1
|
Boiko JR, Hill GR. Chronic Graft-versus-host Disease: Immune Insights, Therapeutic Advances, and Parallels for Solid Organ Transplantation. Transplantation 2024:00007890-990000000-00959. [PMID: 39682018 DOI: 10.1097/tp.0000000000005298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Chronic graft-versus-host disease remains a frequent and morbid outcome of allogeneic hematopoietic cell transplantation, in which the donor-derived immune system attacks healthy recipient tissue. Preceding tissue damage mediated by chemoradiotherapy and alloreactive T cells compromise central and peripheral tolerance mechanisms, leading to aberrant donor T cell and germinal center B cell differentiation, culminating in pathogenic macrophage infiltration and differentiation in a target tissue, with ensuant fibrosis. This process results in a heterogeneous clinical syndrome with significant morbidity and mortality, frequently requiring prolonged therapy. In this review, we discuss the processes that interrupt immune tolerance, the subsequent clinical manifestations, and new Food and Drug Administration-approved therapeutic approaches that have been born from a greater understanding of disease pathogenesis in preclinical systems, linking to parallel processes following solid organ transplantation.
Collapse
Affiliation(s)
- Julie R Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Han JL, Zimmerer JM, Zeng Q, Chaudhari S, Hart M, Satoskar AA, Abdel-Rasoul M, Breuer CK, Bumgardner GL. CXCR5 + CD8 + T Cell-mediated Suppression of Humoral Alloimmunity and AMR in Mice Is Optimized With mTOR and Impaired With Calcineurin Inhibition. Transplantation 2024; 108:679-692. [PMID: 37872660 PMCID: PMC10922067 DOI: 10.1097/tp.0000000000004828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND Adoptive cellular therapy (ACT) with antibody-suppressor CXCR5 + CD8 + T cells (CD8 + T Ab-supp ) inhibits alloantibody production, antibody-mediated rejection (AMR), and prolongs graft survival in multiple transplant mouse models. However, it is not known how conventional immunosuppressive agents impact the efficacy of CD8 + T Ab-supp ACT. METHODS We investigated the efficacy of CD8 + T Ab-supp cell ACT when combined with calcineurin inhibitor (CNi) or mammalian target of rapamycin inhibitor (mTORi) in a murine model of kidney transplant. RESULTS ACT-mediated decrease in germinal center B cells, posttransplant alloantibody titer, and amelioration of AMR in high alloantibody-producing CCR5 knockout kidney transplant recipients were impaired when ACT was combined with CNi and enhanced when combined with mTORi. CNi (but not mTORi) reduced ACT-mediated in vivo cytotoxicity of IgG + B cells and was associated with increased quantity of germinal center B cells. Neither CNi nor mTORi treatment impacted the expression of cytotoxic effector molecules (FasL, Lamp1, perforin, granzyme B) by CD8 + T Ab-supp after ACT. Concurrent treatment with CNi (but not mTORi) reduced in vivo proliferation of CD8 + T Ab-supp after ACT. The increase in quantity of splenic CD44 + CXCR5 + CD8 + T cells that occurs after ACT was reduced by concurrent treatment with CNi but not by concurrent treatment with mTORi (dose-dependent). CONCLUSIONS Impaired efficacy of ACT by CNi is attributed to reduced persistence and/or expansion of CD8 + T Ab-supp cells after ACT. In contrast, concurrent immunosuppression with mTORi preserves CD8 + T Ab-supp cells quantity, in vivo proliferation, and in vivo cytotoxic effector function after ACT and enhances suppression of humoral alloimmunity and AMR.
Collapse
Affiliation(s)
- Jing L. Han
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M. Zimmerer
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Madison Hart
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | | | | | - Ginny L. Bumgardner
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH
- Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
4
|
Yang Q, Zhang F, Chen H, Hu Y, Yang N, Yang W, Wang J, Yang Y, Xu R, Xu C. The differentiation courses of the Tfh cells: a new perspective on autoimmune disease pathogenesis and treatment. Biosci Rep 2024; 44:BSR20231723. [PMID: 38051200 PMCID: PMC10830446 DOI: 10.1042/bsr20231723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The follicular helper T cells are derived from CD4+T cells, promoting the formation of germinal centers and assisting B cells to produce antibodies. This review describes the differentiation process of Tfh cells from the perspectives of the initiation, maturation, migration, efficacy, and subset classification of Tfh cells, and correlates it with autoimmune disease, to provide information for researchers to fully understand Tfh cells and provide further research ideas to manage immune-related diseases.
Collapse
Affiliation(s)
- Qingya Yang
- Division of Rheumatology, People’s Hospital of Mianzhu, Mianzhu, Sichuan, 618200, China
| | - Fang Zhang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Hongyi Chen
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yuman Hu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ning Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Wenyan Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Jing Wang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yaxu Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ran Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Chao Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| |
Collapse
|
5
|
Seija M, García-Luna J, Rammauro F, Brugnini A, Trías N, Astesiano R, Santiago J, Orihuela N, Zulberti C, Machado D, Recalde C, Yandián F, Guerisoli A, Noboa J, Orihuela S, Curi L, Bugstaller E, Noboa O, Nin M, Bianchi S, Tiscornia A, Lens D. Low switched memory B cells are associated with no humoral response after SARS-CoV-2 vaccine boosters in kidney transplant recipients. Front Immunol 2023; 14:1202630. [PMID: 37942335 PMCID: PMC10628322 DOI: 10.3389/fimmu.2023.1202630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The humoral response after SARS-CoV-2 vaccination and boosters in kidney transplant recipients (KTRs) is heterogeneous and depends on immunosuppression status. There is no validated immune measurement associated with serological response in clinical practice. Multicolor flow cytometric immunophenotyping could be useful for measuring immune response. This study aimed to study B- and T-cell compartments through Standardized EuroFlow PID Orientation after SARS-CoV-2 vaccination and their association with IgG SARS-CoV-2 seropositivity status after two doses or boosters. Methods We conducted a multicenter prospective study to evaluate humoral response after SARS-CoV-2 vaccination in KTRs. Heterologous regimen: two doses of inactivated SARS-CoV-2 and two boosters of BNT162b2 mRNA (n=75). Homologous vaccination: two doses of BNT162b2 mRNA and one BNT162b2 mRNA booster (n=13). Booster doses were administrated to KTRs without taking into account their IgG SARS-CoV-2 seropositivity status. Peripheral blood samples were collected 30 days after the second dose and after the last heterologous or homologous booster. A standardized EuroFlow PID Orientation Tube (PIDOT) and a supervised automated analysis were used for immune monitoring cellular subsets after boosters. Results A total of 88 KTRs were included and divided into three groups according to the time of the first detected IgG SARS-CoV-2 seropositivity: non-responders (NRs, n=23), booster responders (BRs, n=41), and two-dose responders (2DRs, n=24). The NR group was more frequent on mycophenolate than the responder groups (NRs, 96%; BRs, 80%; 2DRs, 42%; p=0.000). Switched memory B cells in the 2DR group were higher than those in the BR and NR groups (medians of 30, 17, and 10 cells/ul, respectively; p=0.017). Additionally, the absolute count of central memory/terminal memory CD8 T cells was higher in the 2DR group than in the BR and NR groups. (166, 98, and 93 cells/ul, respectively; p=0.041). The rest of the T-cell populations studied did not show a statistical difference. Conclusion switched memory B cells and memory CD8 T-cell populations in peripheral blood were associated with the magnitude of the humoral response after SARS-CoV-2 vaccination. Boosters increased IgG anti-SARS-CoV-2 levels, CM/TM CD8 T cells, and switched MBCs in patients with seropositivity after two doses. Interestingly, no seropositivity after boosters was associated with the use of mycophenolate and a lower number of switched MBCs and CM/TM CD8 T cells in peripheral blood.
Collapse
Affiliation(s)
- Mariana Seija
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquin García-Luna
- Laboratorio de Citometría de Flujo, Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Rammauro
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Andreína Brugnini
- Laboratorio de Citometría de Flujo, Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Trías
- Laboratorio de Citometría de Flujo, Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rossana Astesiano
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - José Santiago
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Orihuela
- Centro de Trasplante INU, Hospital Italiano, Montevideo, Uruguay
| | | | - Danilo Machado
- Centro de Trasplante, Hospital Evangélico, Montevideo, Uruguay
| | - Cecilia Recalde
- Centro de Trasplante, Hospital Evangélico, Montevideo, Uruguay
| | - Federico Yandián
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Guerisoli
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Javier Noboa
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sergio Orihuela
- Centro de Trasplante INU, Hospital Italiano, Montevideo, Uruguay
| | - Lilian Curi
- Centro de Trasplante INU, Hospital Italiano, Montevideo, Uruguay
| | - Emma Bugstaller
- Centro de Trasplante, Hospital Evangélico, Montevideo, Uruguay
| | - Oscar Noboa
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Nin
- Centro de Nefrología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Trasplante INU, Hospital Italiano, Montevideo, Uruguay
| | - Sergio Bianchi
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adriana Tiscornia
- Instituto Nacional de Donación y Trasplante, Hospital de Clínicas, Facultad de Medicina, Universidad de la República y Ministerio de Salud Pública, Montevideo, Uruguay
| | - Daniela Lens
- Laboratorio de Citometría de Flujo, Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Samson C, Thiolat A, Moktefi A, Cohen JL, Pilon C, Grimbert P. Belatacept inhibit human B cell germinal center development in immunodeficient mice. Sci Rep 2023; 13:13816. [PMID: 37620431 PMCID: PMC10449885 DOI: 10.1038/s41598-023-40700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The humoral response mediated by alloantibodies directed against donor HLA molecules (DSAs) is one of the main causes of graft loss in kidney transplantation. Understanding the pathophysiology leading to humoral kidney rejection as the development of therapeutic tools is therefore a main objective in the field of solid organ transplantation and necessitate adapted experimental models. Among the immunosuppressive agents used in renal transplantation, belatacept, a fusion protein targeting T costimulatory molecules has shown its ability to prevent more efficiently the secretion of DSA by different mechanisms including a direct action on plasma cells but also on B lymphocytes and follicular helper T lymphocytes (Tfh) cooperation. This cellular cooperation occurs within germinal centers (GC), the seat of B lymphocytes differentiation. Here, we aimed to develop a dedicated mouse model in which human GC would be functional to study the effect of belatacept on GC formation and the ability of B lymphocytes to secrete immunoglobulin. We next demonstrate that belatacept inhibits the formation of these GCs, by inhibiting the frequency of Tfh and B lymphocytes. This alters the B maturation and therefore the generation of plasma cells and consequently, immunoglobulin secretion.
Collapse
Affiliation(s)
- Chloé Samson
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France
- Inserm, U955, 94000, Créteil, France
| | - Allan Thiolat
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France
- Inserm, U955, 94000, Créteil, France
| | - Anissa Moktefi
- Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Anatomopathologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000, Créteil, France
| | - José L Cohen
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France
- Inserm, U955, 94000, Créteil, France
- Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération Hospitalo-Universitaire TRUE, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000, Créteil, France
| | - Caroline Pilon
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France
- Inserm, U955, 94000, Créteil, France
- Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération Hospitalo-Universitaire TRUE, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000, Créteil, France
| | - Philippe Grimbert
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France.
- Inserm, U955, 94000, Créteil, France.
- Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération Hospitalo-Universitaire TRUE, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000, Créteil, France.
- Groupe Hospitalo-Universitaire Chenevier Mondor, Service de Néphrologie-Transplantation, AP-HP, 94000, Créteil, France.
| |
Collapse
|
7
|
Liu X, Wang J, Shen L, Wang R, Zhang L, Li C. Single-cell atlas reveals a high selection of IgA1- or IgG1-expressing plasma cells in patients with psoriasis. Mol Immunol 2023; 153:85-93. [PMID: 36459791 DOI: 10.1016/j.molimm.2022.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/25/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Psoriasis has been considered as a T-cell driven common inflammatory skin disease. However, thus far, the pathogenetic role of B cells in psoriasis have largely been neglected. To explore the effect of psoriasis on B-cell mediated humoral immune response, we combined single-cell RNA-sequencing (scRNA-seq) and single-cell antigen receptor lineage (BCR)-sequencing (scBCR-seq) analysis to characterize human PBMC (Peripheral blood mononuclear cells). Merged PBMC from three healthy donors and three patients with psoriasis revealed 27 major cellular clusters in the UMAP plots. Interestingly, we found that follicular helper T cells (TFH) and plasma cells (PCs) obviously increased in patients with psoriasis. Further, we demonstrated that BCL6-expressing TFH cells and their helping B cell-derived IGHA1- or IGHG1-expressing PCs, were increased in patients with psoriasis. By analyzing scBCR-seq data, we found that BCR had a low diversity of IGHA and IGHG but not IGHM and IGHD in patients with psoriasis. In line with a low diversity, IGHA and IGHG frequently used IGHV3 in patients with psoriasis. In addition, we found that CDR silent mutations in IGHA and CDR replacement mutations in IGHG increased from patients with psoriasis. Finally, we showed that patients with psoriasis had high BCR selection pressure in CDR and framework regions (FWR) on IGHG and IGHA but not IGHM and IGHD. Altogether, our results suggest that patients with psoriasis had high BCR selection pressure, partly from helping of BCL6-expressing TFH cells, may result in increased IGHG1- or IGHA1-expressing PCs. Further exploration of high BCR selection pressure will provide valuable clues for the treatment of psoriasis.
Collapse
Affiliation(s)
- Xiaoling Liu
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Wang
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Lin Shen
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Li Zhang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Chengxin Li
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
8
|
Zhang H, Sage PT. Role of T follicular helper and T follicular regulatory cells in antibody-mediated rejection: new therapeutic targets? Curr Opin Organ Transplant 2022; 27:371-375. [PMID: 35959918 PMCID: PMC9474598 DOI: 10.1097/mot.0000000000001018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Antibody-mediated rejection (AbMR) after solid organ transplantation is tightly controlled by multiple cells of the immune system. Tfh and Tfr cells are essential controllers of antibody responses making them putative targets for therapeutics. However, the mechanisms of how Tfh and Tfr cells regulate B cell and antibody responses are not completely understood. Here, we summarize recent studies elucidating the functions of T follicular helper (Tfh) and T follicular regulatory (Tfr) cells as well as their possible roles in regulating AbMR in solid organ transplantation. RECENT FINDINGS New tools have been developed to study the roles of Tfh and Tfr cells in specific disease states, including AbMR after solid organ transplantation. These tools suggest complex roles for Tfh and Tfr cells in controlling antibody responses. Nevertheless, studies in solid organ transplant rejection suggest that Tfh and Tfr cells may be high value targets for therapeutics. However, specific strategies to target these cells are still being investigated. SUMMARY AbMR is still a substantial clinical problem that restricts long-term survival after solid organ transplantation. Growing evidence has demonstrated a pivotal role for Tfh and Tfr cells in controlling AbMR. In addition to providing an early indication of rejection as a biomarker, targeting Tfh and Tfr cells as a therapeutic strategy offers new hope for alleviating AbMR.
Collapse
Affiliation(s)
- Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
9
|
Gu Z, Yin Z, Song P, Wu Y, He Y, Zhu M, Wu Z, Zhao S, Huang H, Wang H, Tong C, Qi Z. Safety and biodistribution of exosomes derived from human induced pluripotent stem cells. Front Bioeng Biotechnol 2022; 10:949724. [PMID: 36091443 PMCID: PMC9461140 DOI: 10.3389/fbioe.2022.949724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
As a new cell-free therapy, exosomes have provided new ideas for the treatment of various diseases. Human induced pluripotent stem cells (hiPSCs) cannot be used in clinical trials because of tumorigenicity, but the exosomes derived from hiPSCs may combine the advantages of iPSC pluripotency and the nanoscale size of exosomes while avoiding tumorigenicity. Currently, the safety and biodistribution of hiPSC-exosomes in vivo are unclear. Here, we investigated the effects of hiPSC-exosomes on hemolysis, DNA damage, and cytotoxicity through cell experiments. We also explored the safety of vein injection of hiPSC-exosomes in rabbits and rats. Differences in organ distribution after nasal administration were compared in normal and Parkinson’s disease model mice. This study may provide support for clinical therapy and research of intravenous and nasal administration of hiPSC-exosomes.
Collapse
Affiliation(s)
- Zhewei Gu
- Medical College, Guangxi University, Nanning, China
| | - Zhiyu Yin
- Medical College, Guangxi University, Nanning, China
| | - Pengbo Song
- Medical College, Guangxi University, Nanning, China
| | - Ying Wu
- Medical College, Guangxi University, Nanning, China
| | - Ying He
- Medical College, Guangxi University, Nanning, China
| | - Maoshu Zhu
- Medical College, Guangxi University, Nanning, China
| | - Zhengxin Wu
- Medical College, Guangxi University, Nanning, China
| | - Sicheng Zhao
- Medical College, Guangxi University, Nanning, China
| | - Hongri Huang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, China
| | - Huihuang Wang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, China
| | - Cailing Tong
- Biotechcomer Co., Ltd., Xiamen, China
- *Correspondence: Cailing Tong, ; Zhongquan Qi,
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
- *Correspondence: Cailing Tong, ; Zhongquan Qi,
| |
Collapse
|
10
|
Shen J, Liu C, Yan P, Wang M, Guo L, Liu S, Chen J, Rosenholm JM, Huang H, Wang R, Zhang H. Helper T Cell (CD4 +) Targeted Tacrolimus Delivery Mediates Precise Suppression of Allogeneic Humoral Immunity. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9794235. [PMID: 35958106 PMCID: PMC9343082 DOI: 10.34133/2022/9794235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 01/15/2023]
Abstract
Antibody-mediated rejection (ABMR) is a major cause of dysfunction and loss of transplanted kidney. The current treatments for ABMR involve nonspecific inhibition and clearance of T/B cells or plasma cells. However, the prognosis of patients following current treatment is poor. T follicular helper cells (Tfh) play an important role in allograft-specific antibodies secreting plasma cell (PC) development. Tfh cells are therefore considered to be important therapeutic targets for the treatment of antibody hypersecretion disorders, such as transplant rejection and autoimmune diseases. Tacrolimus (Tac), the primary immunosuppressant, prevents rejection by reducing T cell activation. However, its administration should be closely monitored to avoid serious side effects. In this study, we investigated whether Tac delivery to helper T (CD4+) cells using functionalized mesoporous nanoparticles can block Tfh cell differentiation after alloantigen exposure. Results showed that Tac delivery ameliorated humoral rejection injury in rodent kidney graft by suppressing Tfh cell development, PC, and donor-specific antibody (DSA) generation without causing severe side effects compared with delivery through the drug administration pathway. This study provides a promising therapeutic strategy for preventing humoral rejection in solid organ transplantation. The specific and controllable drug delivery avoids multiple disorder risks and side effects observed in currently used clinical approaches.
Collapse
Affiliation(s)
- Jia Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Pengpeng Yan
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Meifang Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Luying Guo
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Shuaihui Liu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Hongfeng Huang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
| | - Rending Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China
- Organ Donation and Coordination Office, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
Anwar IJ, DeLaura IF, Gao Q, Ladowski J, Jackson AM, Kwun J, Knechtle SJ. Harnessing the B Cell Response in Kidney Transplantation - Current State and Future Directions. Front Immunol 2022; 13:903068. [PMID: 35757745 PMCID: PMC9223638 DOI: 10.3389/fimmu.2022.903068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 01/21/2023] Open
Abstract
Despite dramatic improvement in kidney transplantation outcomes over the last decades due to advent of modern immunosuppressive agents, long-term outcomes remain poor. Antibody-mediated rejection (ABMR), a B cell driven process, accounts for the majority of chronic graft failures. There are currently no FDA-approved regimens for ABMR; however, several clinical trials are currently on-going. In this review, we present current mechanisms of B cell response in kidney transplantation, the clinical impact of sensitization and ABMR, the B cell response under current immunosuppressive regimens, and ongoing clinical trials for ABMR and desensitization treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
12
|
Louis K, Macedo C, Lefaucheur C, Metes D. Adaptive immune cell responses as therapeutic targets in antibody-mediated organ rejection. Trends Mol Med 2022; 28:237-250. [PMID: 35093288 PMCID: PMC8882148 DOI: 10.1016/j.molmed.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 01/17/2023]
Abstract
Humoral alloimmunity of organ transplant recipient to donor can lead to antibody-mediated rejection (ABMR), causing thousands of organ transplants to fail each year worldwide. However, the mechanisms of adaptive immune cell responses at the basis of humoral alloimmunity have not been entirely understood. In this review, we discuss how recent investigations have uncovered the key contributions of T follicular helper (TFH) and B cells and their coordinated actions in driving donor-specific antibody generation and immune progression towards ABMR. We show how recognition of the role of TFH-B cell interactions may allow the elaboration of improved clinical strategies for immune monitoring and the identification of novel therapeutic targets to tackle ABMR that will ultimately improve organ transplant survival.
Collapse
Affiliation(s)
- Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale UMR 976, Université de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR 970, Université de Paris, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Steines L, Scharf M, Hoffmann P, Schuster A, Banas B, Bergler T. Monitoring B cell alloresponses in rats. J Immunol Methods 2022; 501:113212. [PMID: 34971633 DOI: 10.1016/j.jim.2021.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
Antibody-mediated rejection is a major cause of graft failure in organ transplantation. For this reason, B cell responses are of particular interest to transplantation research. Rats are important model organisms for transplant studies, but B cell alloimmune assays and B cell subset markers are poorly established in rats. We alloimmunized rats by donor blood injection using the high responder rat strain combination Brown Norway (donor) and Lewis (recipient) rats. Using splenocytes from alloimmunized and control rats, we established assays to assess allospecific B cell proliferation and the capacity to generate allospecific B memory cells and alloantibody-secreting cells after antigenic rechallenge in vitro using a mixed lymphocyte reaction. Furthermore, we defined a simple gating and sorting strategy for pre- and post-germinal center follicular B cells, as well as non-switched and switched plasmablasts. Our protocols for assessing B cell alloresponses and B cell subsets in rats may help to accelerate research into the role of B cells and manipulation of humoral alloresponses in transplant research.
Collapse
Affiliation(s)
- Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Germany.
| | - Mona Scharf
- Department of Nephrology, University Hospital Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Germany
| |
Collapse
|
14
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|