1
|
Choo MZY, Chua JAT, Lee SXY, Ang Y, Wong WSF, Chai CLL. Privileged natural product compound classes for anti-inflammatory drug development. Nat Prod Rep 2025; 42:856-875. [PMID: 40066695 DOI: 10.1039/d4np00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Covering: up to early 2025Privileged compound classes of anti-inflammatory natural products are those where there are many reported members that possess anti-inflammatory properties. The identification of these classes is of particular relevance to drug discovery, as they could serve as valuable starting points in developing effective and safe anti-inflammatory agents. The privileged compound classes of natural products include the polyphenols, coumarins, labdane diterpenoids, sesquiterpene lactones, isoquinoline and indole alkaloids, each offering a variety of molecular scaffolds and functional groups that enable diverse interactions with biological targets. From a medicinal chemistry point of view, natural products are both a boon and a bane. The multi-targeting nature of natural products is a boon in the treatment of multi-factorial diseases such as inflammation, but promiscuity, poor potency and pharmacokinetic properties are significant hurdles that must be addressed to ensure these compounds can be effectively used as therapeutics. In addition, there are continued controversies regarding the efficacies of some of these natural products that will continue to polarise their use. In this review, examples of natural products of six privileged compound classes will be discussed for their potential use and possible further development as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Malcolm Z Y Choo
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore.
| | - Julian A T Chua
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore.
| | - Sean X Y Lee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore.
| | - Yuet Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore.
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore.
- Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore
| | - Christina L L Chai
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore.
- Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, 117600, Singapore
| |
Collapse
|
2
|
Bello ZM, de Azambuja Ribeiro RIM, Dos Santos HB, Thomé RG. Unveiling the therapeutic potential of medicinal plants in zebrafish caudal fin regeneration and wound healing: a systematic review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:80. [PMID: 40214856 DOI: 10.1007/s10695-025-01495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
This systematic review aims to examine the existing literature on the therapeutic potential of medicinal plants to improve caudal fin regeneration and wound healing in zebrafish (Danio rerio), focusing on uncovering their pharmacological properties and potential use in enhancing tissue repair and regeneration. A thorough review of suitable and eligible full-text articles was performed on PubMed, Scopus, Web of Science, and Google Scholar from 1 st January 2014 to 31 st December 2024. These articles were searched using the Medical Subject Headings terms "zebrafish," "zebrafish larvae," "zebrafish embryo," "angiogenesis," "Medicinal plants," "Natural products," "Fin regeneration," "wound healing," and "inflammation." Here, 520 articles on medicinal plants and their potential in caudal fin regeneration and wound healing in zebrafish were identified across the databases searched, of which 26 were included in this study following screening. After thoroughly reviewing the articles, some were found to have used multiple medicinal plants. Thus, 38 medicinal plants were found to have promoted effects on zebrafish caudal fin regeneration and wound healing, and 21 revealed no effects on either caudal fin regeneration and wound healing. This systematic review explores the therapeutic potential of medicinal plants in caudal fin regeneration and wound healing in a zebrafish model. The results show a promising effect of various plant species in enhancing fin regeneration and wound healing. Further research is needed to understand the molecular mechanisms and to translate these findings into clinical applications for human wound healing and regenerative medicine.
Collapse
Affiliation(s)
- Zakariyya Muhammad Bello
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil
| | - Rosy Iara Maciel de Azambuja Ribeiro
- Laboratório de Patologia Experimental - LAPATEX, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil
| | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil.
| |
Collapse
|
3
|
Insawake K, Songserm T, Songserm O, Plaiboon A, Homwong N, Adeyemi KD, Rassmidatta K, Ruangpanit Y. Effects of isoquinoline alkaloids as an alternative to antibiotic on oxidative stress, inflammatory status, and cecal microbiome of broilers under high stocking density. Poult Sci 2025; 104:104671. [PMID: 39689480 PMCID: PMC11719387 DOI: 10.1016/j.psj.2024.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
This study investigated the effect of isoquinoline alkaloids as an alternative to bacitracin on growth performance, oxidative stress, inflammatory status, and ceca microbiome of broilers raised under high stocking density (HSD). A total of 1,500 one-day-old male Ross 308 chicks were randomly assigned to five treatment groups, with 10 replicate pens per group and 30 birds per pen, for 37 days. The treatments included normal stocking density (NSD, 10 birds/m²), HSD (15 birds/m²), HSD with 50 ppm Bacitracin (BCT50), HSD with 80 ppm isoquinoline alkaloids (IQA80), and HSD with 100 ppm isoquinoline alkaloids (IQA100). From days 11 to 24, HSD birds had lower feed efficiency (P < 0.05) compared to those in other treatments. The heterophil-to-lymphocyte ratio and malondialdehyde levels were lower in NSD and IQA80 birds compared to HSD and BCT50 birds (P < 0.05). HSD birds had higher IL-6 and a lower villus height and villus height-to-crypt depth ratio compared to birds in other groups (P < 0.05). Serum TNF-α was lower in NSD and IQA80 birds compared to those in the HSD group. Alpha diversity was not affected by the treatments; however, beta diversity was lower in HSD birds compared to other treatments. HSD birds showed reduced microbial diversity, with a higher prevalence of Enterococcaceae and Peptostreptococcaceae. NSD enhanced the abundance of Lactobacillaceae, Clostridiaceae, and Rikenellaceae. BCT50 increased and decreased the abundance of Enterococcaceae and Rikenellaceae respectively. IQA80 and IQA100 increased the abundance of Lachnospiraceae, Leuconostocaceae, and Coriobacteriaceae. HSD altered metabolic pathways related to carbohydrate and lipid metabolism, and amino acid biosynthesis. BCT50 modulated microbial functions, particularly those related to cell wall synthesis, while isoquinoline alkaloids upregulated pathways involved in energy production, secondary metabolite biosynthesis, and antioxidant production. Both Bacitracin and isoquinoline alkaloids were effective in mitigating the negative effects of HSD on immunity, gut health and microbiota in broilers. Given the concerns about antimicrobial resistance, isoquinoline alkaloids are a potent alternative to bacitracin, with IQA80 being particularly recommended.
Collapse
Affiliation(s)
- Kittisak Insawake
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Thaweesak Songserm
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University10900, Thailand
| | - Ornprapun Songserm
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Atthawoot Plaiboon
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Nitipong Homwong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Kwara State, Nigeria
| | - Konkawat Rassmidatta
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Yuwares Ruangpanit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
4
|
Yang X, Miao X, Dai L, Guo X, Jenis J, Zhang J, Shang X. Isolation, biological activity, and synthesis of isoquinoline alkaloids. Nat Prod Rep 2024; 41:1652-1722. [PMID: 39355982 DOI: 10.1039/d4np00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Covering: 2019 to 2023Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide. To follow up on our prior review (covering 2014-2018) and present the progress of this class of compounds, this review summarizes and provides updated literature on novel isoquinoline alkaloids isolated during the period of 2019-2023, together with their biological activity and underlying mechanisms of action. Moreover, with the rapid development of synthetic modification strategies, the synthesis strategies of isoquinoline alkaloids have been continuously optimized, and the total synthesis of these classes of natural products is reviewed critically herein. Over 250 molecules with a broad range of bioactivities, including antitumor, antibacterial, cardioprotective, anti-inflammatory, neuroprotective and other activities, are isolated and discussed. The total synthesis of more than nine classes of isoquinoline alkaloids is presented, and thirteen compounds constitute the first total synthesis. This survey provides new indications or possibilities for the discovery of new drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
| | - Xiaolou Miao
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
| | - Lixia Dai
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining 810016, P. R. China
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
| | - Xiaofei Shang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu Province, PR China.
- China-Kazakh Joint Research Center for Natural Veterinary Drug, Lanzhou 730050, P. R. China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining 810016, P. R. China
| |
Collapse
|
5
|
Wang L, Hao H, Meng X, Zhang W, Zhang Y, Chai T, Wang X, Gao Z, Zheng Y, Yang J. A novel isoquinoline alkaloid HJ-69 isolated from Zanthoxylum bungeanum attenuates inflammatory pain by inhibiting voltage-gated sodium and potassium channels. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118218. [PMID: 38677570 DOI: 10.1016/j.jep.2024.118218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 μM and 30.19 ± 2.07 μM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 μM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 μM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.
Collapse
Affiliation(s)
- Long Wang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Haishuang Hao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xianhua Meng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wenbo Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yin Zhang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Chai
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xingrong Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhaobing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yueming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Junli Yang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Dai X, Li Y, Liu X, Zhang Y, Gao F. Intracellular infection-responsive macrophage-targeted nanoparticles for synergistic antibiotic immunotherapy of bacterial infection. J Mater Chem B 2024; 12:5248-5260. [PMID: 38712662 DOI: 10.1039/d4tb00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Intracellular bacteria are considered to play a key role in the failure of bacterial infection therapy and increase of antibiotic resistance. Nanotechnology-based drug delivery carriers have been receiving increasing attention for improving the intracellular antibacterial activity of antibiotics, but are accompanied by disadvantages such as complex preparation procedures, lack of active targeting, and monotherapy, necessitating further design improvements. Herein, nanoparticles targeting bacteria-infected macrophages are fabricated to eliminate intracellular bacterial infections via antibiotic release and upregulation of intracellular reactive oxygen species (ROS) levels and proinflammatory responses. These nanoparticles were formed through the reaction of the amino group on selenocystamine dihydrochloride and the aldehyde group on oxidized dextran (ox-Dex), which encapsulates vancomycin (Van) through hydrophobic interactions. These nanoparticles could undergo targeted uptake by macrophages via endocytosis and respond to the bacteria-infected intracellular microenvironment (ROS and glutathione (GSH)) for controlled release of antibiotics. Furthermore, these nanoparticles could consume intracellular GSH and promote a significant increase in the level of ROS in macrophages, subsequently up-regulating the proinflammatory response to reinforce antibacterial activity. These nanoparticles can accelerate bacteria-infected wound healing. In this work, nanoparticles were fabricated for bacteria-infected macrophage-targeted and microenvironment-responsive antibiotic delivery, cellular ROS generation, and proinflammatory up-regulation activity to eliminate intracellular bacteria, which opens up a new possibility for multifunctional drug delivery against intracellular infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yongjie Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
7
|
Cai L, Xiong PF, Li T, Li C, Wu ZX, Hong YL, Wang JT, Zhang MY, Yang XQ, Xu QQ, Shi H, Luo QC, Li R, Liu MM. Discovery of novel diaryl substituted isoquinolin-1(2H)-one derivatives as hypoxia-inducible factor-1 signaling inhibitors for the treatment of rheumatoid arthritis. Eur J Med Chem 2024; 271:116417. [PMID: 38688063 DOI: 10.1016/j.ejmech.2024.116417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 μM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.
Collapse
Affiliation(s)
- Li Cai
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, PR China
| | - Peng-Fei Xiong
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Tao Li
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Chong Li
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Zheng-Xing Wu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Ya-Ling Hong
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jin-Ting Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Meng-Yue Zhang
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Xi-Qin Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Qian-Qian Xu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Huan Shi
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Qi-Chao Luo
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| | - Rong Li
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230026, Anhui Province, PR China.
| | - Ming-Ming Liu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| |
Collapse
|
8
|
Guo Y, Peng X, Liu F, Zhang Q, Ding L, Li G, Qiu F. Potential of natural products in inflammation: biological activities, structure-activity relationships, and mechanistic targets. Arch Pharm Res 2024; 47:377-409. [PMID: 38739203 DOI: 10.1007/s12272-024-01496-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
A balance between the development and suppression of inflammation can always be found in the body. When this balance is disturbed, a strong inflammatory response can damage the body. It sometimes is necessary to use drugs with a significant anti-inflammatory effect, such as nonsteroidal anti-inflammatory drugs and steroid hormones, to control inflammation in the body. However, the existing anti-inflammatory drugs have many adverse effects, which can be deadly in severe cases, making research into new safer and more effective anti-inflammatory drugs necessary. Currently, numerous types of natural products with anti-inflammatory activity and distinct structural features are available, and these natural products have great potential for the development of novel anti-inflammatory drugs. This review summarizes 260 natural products and their derivatives with anti-inflammatory activities in the last two decades, classified by their active ingredients, and focuses on their structure-activity relationships in anti-inflammation to lay the foundation for subsequent new drug development. We also elucidate the mechanisms and pathways of natural products that exert anti-inflammatory effects via network pharmacology predictions, providing direction for identifying subsequent targets of anti-inflammatory natural products.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Xuling Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Fanfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Qi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Liqin Ding
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
9
|
Wang D, Qin L, Jing C, Wang G, Zhou H, Deng P, Zhang S, Wang Y, Ding Y, Zhang Z, Wu Z, Liu Y. Biologically active isoquinoline alkaloids covering 2019-2022. Bioorg Chem 2024; 145:107252. [PMID: 38437763 DOI: 10.1016/j.bioorg.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Isoquinoline alkaloids are an important class of natural products that are abundant in the plant kingdom and exhibit a wide range of structural diversity and biological activities. With the deepening of research in recent years, more and more isoquinoline alkaloids have been isolated and identified and proved to contain a variety of biological activities and pharmacological effects. In this review, we introduce the research progress of isoquinoline alkaloids from 2019 to 2022, mainly in the part of biological activities, including antitumor, antimicrobial, antidiabetic, antiviral, anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, analgesic, and other activities. This study provides a clear direction for the rational development and utilization of isoquinoline alkaloids, suggesting that these alkaloids have great potential in the field of drug research.
Collapse
Affiliation(s)
- Dengtuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Lulu Qin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chenxin Jing
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guanghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Yirong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yanyan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhijun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Liu Y, Xia G, Chen Y, Xia H, Xu J, Guo L, Lin S, Liu Y. Purpurolide C-based microneedle promotes macrophage-mediated diabetic wound healing via inhibiting TLR4-MD2 dimerization and MYD88 phosphorylation. Acta Pharm Sin B 2023; 13:5060-5073. [PMID: 38045060 PMCID: PMC10692347 DOI: 10.1016/j.apsb.2023.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 12/05/2023] Open
Abstract
Delayed wound healing in diabetes is a global challenge, and the development of related drugs is a clinical problem to be solved. In this study, purpurolide C (PC), a small-molecule secondary metabolite of the endophytic fungus Penicillium purpurogenum, was found to promote diabetic wound healing. To investigate the key regulation targets of PC, in vitro RNA-seq, molecular docking calculations, TLR4-MD2 dimerization SDS-PAGE detection, and surface plasmon resonance (SPR) were performed, indicating that PC inhibited inflammatory macrophage activation by inhibiting both TLR4-MD2 dimerization and MYD88 phosphorylation. Tlr4 knockout in vivo attenuated the promotion effect of PC on wound healing. Furthermore, a delivery system consisting of macrophage liposome and GelMA-based microneedle patches combined with PC (PC@MLIP MN) was developed, which overcame the poor water solubility and weak skin permeability of PC, so that successfully punctured the skin and delivered PC to local tissues, and accurately regulated macrophage polarization in diabetic wound management. Overall, PC is an anti-inflammatory small molecule compound with a well-defined structure and dual-target regulation, and the PC@MLIP MN is a promising novel biomaterial for the management of diabetic wound.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
11
|
Liu Y, Li X, Liu S, Du J, Xu J, Liu Y, Guo L. The changes and potential effects of zinc homeostasis in periodontitis microenvironment. Oral Dis 2023; 29:3063-3077. [PMID: 35996971 DOI: 10.1111/odi.14354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
Zinc is a very important and ubiquitous element, which is present in oral environment, daily diet, oral health products, dental restorative materials, and so on. However, there is a lack of attention to the role of both extracellular or intracellular zinc in the progression of periodontitis and periodontal regeneration. This review summarizes the characteristics of immunological microenvironment and host cells function in several key stages of periodontitis progression, and explores the regulatory effect of zinc during this process. We find multiple evidence indicate that zinc may be involved and play a key role in the stages of immune defense, inflammatory response and bone remodeling. Zinc supplementation in an appropriate dose range or regulation of zinc transport proteins can promote periodontal regeneration by either enhancing immune defense or up-regulating local cells proliferation and differentiation functions. Therefore, zinc homeostasis is essential in periodontal remodeling and regeneration. More attention is suggested to be focused on zinc homeostasis regulation and consider it as a potential strategy in the studies on periodontitis treatment, periodontal-guided tissue regeneration, implant material transformation, and so on.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Nigdelioglu Dolanbay S, Şirin S, Aslim B. Cocktail of three isoquinoline alkaloids derived from Glaucium grandiflorum Boiss. & A. Huet subsp. refractum (Nábelek) Mory inhibits the production of LPS-induced ROS, pro-inflammatory cytokines, and mediators through the down-regulation of p38 MAPK in BV-2 cells. Fitoterapia 2023; 170:105652. [PMID: 37595642 DOI: 10.1016/j.fitote.2023.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Glaucium grandiflorum extracts have traditionally been used to treat brain-related disorders. G. grandiflorum extracts also exhibited inhibitory effects on cholinesterase enzymes, as well as antigenotoxic activity. However, no research has been done on the effect of G. grandiflorum alkaloid extracts on the anti-oxidative and anti-inflammatory mechanisms. In this study we aimed to evaluate the anti-oxidative and anti-inflammatory activities of the alkaloid extract obtained from G. grandiflorum as well as the mechanisms responsible for their neuroprotective effects in neuronal damage caused by LPS in BV2 cells. We used LC-MS/MS and 1H, 13C NMR analysis to determine the presence of major alkaloids (allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide (trans-cannadine-N-oxide) in the alkaloid extracts. We used flow cytometry to study the alkaloid extracts' effects on ROS production; we also employed qRT-PCR and Western Blot to analyze the effects of oxidative stress and inflammation-related genes and proteins. ROS production within the cell was inhibited by chloroform alkaloid extract (CAE). There occurred marked CAE-induced reductions in IL-1β, Cox-2, and iNOS mRNA expressions. We also observed marked reductions in IL-6 and TNF-α mRNA expressions with methanol alkaloid extract (MAE). CAE effectively suppressed IL-1β and iNOS protein levels, especially as in qRT-PCR studies, while MAE effectively reduced IL-6 and TNF-α protein levels. Additionally, MAE was found to be prominent in suppressing the levels of Cox-2 protein, unlike qRT-PCR studies. According to our study findings, oxidative stress brought about by inflammation was suppressed by alkaloid extracts from G. grandiflorum which can be attributed to their suppressor effects on the pro-inflammatory cytokines-mediators, and p38 MAPK. As a result, a drug active substance that suppresses oxidative stress and inflammation has been brought to the neuropharmacological field.
Collapse
Affiliation(s)
| | - Seda Şirin
- Gazi University, Faculty of Science, Department of Biology, 06500, Teknikokullar, Ankara, Turkey
| | - Belma Aslim
- Gazi University, Faculty of Science, Department of Biology, 06500, Teknikokullar, Ankara, Turkey
| |
Collapse
|
13
|
Sharma A, Khan MA, Tirpude NV. Leupeptin maintains redox homeostasis via targeting ROS-autophagy-inflammatory axis in LPS-stimulated macrophages and cytokines dichotomy in Con-A challenged lymphocyte. Peptides 2023; 168:171066. [PMID: 37499907 DOI: 10.1016/j.peptides.2023.171066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Information regarding cellular anti-inflammatory and immunomodulatory attributes of leupeptin with respect to modulation of perturbed macrophage function and lymphocytes has not yet been delineated, particularly in the context of ROS-cytokines-autophagy-inflammatory signalling cascades. Therefore, the present study identified the attributes and mechanisms of leupeptin, from actinomycetes, in relation to excessive oxidative stress mediated disrupted immune homeostasis and inflammatory mechanism in activated macrophages and lymphocytes. Results revealed that leupeptin treatment showed noticeable inhibition in the production of NO, ROS, mitochondrial membrane potential and phagocytosis activity in LPS-stimulated macrophages. These findings were accompanied by reduction in TNF-α, IL-1β, IL-6, IFN-γ/IL-10 ratio, endopeptidases, oxidative effectors (Cox-2, IL-5, IL-15, IL-17, COX-2), iNOS with concomitant increase in Arg 1, Msr 1 and Mrc - 1exprssion in leupeptin treatment. Additionally, compared to LPS-challenged cells, marked alleviation in MDC, lysotracker staining, beclin-1, LC3B expression, and enhanced p62 levels in leupeptin exposed cells indicate the reversal of impaired autophagy flux. Subsequently, oxi-inflammatory signalling analysis demonstrated p-PTEN, p-NF-κB, p-PI3K, p-Akt, p-p38, and ERK1/2 upregulation decisively thwarted by leupeptin administration. In silico analysis further implied its target selectivity to these cascades. Furthermore, decreased proliferation index and Th1, Th2/IL-10 cytokines ratio in mitogen-challenged splenic lymphocytes confers its role in mitigating unwarranted inflammation mediated by disrupted regulation of adaptive immune cells. Together, these findings signify the attributes of leupeptin as an alternative anti-inflammatory strategy and affirm it as a promising natural entity to modulate immune-mediated response during inflammatory disorder.
Collapse
Affiliation(s)
- Anamika Sharma
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Mohd Adil Khan
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Narendra Vijay Tirpude
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India; Academy of Scientific and Innovative Research, Ghaziabad, UP, India.
| |
Collapse
|
14
|
Chen Y, Liu Y, Xia H, Xia G, Xu J, Lin S, Guo L, Liu Y. The effect of the Litcubanine A on the treatment of murine experimental periodontitis by inhibiting monocyte-macrophage chemotaxis and osteoclast differentiation. J Periodontal Res 2023; 58:948-958. [PMID: 37409514 DOI: 10.1111/jre.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Periodontal disease is an inflammatory disease of periodontal tissues that is closely connected with systemic diseases. During periodontitis, the inappropriate recruitment and activation of monocytes-macrophages causes an increase in osteoclast activity and disrupts bone homeostasis. Therefore, it is a promising therapeutic strategy to treat periodontitis by regulating the functions of monocytes-macrophages. Litcubanine A (LA) is an isoquinoline alkaloid extracted from the traditional Chinese medicine Litsea cubeba, which was proven to have reproducible anti-inflammatory effects, but its regulatory role on bone homeostasis in periodontitis is still not clear. METHODS In this study, zebrafish experiments and a mouse ligature-induced periodontitis model were performed, and histological analysis was used to investigate the effect of LA on macrophage chemotaxis under the inflammatory environment. Real-time PCR was used to detect the regulatory effect of LA (100 nM ~ 100 μM) on the chemotaxis function of macrophages induced by LPS. Apoptosis assay and flow cytometry were used to elucidate the influence of LA on macrophage apoptosis and proliferation. To further clarify the regulatory role of LA on macrophage osteoclast differentiation, real-time PCR, histological analysis, western blot, and micro-computed tomography (micro-CT) were performed in vivo and in vitro to verify the impact of LA on bone homeostasis. RESULTS Compared with the control group, the chemotaxis function of macrophage was significantly attenuated by LA in vivo. LA could significantly inhibit the expression of genes encoding the chemokine receptors Ccr1 and Cxcr4, and its ligand chemokine Cxcl12 in macrophages, and suppresses the differentiation of osteoclastic precursors to osteoclasts through the MAPK signaling pathway. There were significantly lower osteoclast differentiation and bone loss in the LA group compared with the control in the ligature-induced periodontitis model. CONCLUSION LA is a promising candidate for the treatment of periodontitis through its reproducible functions of inhibiting monocyte-macrophage chemotaxis and osteoclast differentiation.
Collapse
Affiliation(s)
- Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Sharma D, Sharma N, Manchanda N, Prasad SK, Sharma PC, Thakur VK, Rahman MM, Dhobi M. Bioactivity and In Silico Studies of Isoquinoline and Related Alkaloids as Promising Antiviral Agents: An Insight. Biomolecules 2022; 13:17. [PMID: 36671402 PMCID: PMC9856122 DOI: 10.3390/biom13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Viruses are widely recognized as the primary cause of infectious diseases around the world. The ongoing global pandemic due to the emergence of SARS-CoV-2 further added fuel to the fire. The development of therapeutics becomes very difficult as viruses can mutate their genome to become more complex and resistant. Medicinal plants and phytocompounds could be alternative options. Isoquinoline and their related alkaloids are naturally occurring compounds that interfere with multiple pathways including nuclear factor-κB, mitogen-activated protein kinase/extracellular-signal-regulated kinase, and inhibition of Ca2+-mediated fusion. These pathways play a crucial role in viral replication. Thus, the major goal of this study is to comprehend the function of various isoquinoline and related alkaloids in viral infections by examining their potential mechanisms of action, structure-activity relationships (SAR), in silico (particularly for SARS-CoV-2), in vitro and in vivo studies. The current advancements in isoquinoline and related alkaloids as discussed in the present review could facilitate an in-depth understanding of their role in the drug discovery process.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Neetika Sharma
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Namish Manchanda
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Prabodh Chander Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, 11 West Mains Road, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - M. Mukhlesur Rahman
- Pharmaceutical and Natural Products Chemistry, School of Health, Sports and Bioscience, University of East London, Stratford Campus, London E15 4LZ, UK
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| |
Collapse
|
16
|
Mengie Ayele T, Chekol Abebe E, Tilahun Muche Z, Mekonnen Agidew M, Shumet Yimer Y, Tesfaw Addis G, Dagnaw Baye N, Bogale Kassie A, Adela Alemu M, Gobezie Yiblet T, Ayalew Tiruneh G, Berihun Dagnew S. Evaluation of In Vivo Wound-Healing and Anti-Inflammatory Activities of Solvent Fractions of Fruits of Argemone mexicana L. (Papaveraceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6154560. [PMID: 36457593 PMCID: PMC9708338 DOI: 10.1155/2022/6154560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 11/16/2022] [Indexed: 09/08/2023]
Abstract
INTRODUCTION The solvent fractions of the fruits of Argemone mexicana L. (Papaveraceae) have not yet been explored scientifically for in vivo wound healing and anti-inflammatory activities. The objective of this study was, therefore, to evaluate in vivo wound healing and anti-inflammatory activities of the solvent fractions of the fruit of Argemone mexicana L. (Papaveraceae) in rats. METHOD The crude extract of Argemone mexicana was fractionated with n-hexane, ethyl acetate, and distilled water. Wound healing activity was evaluated using excision and incision wound models while anti-inflammatory activity was evaluated using carrageenan-induced rat paw and cotton pellet-induced granuloma models. The fractions were evaluated at 5 and 10% ointments using moist-exposed burn ointment as the standard drug, and 100, 200, and 400 mg/kg test doses using aspirin, and dexamethasone as standard drugs for wound healing and anti-inflammatory activities, respectively. All treatment administrations were made orally for anti-inflammatory activity and applied topically for wound healing activity. RESULT The 10% w/w ethyl acetate fraction ointment showed a significant percentage of wound contraction, reduced period of epithelialization, increased amount of fibrosis, neovascularization, and collagen tissue formation (p < 0.01). The ethyl acetate fraction also showed a significant increase in tensile strength (55%; p < 0.01) and (81.10%; p < 0.01) at the tested doses of 5 and 10% w/w ointments, which was comparable to moist-exposed burn ointment. The ethyl acetate fraction also revealed a significant percent edema inhibition (61.41%; p < 0.01), suppression of the exudate (38.09% p < 0.01), and granuloma mass formations (53.47% p < 0.01) at the tested dose of 400 mg/kg. CONCLUSION The results of this study showed that the Ethyl acetate fraction of Argemone mexicana fruit has significant wound healing and anti-inflammatory activities which support the traditional claims of the experimental plant.
Collapse
Affiliation(s)
- Teklie Mengie Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Getu Tesfaw Addis
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Nega Dagnaw Baye
- Department of Human Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Achenef Bogale Kassie
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Adela Alemu
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tesfagegn Gobezie Yiblet
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Samuel Berihun Dagnew
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
17
|
A histological evaluation of the mice oral mucosal tissue wounds excised with diode laser, Er:YAG laser, and cold scalpel. Lasers Med Sci 2022; 37:2707-2715. [PMID: 35298731 DOI: 10.1007/s10103-022-03544-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Laser has been considered to show many favorable characteristics, including wound healing acceleration, hemostasis, biostimulation, and microbial inhibition. Previous studies have investigated the effect of laser treatment during the process of wound healing, with conflicting results. To date, there is still no unified conclusion on the effect and application principle of clinical laser therapy. This study evaluated the incision morphology, wound healing speed, and histological changes in mice oral mucosal wounds excised with diode laser, Er:YAG laser, and cold scalpel. The results showed that compared with the cold scalpel group, laser treatments caused more tissue thermal damage and carbonization, which led to a healing delay. However, lasers also showed some advantages, including hemostasis, regular incision, and immune response mobilization, suggesting that lasers may be beneficial in some specific cases, such as reducing intraoperative accidents and wound tissue laceration and controlling bleeding and postoperative infection. This study provides a theoretical basis for clarifying the effect of laser treatments and their clinical application principle.
Collapse
|
18
|
Xia GY, Fang DJ, Wang LY, Xia H, Wang YN, Shang HC, Lin S. 13,13a-seco-protoberberines from the tubers of Corydalis yanhusuo and their anti-inflammatory activity. PHYTOCHEMISTRY 2022; 194:113023. [PMID: 34839130 DOI: 10.1016/j.phytochem.2021.113023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Six undescribed protoberberine derivatives including two pairs of enantiomers, named yanhusanines G-L, along with fifteen reported protoberberine alkaloids, were isolated from the tubers of Corydalis yanhusuo. Among them, yanhusanines H-L feature a unique 13,13a-seco skeleton which is rare in nature. Their structural elucidations were achieved by extensive spectroscopic analysis and quantum chemistry calculations. A biogenetic route for yanhusanines H-L was proposed. Bioassay results showed that yanhusanine J exhibited potent inhibitory effect against the nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells (IC50 = 2.25 ± 1.32 μM). Western blot analysis demonstrated that yanhusanine J exerted its anti-inflammatory effect via suppressing the nuclear factor kappa B (NF-κB) pathway, together with the decrease of the inflammatory factors TNF-α, IL-6 and IL-1β. Furthermore, molecular simulation docking indicated that yanhusanine J had strong interaction with the active site of the inducible nitric oxide synthase (iNOS) protein.
Collapse
Affiliation(s)
- Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Dong-Jie Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Yan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
19
|
Liu Y, Xia H, Xia G, Lin S, Guo L, Liu Y. The effect of an isoquinoline alkaloid on treatment of periodontitis by regulating the neutrophils chemotaxis. J Leukoc Biol 2021; 110:475-484. [PMID: 34184309 DOI: 10.1002/jlb.3ma0321-736r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophil plays a critical role in the progression of periodontitis. In general, its chemotaxis and activation are benefit for the host defense of bacterial infection and inflammation. However, previous studies have reported that the hyperactive and reactive neutrophils appear to be one of the reasons for tissue destruction in periodontitis tissues. In this study, we investigated an isoquinoline alkaloid Litcubanine A (LA), which from the Traditional Chinese medicinal plant, Litsea cubeba. We found LA showed significant activity in inhibiting neutrophils chemotaxis in the zebrafish yolk sac microinjection model in vivo and in mouse neutrophils in vitro. Further investigation proved that LA could inhibit the expression levels of neutrophil respiratory burst-related and inflammation-related genes CYBB and NCF2, as well as inhibit the activation of MAPK signaling pathway. Moreover, using LA, we successfully achieved the effect of reducing periodontitis bone loss by regulating neutrophil chemotaxis and related functions in a mouse ligature-induced periodontitis model.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|