV2, which is indispensable for the function of CD16 in fibroblasts rather than leukocytes, reverses desmoplasia provoked by CD16+ fibroblasts. Collectively, our study reveals a role for the fibroblast FcγR in drug resistance, and suggests that VAV2 is an attractive target to augment the effects of antibody treatments.
Collapse
Affiliation(s)
- Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huiqi Dai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liling Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunrong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanting Gu
- Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|