1
|
Lopes-Araujo HF, Guedes MCS, De Alencar LCA, Carvalho-Silva WHV, Montenegro LML, Guimarães RL. The influence of extrinsic apoptosis gene expression on immunological reconstitution of male ART-treated PLHIV. BMC Infect Dis 2025; 25:377. [PMID: 40102787 PMCID: PMC11921504 DOI: 10.1186/s12879-025-10665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
The primary goal of antiretroviral therapy (ART) is to suppress viral replication to undetectable levels (< 50 copies/mL). Despite achieving complete viral suppression, 10-40% of individuals on ART do not adequately restore their CD4 + T-cell count, being defined as immunological non-responders (INR). Factors such as sex, age at treatment initiation, coinfections, and pre-ART CD4 + T-cell count may influence this insufficient recovery. This impairment can also result from poor production or exacerbated destruction of CD4 + T-cells, particularly through extrinsic pathway-mediated apoptosis involving Fas/FasL and caspase-3. Thus, this study aimed to evaluate the expression profile of extrinsic apoptosis pathway genes (CASP3, FAS, FASLG) in adult male HIV patients on ART. The patients were stratified as immunological responders (n = 25) and immunological non-responders (n = 8) based on the increase and total count of CD4 + T-cells. Significant differences for CASP3 (FC = 1.39, p = 0.047) and FASLG (FC = 1.94, p < 0.0001) gene expressions were identified between IR and INR groups, but not for FAS (FC=-1.2, p = 0.638). This study indicates increased apoptotic pathway gene expression in INR and highlights the influence of cell destruction mechanisms on immunological recovery.
Collapse
Affiliation(s)
- Henrique Fernando Lopes-Araujo
- Department of Genetics, Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
| | - Maria Carolina Santos Guedes
- Department of Genetics, Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
| | | | - Wlisses Henrique Veloso Carvalho-Silva
- Aggeu Magalhães Institute (IAM)- Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50740-465, Brazil
- Agreste Academic Center, Federal University of Pernambuco - UFPE, Caruaru, PE, Bazil, 55014-900, Brazil
| | | | - Rafael Lima Guimarães
- Department of Genetics, Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco - UFPE, Recife, PE, 50670-901, Brazil
| |
Collapse
|
2
|
Lamsira HK, Sabatini A, Ciolfi S, Ciccosanti F, Sacchi A, Piacentini M, Nardacci R. Autophagy and Programmed Cell Death Modalities Interplay in HIV Pathogenesis. Cells 2025; 14:351. [PMID: 40072080 PMCID: PMC11899401 DOI: 10.3390/cells14050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/15/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to be a major global health challenge, affecting 38.4 million according to the Joint United Nations Program on HIV/AIDS (UNAIDS) at the end of 2021 with 1.5 million new infections. New HIV infections increased during the 2 years after the COVID-19 pandemic. Understanding the intricate cellular processes underlying HIV pathogenesis is crucial for developing effective therapeutic strategies. Among these processes, autophagy and programmed cell death modalities, including apoptosis, necroptosis, pyroptosis, and ferroptosis, play pivotal roles in the host-virus interaction dynamics. Autophagy, a highly conserved cellular mechanism, acts as a double-edged sword in HIV infection, influencing viral replication, immune response modulation, and the fate of infected cells. Conversely, apoptosis, a programmed cell death mechanism, is a critical defense mechanism against viral spread and contributes to the depletion of CD4+ T cells, a hallmark of HIV/AIDS progression. This review aims to dissect the complex interplay between autophagy and these programmed cell death modalities in HIV-induced pathogenesis. It highlights the molecular mechanisms involved, their roles in viral persistence and immune dysfunction, and the challenges posed by the viral reservoir and drug resistance, which continue to impede effective management of HIV pathology. Targeting these pathways holds promise for novel therapeutic strategies to mitigate immune depletion and chronic inflammation, ultimately improving outcomes for individuals living with HIV.
Collapse
Affiliation(s)
- Harpreet Kaur Lamsira
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Andrea Sabatini
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Serena Ciolfi
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
| | - Alessandra Sacchi
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
- Department of Biology, University ‘Tor Vergata’, 00133 Rome, Italy
| | - Roberta Nardacci
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
| |
Collapse
|
3
|
Li N, Li R, Zheng HY, He WQ, Duan RF, Li X, Tian RR, Li HQ, Dong XQ, Shen ZQ, Zheng YT. Establishment and evaluation of a predictive model for immune reconstitution in people living with HIV after antiretroviral therapy. BMC Infect Dis 2025; 25:264. [PMID: 39994545 PMCID: PMC11853608 DOI: 10.1186/s12879-025-10673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Achieving complete immune reconstitution (CIR) in people living with human immunodeficiency virus (PLWH) following antiretroviral therapy (ART) is essential for preventing acquired immunodeficiency syndrome (AIDS) progression and improving survival. However, there is a paucity of robust prediction models for determining the likelihood of CIR in PLWH after ART. We aimed to develop and validate a CIR prediction model utilizing baseline data. METHODS Baseline data including demographic information, immunological profiles, and routine laboratory test results, were collected from PLWH in Yunnan, China. Baseline referred to the first recorded results after HIV diagnosis but before initiating ART, and these initial measurements served as the baseline data for analysis. The participants were divided into training and validation sets (7:3 ratio). To construct the model and accompanying nomogram, univariable and multivariable Cox regression analyses were performed. The model was evaluated using the C-index, time-dependent receiver operating characteristic (ROC) curves, calibration curves, and clinical decision curves to assess discrimination, calibration, and clinical applicability. RESULTS Five thousand four hundred eight PLWH were included, with a CIR of 38.52%. Cox regression analysis revealed various independent factors associated with CIR, including infection route, baseline CD4+T cell count, baseline CD4/CD8 ratio, interval from HIV diagnosis to ART initiation, and the level of PLT, Glu, Crea, HGB, ALT. A nomogram was formulated to predict the probability of achieving CIR at years 4, 5, and 6. The model demonstrated good performance, as evidenced by an AUC of 0.8 for both sets. Calibration curve analysis demonstrated a high level of agreement, and decision curve analysis revealed a significant positive yield. CONCLUSIONS This study successfully developed a prediction model with robust performance. This model has considerable potential to aid clinicians in tailoring treatment strategies, which could enhance outcomes and quality of life for PLWH.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, China
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Provincial Hospital of Infectious Disease, Kunming, Yunnan, 650302, China
| | - Rui Li
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wen-Qiang He
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ru-Fei Duan
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Department of Cancer Prevention and Control, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital/Yunnan Cancer Center, Kunming, Yunnan, 650118, China
| | - Xia Li
- Yunnan Provincial Hospital of Infectious Disease, Kunming, Yunnan, 650302, China
| | - Ren-Rong Tian
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hui-Qin Li
- Yunnan Provincial Hospital of Infectious Disease, Kunming, Yunnan, 650302, China
| | - Xing-Qi Dong
- Yunnan Provincial Hospital of Infectious Disease, Kunming, Yunnan, 650302, China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
4
|
Assalve G, Lunetti P, Rocca MS, Cosci I, Di Nisio A, Ferlin A, Zara V, Ferramosca A. Exploring the Link Between Telomeres and Mitochondria: Mechanisms and Implications in Different Cell Types. Int J Mol Sci 2025; 26:993. [PMID: 39940762 PMCID: PMC11817679 DOI: 10.3390/ijms26030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Telomeres protect chromosome ends from damage, but they shorten with each cell division due to the limitations of DNA replication and are further affected by oxidative stress. This shortening is a key feature of aging, and telomerase, an enzyme that extends telomeres, helps mitigate this process. Aging is also associated with mitochondrial dysfunction, leading to increased reactive oxygen species (ROS) that exacerbate cellular damage and promote apoptosis. Elevated ROS levels can damage telomeres by oxidizing guanine and disrupting their regulation. Conversely, telomere damage impacts mitochondrial function, and activation of telomerase has been shown to reverse this decline. A critical link between telomere shortening and mitochondrial dysfunction is the DNA damage response, which activates the tumor suppressor protein p53, resulting in reduced mitochondrial biogenesis and metabolic disruptions. This highlights the bidirectional relationship between telomere maintenance and mitochondrial function. This review explores the complex interactions between telomeres and mitochondria across various cell types, from fibroblasts to sperm cells, shedding light on the interconnected mechanisms underlying aging and cellular function.
Collapse
Affiliation(s)
- Graziana Assalve
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| | - Paola Lunetti
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| | - Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, I-35128 Padova, Italy; (M.S.R.); (A.F.)
| | - Ilaria Cosci
- Department of Medicine, University of Padova, I-35128 Padova, Italy;
| | - Andrea Di Nisio
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, I-80143 Naples, Italy;
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, I-35128 Padova, Italy; (M.S.R.); (A.F.)
- Department of Medicine, University of Padova, I-35128 Padova, Italy;
| | - Vincenzo Zara
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| | - Alessandra Ferramosca
- Department of Experimental Medicine, University of Salento, I-73100 Lecce, Italy; (G.A.); (P.L.); (V.Z.)
| |
Collapse
|
5
|
Xiao Q, Yu F, Yan L, Lao X, Liang X, Zhao H, Zhai L, Yang Z, Zhang X, Liu Y, Zhang F. The CD4/CD8 ratio is associated with T lymphocyte functions in long-term virally suppressed patients with HIV. BMC Infect Dis 2025; 25:76. [PMID: 39825235 PMCID: PMC11740514 DOI: 10.1186/s12879-025-10469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
OBJECTIVE Long-term management of people living with HIV (PLWHs) often relies on CD4+ T cell counts for assessing immune recovery, yet a single metric offers limited information. This study aimed to explore the association between the CD4/CD8 ratio and T lymphocyte activities in PLWHs. METHODS 125 PLWHs and 31 HIV-uninfected controls (UCs) were enrolled and categorized into four groups based on their CD4/CD8 ratios: extremely low ratio (ELR) group: 0.4 < CD4/CD8; low ratio (LR) group: 0.4 ≤ CD4/CD8<0.7; medium ratio (MR) group: 0.7 ≤ CD4/CD8<1; high ratio (HR) group: CD4/CD8 ≥ 1. The activation and proliferation phenotypes, mitochondrial functions, and inflammatory indexes of CD4+ T cells and CD8+ T cells were measured, and correlations between the CD4/CD8 ratio and T cell functions were analyzed. RESULTS T cell activation and proliferation were significantly elevated in the ELR group compared to UCs. However, the ELR group had a larger proportion of T cells with lipid peroxidation, mitochondrial lipid reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) abnormalities compared to the other groups. As the CD4/CD8 ratio increased, mitochondrial lipid peroxidation damage decreased and MMP was restored. Additionally, the ELR group had more inflammatory markers in CD4+ T cells. Correlation analysis revealed that the CD4/CD8 ratio was associated with multiple T cell functions, and its correlation coefficient with mitochondrial function was higher than that of CD4+ T cell count. CONCLUSION The CD4/CD8 ratio is closely related to T lymphocyte functions and is significantly superior to the CD4+ T cell count in reflecting the mitochondrial lipid peroxidation level and mitochondrial functions within T lymphocytes.
Collapse
Affiliation(s)
- Qing Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Liting Yan
- Infectious Disease Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaojie Lao
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Xuelei Liang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China.
| |
Collapse
|
6
|
Barroso S, Guitart-Mampel M, García-García FJ, Cantó-Santos J, Valls-Roca L, Andújar-Sánchez F, Vilaseca-Capel A, Tobías E, Arias-Dimas A, Quesada-López T, Artuch R, Villarroya F, Giralt M, Martínez E, Lozano E, Garrabou G. Metabolic, Mitochondrial, and Inflammatory Effects of Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate in Asymptomatic Antiretroviral-Naïve People with HIV. Int J Mol Sci 2024; 25:8418. [PMID: 39125986 PMCID: PMC11313075 DOI: 10.3390/ijms25158418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to comprehensively assess the metabolic, mitochondrial, and inflammatory effects of first-line efavirenz, emtricitabine, and tenofovir disoproxil fumarate (EFV/FTC/TDF) single-tablet regimen (STR) relative to untreated asymptomatic HIV infection. To this end, we analyzed 29 people with HIV (PWH) treated for at least one year with this regimen vs. 33 antiretroviral-naïve PWH. Excellent therapeutic activity was accompanied by significant alterations in metabolic parameters. The treatment group showed increased plasmatic levels of glucose, total cholesterol and its fractions (LDL and HDL), triglycerides, and hepatic enzymes (GGT, ALP); conversely, bilirubin levels (total and indirect fraction) decreased in the treated cohort. Mitochondrial performance was preserved overall and treatment administration even promoted the recovery of mitochondrial DNA (mtDNA) content depleted by the virus, although this was not accompanied by the recovery in some of their encoded proteins (since cytochrome c oxidase II was significantly decreased). Inflammatory profile (TNFα, IL-6), ameliorated after treatment in accordance with viral reduction and the recovery of TNFα levels correlated to mtDNA cell restoration. Thus, although this regimen causes subclinical metabolic alterations, its antiviral and anti-inflammatory properties may be associated with partial improvement in mitochondrial function.
Collapse
Affiliation(s)
- Sergio Barroso
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Mariona Guitart-Mampel
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Francesc Josep García-García
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Judith Cantó-Santos
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Laura Valls-Roca
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Félix Andújar-Sánchez
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Adrià Vilaseca-Capel
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Ester Tobías
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| | - Angela Arias-Dimas
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Tania Quesada-López
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute (IBUB), University of Barcelona (UB), 08014 Barcelona, Spain; (T.Q.-L.); (F.V.); (M.G.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Rafael Artuch
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute (IBUB), University of Barcelona (UB), 08014 Barcelona, Spain; (T.Q.-L.); (F.V.); (M.G.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Giralt
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute (IBUB), University of Barcelona (UB), 08014 Barcelona, Spain; (T.Q.-L.); (F.V.); (M.G.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Esteban Martínez
- Infectious Diseases Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
- CIBER of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, 28029 Madrid, Spain
| | - Ester Lozano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain; (S.B.); (M.G.-M.); (F.J.G.-G.); (J.C.-S.); (L.V.-R.); (F.A.-S.); (A.V.-C.); (E.T.)
- Department of Internal Medicine, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Carlos III Health Institute, 28029 Madrid, Spain;
| |
Collapse
|
7
|
Guedes MCS, Carvalho-Silva WHV, Andrade-Santos JL, Brelaz-de-Castro MCA, Souto FO, Montenegro LML, Guimarães RL. HIV-Induced Thymic Insufficiency and Aging-Related Immunosenescence on Immune Reconstitution in ART-Treated Patients. Vaccines (Basel) 2024; 12:612. [PMID: 38932341 PMCID: PMC11209262 DOI: 10.3390/vaccines12060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 06/28/2024] Open
Abstract
The mechanisms underlying unsatisfactory immune reconstitution in HIV-1 positive patients under ART have not been fully elucidated, even after years of investigation. Thus, this study aimed to assess the correlation between age and thymic production profile, and its influence on inadequate immunological recovery. Here, 44 ART-treated patients with undetectable plasma HIV-1 load (<40 copies/mL) were classified as 31 immunological responders (IR) and 13 immunological non-responders (INR), according to their CD4+ T-cell count after 18 months of ART. The thymic function was assessed by identifying recent thymic emigrants (RTEs) CD4+ T cells (CD4+/CD45RA+CD31+) in PBMCs using flow cytometry. Clinical data were also analyzed from medical records. The INR group showed a higher age at ART initiation (41 ± 3.0) compared to the IR (33.7 ± 2.1) group (p = 0.041). Evaluating RTE CD4+ T-cells, we observed a lower percentage in the INR group (19.5 ± 6.3) compared to the IR group (29.9 ± 11.5) (p = 0.012). There was a strong negative correlation between age at ART initiation and RTE CD4+ T-cells in INRs (r = -0.784, p = 0.004). Our study has highlighted the thymic insufficiency and aging-related immunosenescence with unsatisfactory immunological recovery during ART in HIV-1 positive patients.
Collapse
Affiliation(s)
- Maria Carolina Santos Guedes
- Department of Genetics, Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (M.C.S.G.); (R.L.G.)
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
| | - Wlisses Henrique Veloso Carvalho-Silva
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
- Aggeu Magalhães Institute—Oswaldo Cruz Fundation (IAM/FIOCRUZ), Recife 50740-465, PE, Brazil;
| | - José Leandro Andrade-Santos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
| | - Maria Carolina Accioly Brelaz-de-Castro
- Aggeu Magalhães Institute—Oswaldo Cruz Fundation (IAM/FIOCRUZ), Recife 50740-465, PE, Brazil;
- Vitória Academic Center (CAV), Federal University of Pernambuco—UFPE, Recife 55608-680, PE, Brazil
| | - Fabrício Oliveira Souto
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
- Agreste Academic Center (CAA), Federal University of Pernambuco—UFPE, Recife 55014-900, PE, Brazil
| | | | - Rafael Lima Guimarães
- Department of Genetics, Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (M.C.S.G.); (R.L.G.)
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco—UFPE, Recife 50670-901, PE, Brazil; (W.H.V.C.-S.); (J.L.A.-S.); (F.O.S.)
| |
Collapse
|
8
|
Wang L, Zhao J, Schank M, Hill AC, Banik P, Zhang Y, Wu XY, Lightner JW, Ning S, El Gazzar M, Moorman JP, Yao ZQ. Circulating GDF-15: a biomarker for metabolic dysregulation and aging in people living with HIV. FRONTIERS IN AGING 2024; 5:1414866. [PMID: 38895099 PMCID: PMC11183798 DOI: 10.3389/fragi.2024.1414866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Despite effective control of HIV replication by antiretroviral therapy (ART), a significant number of people living with HIV (PLWH) fail to achieve complete immune reconstitution and thus are deemed immune non-responders (INRs). Compared with immune responders (IRs) who have restored their CD4 T cell numbers and functions, CD4 T cells from these INRs exhibit prominent mitochondrial dysfunction and premature aging, which play a major role in increasing the incidence of non-AIDS, non-communicable diseases (NCDs). To date, there are no reliable biomarkers that can be used to typify and manage PLWH, especially INRs with non-AIDS NCDs. Growth differential factor-15 (GDF-15) is a transforming growth factor-β (TGF-β) family member known to regulate several biological processes involved in cell aging and stress responses. Since PLWH exhibit premature aging and metabolic dysregulation, here we measured the plasma levels of GDF-15 by ELISA and metabolic proteins by proteomic array and correlated the results with clinical parameters in ART-controlled PLWH (including INRs and IRs) and healthy subjects (HS). We found that GDF-15 levels were significantly elevated in PLWH compared to HS. GDF-15 levels were positively correlated with age and negatively associated with body mass and LDL cholesterol levels in the study subjects. Also, elevated GDF-15 levels were correlated with differential dysregulation of multiple metabolic proteins in PLWH. These results suggest that GDF-15 protein may serve as a biomarker of metabolic dysregulation and aging, and this biomarker will be useful in clinical trials targeting aging and metabolic disorders in ART-treated PLWH.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Addison C. Hill
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Puja Banik
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yi Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiao Y. Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Janet W. Lightner
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| |
Collapse
|
9
|
Naidoo KK, Highton AJ, Baiyegunhi OO, Bhengu SP, Dong KL, Bunders MJ, Altfeld M, Ndung’u T. Early Initiation of Antiretroviral Therapy Preserves the Metabolic Function of CD4+ T Cells in Subtype C Human Immunodeficiency Virus 1 Infection. J Infect Dis 2024; 229:753-762. [PMID: 37804102 PMCID: PMC10938216 DOI: 10.1093/infdis/jiad432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Immune dysfunction often persists in people living with human immunodeficiency virus (HIV) who are on antiretroviral therapy (ART), clinically manifesting as HIV-1-associated comorbid conditions. Early ART initiation may reduce incidence of HIV-1-associated immune dysfunction and comorbid conditions. Immunometabolism is a critical determinant of functional immunity. We investigated the effect of HIV-1 infection and timing of ART initiation on CD4+ T cell metabolism and function. METHODS Longitudinal blood samples from people living with HIV who initiated ART during hyperacute HIV-1 infection (HHI; before peak viremia) or chronic HIV-1 infection (CHI) were assessed for the metabolic and immune functions of CD4+ T cells. Metabolite uptake and mitochondrial mass were measured using fluorescent analogues and MitoTracker Green accumulation, respectively, and were correlated with CD4+ T cell effector functions. RESULTS Initiation of ART during HHI prevented dysregulation of glucose uptake by CD4+ T cells, but glucose uptake was reduced before and after ART initiation in CHI. Glucose uptake positively correlated with interleukin-2 and tumor necrosis factor-α production by CD4+ T cells. CHI was associated with elevated mitochondrial mass in effector memory CD4+ T cells that persisted after ART and correlated with PD-1 expression. CONCLUSIONS ART initiation in HHI largely prevented metabolic impairment of CD4+ T cells. ART initiation in CHI was associated with persistently dysregulated immunometabolism of CD4+ T cells, which was associated with impaired cellular functions and exhaustion.
Collapse
Affiliation(s)
- Kewreshini K Naidoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Andrew J Highton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Sindiswa P Bhengu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine J Bunders
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
10
|
Zhang L, Cai M, Su B, Ma Y, Zhang Y. Mitochondrial Metabolism in Alveolar Macrophages of Patients Infected with HIV, Tuberculosis, and HIV/Tuberculosis. AIDS Res Hum Retroviruses 2024; 40:148-157. [PMID: 37885217 DOI: 10.1089/aid.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Tuberculosis (TB) is one of the most common opportunistic infections and is a leading cause of mortality in patients with HIV and AIDS. HIV infection causes serious defects in the host immune system and increases the risk of active TB. TB infection promotes HIV replication and aggravates host damage in patients with HIV/AIDS. Alveolar macrophages (AMs) are essential immune cells during TB and HIV infections. AMs undergo a shift in mitochondrial metabolism during TB or HIV infection, that is, metabolic reprogramming, allowing them to act in the form of classical activated macrophages (M1) and alternative activated macrophages (M2) at different stages of infection. We reviewed the alterations in the mitochondrial energy metabolism of AMs in patients with HIV, TB, and HIV/TB to provide ideas for further research on the role of metabolic reprogramming by AMs in the pathogeneses of HIV, TB, and HIV/TB coinfection.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| |
Collapse
|
11
|
Tewari SR, Kirk GD, Arking DE, Astemborski J, Newcomb C, Piggott DA, Mehta S, Lucas GM, Sun J. Mitochondrial DNA copy number is associated with incident chronic kidney disease and proteinuria in the AIDS linked to the intravenous experience cohort. Sci Rep 2023; 13:18406. [PMID: 37891237 PMCID: PMC10611749 DOI: 10.1038/s41598-023-45404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
We evaluated the prospective association of mitochondrial DNA copy number (mtDNA CN) with markers of kidney function among a cohort of persons who inject drugs (PWID). This is a Prospective cohort study nested in the AIDS linked to the intravenous experience cohort (community-based cohort of PWID in Baltimore, MD). mtDNA CN was measured at two time-points 5 years apart using a real-time polymerase chain reaction. Kidney function (estimated glomerular filtration rate [eGFR], serum creatinine, urine protein) was measured annually. We used linear mixed effects models to evaluate kidney function trajectories (N = 946) and Cox regression models to assess hazard of incident CKD (eGFR < 60 at two consecutive visits, N = 739) and proteinuria (urine protein:creatinine ratio > 200, N = 573) by level of mtDNA CN (Low [lowest quartile], vs high [other three quartiles]. Models were adjusted for demographic and behavioral characteristics, HIV and/or HCV infection, and comorbidity burden. Low mtDNA CN was independently associated with higher hazard of incident CKD (aHR: 2.33, 95% CI 1.42, 3.80) and proteinuria (aHR: 1.42, 95% CI 1.04, 1.96). Participants with low mtDNA CN had greater declines in eGFR and greater increases in serum creatinine over time. Low mtDNA CN is associated with more rapid kidney function decline and risk of incident CKD and proteinuria.
Collapse
Affiliation(s)
- Sakshi R Tewari
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dan E Arking
- Department of Genetic Medicine, McKusick-Nathan Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquie Astemborski
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Charles Newcomb
- Department of Genetic Medicine, McKusick-Nathan Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Damani A Piggott
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shruti Mehta
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Gregory M Lucas
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA.
| |
Collapse
|
12
|
Zhang W, Yan J, Luo H, Wang X, Ruan L. Incomplete immune reconstitution and its predictors in people living with HIV in Wuhan, China. BMC Public Health 2023; 23:1808. [PMID: 37716975 PMCID: PMC10505310 DOI: 10.1186/s12889-023-16738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVE This study aimed to build and validate a nomogram model to predict the risk of incomplete immune reconstitution in people living with HIV (PLWH). METHODS Totally 3783 individuals with a confirmed diagnosis of HIV/AIDS were included. A predictive model was developed based on a retrospective set (N = 2678) and was validated using the remaining cases (N = 1105). Univariate and multivariate logistic regression analyses were performed to determine valuable predictors among the collected clinical and laboratory variables. The predictive model is presented in the form of a nomogram, which is internally and externally validated with two independent datasets. The discrimination of nomograms was assessed by calculating the area under the curve (AUC). Besides, calibration curve and decision curve (DCA) analyses were performed in the training and validation sets. RESULTS The final model comprised 5 predictors, including baseline CD4, age at ART initiation, BMI, HZ and TBIL. The AUC of the nomogram model was 0.902, 0.926, 0.851 in the training cohort, internal validation and external cohorts. The calibration accuracy and diagnostic performance were satisfactory in both the training and validation sets. CONCLUSIONS This predictive model based on a retrospective study was externally validated using 5 readily available clinical indicators. It showed high performance in predicting the risk of incomplete immune reconstitution in people living with HIV.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China
| | - Jisong Yan
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Hong Luo
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Xianguang Wang
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China.
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China.
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China.
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, 430023, Hubei, China.
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, 430023, Hubei, China.
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, Hubei, China.
| |
Collapse
|
13
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
14
|
Premeaux TA, Ndhlovu LC. Decrypting biological hallmarks of aging in people with HIV. Curr Opin HIV AIDS 2023:01222929-990000000-00054. [PMID: 37421383 DOI: 10.1097/coh.0000000000000810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW HIV infection adds further complexity to the heterogenous process of aging. In this focused review, we examine and discuss recent advances to better elucidate mechanisms of biological aging perturbed and accelerated in the context of HIV, particularly among those with viral suppression through the benefits of antiretroviral therapy (ART). New hypotheses from these studies are poised to provide an improved understanding of multifaceted pathways that converge and likely form the basis for effective interventions toward successful aging. RECENT FINDINGS Evidence to date suggests multiple mechanisms of biological aging impact people living with HIV (PLWH). Recent literature delves and expands on how epigenetic alterations, telomere attrition, mitochondrial perturbations, and intercellular communications may underpin accelerated or accentuated aging phenotypes and the disproportionate prevalence of age-related complications among PLWH. Although most hallmarks of aging are likely exacerbated in the setting of HIV, ongoing research efforts are providing new insight on the collective impact these conserved pathways may have in the aging disease processes. SUMMARY New knowledge on underlying molecular disease mechanisms impacting people aging with HIV are reviewed. Also examined are studies that may facilitate the development and implementation of effective therapeutics and guidance on improving geriatric HIV clinical care.
Collapse
Affiliation(s)
- Thomas A Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
15
|
Roger PM, Perre PV. l-Carnitine for immunological nonresponders to efficient antiretroviral therapy. AIDS 2023; 37:1183-1185. [PMID: 37139657 DOI: 10.1097/qad.0000000000003530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Pierre-Marie Roger
- Infectiologie, Centre Hospitalier Universitaire de Guadeloupe, Route de Chauvel, Les Abymes
- Faculté de Médecine, Université des Antilles, Campus Fouillole, Pointe-à-Pitre
| | - Philippe Vande Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, CHU Montpellier, Montpellier, Cedex 5, France
| |
Collapse
|
16
|
Yan L, Xu K, Xiao Q, Tuo L, Luo T, Wang S, Yang R, Zhang F, Yang X. Cellular and molecular insights into incomplete immune recovery in HIV/AIDS patients. Front Immunol 2023; 14:1152951. [PMID: 37205108 PMCID: PMC10185893 DOI: 10.3389/fimmu.2023.1152951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Highly active antiretroviral therapy (ART) can effectively inhibit virus replication and restore immune function in most people living with human immunodeficiency virus (HIV). However, an important proportion of patients fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called incomplete immune reconstitution or immunological nonresponse (INR). Patients with INR have an increased risk of clinical progression and higher rates of mortality. Despite widespread attention to INR, the precise mechanisms remain unclear. In this review, we will discuss the alterations in the quantity and quality of CD4+ T as well as multiple immunocytes, changes in soluble molecules and cytokines, and their relationship with INR, aimed to provide cellular and molecular insights into incomplete immune reconstitution.
Collapse
Affiliation(s)
- Liting Yan
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Kaiju Xu
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Xiao
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Lin Tuo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tingting Luo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shuqiang Wang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Renguo Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Fujie Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Xingxiang Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| |
Collapse
|
17
|
Ding Y, Pu C, Zhang X, Tang G, Zhang F, Yu G. Identification of Potential Diagnostic Genes of HIV-Infected Immunological Non-Responders on Bioinformatics Analysis. J Inflamm Res 2023; 16:1555-1570. [PMID: 37082297 PMCID: PMC10112482 DOI: 10.2147/jir.s396055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
Purpose HIV-infected immunological non-responders (INRs) failed to achieve the normalization of CD4+ T cell counts despite their undetectable viral load. INRs have an increased risk of clinical progressions of Acquired Immunodeficiency Syndrome (AIDS) and non-AIDS events, accompanied by higher mortality rates than immunological responders (IRs). This study aimed to discover the genes, which help to distinguish INRs from IRs and explore the possible mechanism of INRs. Methods Screening DEGs between INRs and IRs using GEO microarray dataset GSE143742. DEG biological functions were investigated using GO and KEGG analysis. DEGs and WGCNA linked modules were intersected to find common genes. Key genes were identified using SVM-RFE and LASSO regression models. ROC analysis was done to evaluate key gene diagnostic effectiveness using GEO database dataset GSE106792. Cytoscape created a miRNA-mRNA-TF network for diagnostic genes. CIBERSORT and flow cytometry examined the INRs and IRs immune microenvironments. In 10 INR and 10 IR clinical samples, diagnostic gene expression was verified by RT-qPCR and Western blot. Results We obtained 190 DEGs between the INR group and IR group. Functional enrichment analysis found a significant enrichment in mitochondria and apoptosis-related pathways. CD69 and ZNF207 were identified as potential diagnostic genes. CD69 and ZNF207 shared a transcription factor, NCOR1, in the miRNA-mRNA-TF network. Immune microenvironment analysis by CIBERSORT showed that IRs had a higher level of resting memory CD4+ T cells, lower level of activated memory CD4+ T cells and resting dendritic cells than INRs, as confirmed by flow cytometry analysis. In addition, CD69 and ZNF207 were correlated with immune cells. Experiments confirmed the expression of the diagnostic genes in INRs and IRs. Conclusion CD69 and ZNF207 were identified as potential diagnostic genes to discriminate INRs from IRs. Our findings offered new clues to diagnostic and therapeutic targets for INRs.
Collapse
Affiliation(s)
- Yanhong Ding
- Department of Medical Oncology, the First Affiliated Hospital of Weifang Medical University, Weifang, 261032, People’s Republic of China
| | - Cheng Pu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, 611130, People’s Republic of China
| | - Xiao Zhang
- Department of Microbiology, Weifang Center for Disease Control and Prevention, Weifang, 261061, People’s Republic of China
| | - Gaoyan Tang
- Department of Medical Oncology, the First Affiliated Hospital of Weifang Medical University, Weifang, 261032, People’s Republic of China
| | - Fengjuan Zhang
- Department of Microbiology, Weifang Center for Disease Control and Prevention, Weifang, 261061, People’s Republic of China
| | - Guohua Yu
- Department of Medical Oncology, the First Affiliated Hospital of Weifang Medical University, Weifang, 261032, People’s Republic of China
- Correspondence: Guohua Yu, Email
| |
Collapse
|
18
|
Mathur P, Kottilil S, Pallikkuth S, Frasca D, Ghosh A. Persistent CD38 Expression on CD8 + T Lymphocytes Contributes to Altered Mitochondrial Function and Chronic Inflammation in People With HIV, Despite ART. J Acquir Immune Defic Syndr 2022; 91:410-418. [PMID: 36000933 PMCID: PMC9613598 DOI: 10.1097/qai.0000000000003080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Age-associated comorbidities are higher in people with HIV (PWH) than HIV-negative individuals. This is partially attributed to immune activation and CD38 expression on T cells driving chronic inflammation. However, the exact contribution of CD38-expressing T cells on the proinflammatory response is not completely understood. METHODS CD38-expressing CD8 + T lymphocytes were measured from PWH and HIV-negative individuals. Mitochondrial mass, superoxide content, membrane depolarization of CD4 + and CD8 + T lymphocytes, and cytokine production after HIV(Gag)-specific peptide stimulation from CD38 + CD8 + T lymphocytes of PWH were measured to link biological effects of CD38 expression on cellular metabolism. RESULTS The frequency of activated CD8 + CD38 + T cells persists in PWH on ART compared with HIV-negative individuals. Higher CD38 expression is associated with mitochondrial biogenesis and HIV(Gag)-specific proinflammatory cytokine production in PWH. Blockade of CD38 results in lower Gag-specific cytokine production. CONCLUSIONS ART only partially reduced HIV-induced CD38 expression on CD8 + T cells. CD8 + CD38 + T cells are highly activated in vivo, and HIV-specific stimulation in vitro augments CD38 expression, contributing to a proinflammatory response despite virologic control with ART. Therefore, CD38 is a potential therapeutic target for mitigating chronic inflammation that likely drives cellular aging, comorbidities, and end-organ disease in PWH.
Collapse
Affiliation(s)
- Poonam Mathur
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shyamasundaran Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine
| | - Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
| | - Alip Ghosh
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Dang X, Cao D, Zhao J, Schank M, Khanal S, Nguyen LNT, Wu XY, Zhang Y, Zhang J, Jiang Y, Ning S, Wang L, El Gazzar M, Moorman JP, Yao ZQ. Mitochondrial topoisomerase 1 inhibition induces topological DNA damage and T cell dysfunction in patients with chronic viral infection. Front Cell Infect Microbiol 2022; 12:1026293. [PMID: 36405960 PMCID: PMC9669385 DOI: 10.3389/fcimb.2022.1026293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
T cells are crucial for controlling viral infections; however, the mechanisms that dampen their responses during viral infections remain incompletely understood. Here, we studied the role and mechanisms of mitochondrial topoisomerase 1 (Top1mt) inhibition in mitochondrial dysfunction and T cell dysregulation using CD4 T cells from patients infected with HCV or HIV and compared it with CD4 T cells from healthy individuals following treatment with Top1 inhibitor - camptothecin (CPT). We found that Top1mt protein levels and enzymatic activity are significantly decreased, along with Top1 cleavage complex (Top1cc) formation, in mitochondria of CD4 T cells from HCV- and HIV-infected patients. Notably, treatment of healthy CD4 T cells with CPT caused similar changes, including inhibition of Top1mt, accumulation of Top1cc in mitochondria, increase in PARP1 cleavage, and decrease in mtDNA copy numbers. These molecular changes resulted in mitochondrial dysfunction, T cell dysregulation, and programmed cell death through multiple signaling pathways, recapitulating the phenotype we detected in CD4 T cells from HCV- and HIV-infected patients. Moreover, treatment of CD4 T cells from HCV or HIV patients with CPT further increased cellular and mitochondrial reactive oxygen species (ROS) production and cell apoptosis, demonstrating a critical role for Top1 in preventing mtDNA damage and cell death. These results provide new insights into the molecular mechanisms underlying immune dysregulation during viral infection and indicate that Top1 inhibition during chronic HCV or HIV infection can induce mtDNA damage and T cell dysfunction. Thus, reconstituting Top1mt protein may restore the mtDNA topology and T cell functions in humans with chronic viral infection.
Collapse
Affiliation(s)
- Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Yong Jiang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
- Hepatitis (HBV/HCV) and HIV Programs, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
- Hepatitis (HBV/HCV) and HIV Programs, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson, TN, United States
| |
Collapse
|
20
|
Khanal S, Cao D, Zhang J, Zhang Y, Schank M, Dang X, Nguyen LNT, Wu XY, Jiang Y, Ning S, Zhao J, Wang L, Gazzar ME, Moorman JP, Yao ZQ. Synthetic gRNA/Cas9 Ribonucleoprotein Inhibits HIV Reactivation and Replication. Viruses 2022; 14:1902. [PMID: 36146709 PMCID: PMC9500661 DOI: 10.3390/v14091902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The current antiretroviral therapy (ART) for human immunodeficiency virus (HIV) can halt viral replication but cannot eradicate HIV infection because proviral DNA integrated into the host genome remains genetically silent in reservoir cells and is replication-competent upon interruption or cessation of ART. CRISPR/Cas9-based technology is widely used to edit target genes via mutagenesis (i.e., nucleotide insertion/deletion and/or substitution) and thus can inactivate integrated proviral DNA. However, CRISPR/Cas9 delivery systems often require viral vectors, which pose safety concerns for therapeutic applications in humans. In this study, we used synthetic guide RNA (gRNA)/Cas9-ribonucleoprotein (RNP) as a non-viral formulation to develop a novel HIV gene therapy. We designed a series of gRNAs targeting different HIV genes crucial for HIV replication and tested their antiviral efficacy and cellular cytotoxicity in lymphoid and monocytic latent HIV cell lines. Compared with the scramble gRNA control, HIV-gRNA/Cas9 RNP-treated cells exhibited efficient viral suppression with no apparent cytotoxicity, as evidenced by the significant inhibition of latent HIV DNA reactivation and RNA replication. Moreover, HIV-gRNA/Cas9 RNP inhibited p24 antigen expression, suppressed infectious viral particle production, and generated specific DNA cleavages in the targeted HIV genes that are confirmed by DNA sequencing. Because of its rapid DNA cleavage, low off-target effects, low risk of insertional mutagenesis, easy production, and readiness for use in clinical application, this study provides a proof-of-concept that synthetic gRNA/Cas9 RNP drugs can be utilized as a novel therapeutic approach for HIV eradication.
Collapse
Affiliation(s)
- Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yong Jiang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- HCV/HBV/HIV Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- HCV/HBV/HIV Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| |
Collapse
|
21
|
Morrocchi E, Pighi C, Pascucci GR, Cotugno N, Medri C, Amodio D, Colagrossi L, Ruggiero A, Manno EC, Casamento Tumeo C, Bernardi S, Smolen KK, Perno CF, Ozonoff A, Rossi P, Levy O, Palma P. Perinatally Human Immunodeficiency Virus-Infected Adolescents and Young Adults Demonstrate Distinct BNT162b2 Messenger RNA Coronavirus Disease 2019 Vaccine Immunogenicity. Clin Infect Dis 2022; 75:S51-S60. [PMID: 35738253 PMCID: PMC9278233 DOI: 10.1093/cid/ciac408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Immunization of vulnerable populations with distinct immunity often results in suboptimal immunogenicity, durability, and efficacy. METHODS Safety and immunogenicity profiles of BNT162b2 messenger RNA coronavirus disease 2019 (COVID-19) vaccine, among people living with human immunodeficiency virus (HIV), were evaluated in 28 perinatally HIV-infected patients under antiretroviral therapy (ART) and 65 healthy controls (HCs) with no previous history of COVID-19. Thus, we measured severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and CD4+ T cell responses. Samples were collected before vaccination (baseline, day [D] 0), at the second dose (D21), and at 4 weeks (D28) and 6 months (D180) after D0. Proteomic profiles at D0 and D28 were assessed with a multiplexed proximity extension assay (Olink) on plasma samples. RESULTS All HIV-infected patients mounted similar anti-SARS-CoV-2 humoral responses to those of HCs, albeit with lower titers of anti-trimeric S at D28 (P = .01). Only peripheral blood mononuclear cells of HIV-infected patients demonstrated at D28 an impaired ability to expand their specific (CD40L+) CD4+ T-cell populations. Similar humoral titers were maintained between the 2 groups at 6-months follow-up. We additionally correlated baseline protein levels to either humoral or cellular responses, identifying clusters of molecules involved in immune response regulation with inverse profiles between the 2 study groups. CONCLUSIONS Responses of ART-treated HIV-infected patients, compared to those of HCs, were characterized by distinct features especially within the proteomic compartment, supporting their eligibility to an additional dose, similarly to the HC schedule.
Collapse
Affiliation(s)
- Elena Morrocchi
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Chiara Pighi
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giuseppe Rubens Pascucci
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata,”Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata,”Rome, Italy
| | - Chiara Medri
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luna Colagrossi
- Department of Microbiology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandra Ruggiero
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Chiara Casamento Tumeo
- General Pediatrics Unit, Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Stefania Bernardi
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kinga K Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School,Boston, Massachusetts, USA
| | | | - Al Ozonoff
- Precision Vaccines Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School,Boston, Massachusetts, USA
| | - Paolo Rossi
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School,Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Paolo Palma
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Systems Medicine, University of Rome “Tor Vergata,”Rome, Italy
| |
Collapse
|
22
|
Younes SA. Mitochondrial Exhaustion of Memory CD4 T-Cells in Treated HIV-1 Infection. IMMUNOMETABOLISM 2022; 4:e220013. [PMID: 35633761 PMCID: PMC9140223 DOI: 10.20900/immunometab20220013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
People living with HIV (PLWH) who are immune non-responders (INR) to therapy are unable to restore their CD4 T-cell count and remain at great risk of morbidity and mortality. Here the mitochondrial defects that characterize memory CD4 T-cells in INR and causes of this mitochondrial exhaustion are reviewed. This review also describes the various reagents used to induce the expression of the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the master regulator of mitochondrial biogenesis, which can restore mitochondria fitness and CD4 T-cell proliferation in INR. Due to sustained heightened inflammation in INR, the mitochondrial network is unable to be rejuvenated and requires attenuation of mediators of inflammation to rescue mitochondria and CD4 T-cell counts in INR.
Collapse
Affiliation(s)
- Souheil-Antoine Younes
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine, Emory University, Atlanta 30322, USA
| |
Collapse
|
23
|
Wang L, Lu Z, Zhao J, Schank M, Cao D, Dang X, Nguyen LN, Nguyen LNT, Khanal S, Zhang J, Wu XY, El Gazzar M, Ning S, Moorman J, Yao ZQ. Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging Cell 2021; 20:e13513. [PMID: 34752684 PMCID: PMC8672791 DOI: 10.1111/acel.13513] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/27/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere erosion and mitochondrial injury, leading to impaired cellular functions and cell death. Whether oxidative stress-mediated telomere erosion induces mitochondrial injury, or vice versa, in human T cells-the major effectors of host adaptive immunity against infection and malignancy-is poorly understood due to the pleiotropic effects of ROS. Here we employed a novel chemoptogenetic tool that selectively produces a single oxygen (1 O2 ) only at telomeres or mitochondria in Jurkat T cells. We found that targeted 1 O2 production at telomeres triggered not only telomeric DNA damage but also mitochondrial dysfunction, resulting in T cell apoptotic death. Conversely, targeted 1 O2 formation at mitochondria induced not only mitochondrial injury but also telomeric DNA damage, leading to cellular crisis and apoptosis. Targeted oxidative stress at either telomeres or mitochondria increased ROS production, whereas blocking ROS formation during oxidative stress reversed the telomeric injury, mitochondrial dysfunction, and cellular apoptosis. Notably, the X-ray repair cross-complementing protein 1 (XRCC1) in the base excision repair (BER) pathway and multiple mitochondrial proteins in other cellular pathways were dysregulated by the targeted oxidative stress. By confining singlet 1 O2 formation to a single organelle, this study suggests that oxidative stress induces dual injury in T cells via crosstalk between telomeres and mitochondria. Further identification of these oxidation pathways may offer a novel approach to preserve mitochondrial functions, protect telomere integrity, and maintain T cell survival, which can be exploited to combat various immune aging-associated diseases.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Zeyuan Lu
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Hepatitis (HCV/HBV/HIV) ProgramDepartment of Veterans AffairsJames H. Quillen VA Medical CenterJohnson CityTennesseeUSA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Hepatitis (HCV/HBV/HIV) ProgramDepartment of Veterans AffairsJames H. Quillen VA Medical CenterJohnson CityTennesseeUSA
| |
Collapse
|
24
|
Schank M, Zhao J, Wang L, Nguyen LNT, Cao D, Dang X, Khanal S, Zhang J, Zhang Y, Wu XY, Ning S, Gazzar ME, Moorman JP, Yao ZQ. Oxidative Stress Induces Mitochondrial Compromise in CD4 T Cells From Chronically HCV-Infected Individuals. Front Immunol 2021; 12:760707. [PMID: 34956192 PMCID: PMC8692574 DOI: 10.3389/fimmu.2021.760707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that chronic Hepatitis C virus (HCV) infection can induce DNA damage and immune dysfunctions with excessive oxidative stress in T cells. Furthermore, evidence suggests that HCV contributes to increased susceptibility to metabolic disorders. However, the underlying mechanisms by which HCV infection impairs cellular metabolism in CD4 T cells remain unclear. In this study, we evaluated mitochondrial mass and intracellular and mitochondrial reactive oxygen species (ROS) production by flow cytometry, mitochondrial DNA (mtDNA) content by real-time qPCR, cellular respiration by seahorse analyzer, and dysregulated mitochondrial-localized proteins by Liquid Chromatography-Mass Spectrometry (LC-MS) in CD4 T cells from chronic HCV-infected individuals and health subjects. Mitochondrial mass was decreased while intracellular and mitochondrial ROS were increased, expressions of master mitochondrial regulators peroxisome proliferator-activated receptor 1 alpha (PGC-1α) and mitochondrial transcription factor A (mtTFA) were down-regulated, and oxidative stress was increased while mitochondrial DNA copy numbers were reduced. Importantly, CRISPR/Cas9-mediated knockdown of mtTFA impaired cellular respiration and reduced mtDNA copy number. Furthermore, proteins responsible for mediating oxidative stress, apoptosis, and mtDNA maintenance were significantly altered in HCV-CD4 T cells. These results indicate that mitochondrial functions are compromised in HCV-CD4 T cells, likely via the deregulation of several mitochondrial regulatory proteins.
Collapse
Affiliation(s)
- Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Xiao Y Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Jonathan P Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Zhi Q Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| |
Collapse
|