1
|
Bhardwaj C, Rohilla M, Chopra S, Kaur A, Panigrahi I, Srivastava P. EV-microRNA signatures in pregnant women with idiopathic recurrent pregnancy loss: deciphering microRNAome pathway networks at feto-maternal interface. Front Immunol 2025; 16:1578738. [PMID: 40421018 PMCID: PMC12105548 DOI: 10.3389/fimmu.2025.1578738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Background Despite extensive research in the past decade, the exact pathogenesis of recurrent pregnancy loss (RPL) remains unknown. At the time of pregnancy, human placenta releases microRNAs (miRNAs) enclosed in extracellular vesicles (EVs), which enter into maternal circulation and play an important role at feto-maternal interface to sustain a successful pregnancy. Aberrant expression of these miRNAs often results in adverse pregnancy complications. Therefore, studying the expression of these EV-miRNAs in maternal circulation could provide insights into the pathogenesis of RPL. Methods The present study included idiopathic currently pregnant (<22 weeks of gestation) RPL women (n=10) and gestational-age-matched healthy pregnant women as control (n=5). EVs were isolated from plasma samples and characterized for their morphology and cell-surface marker. Total RNA was isolated and subjected to miRNA sequencing on Illumina NovaSeq 6000 platform. Differentially expressed (DE) miRNAs were identified using DESeq package. Target prediction and pathway analysis were done using TargetScan, miRDB, miRTarBase, and DIANA-miRPath v3.0 online tool. Protein-protein interaction was done using STRING, and hub genes were identified using Cytoscape software. Results miRNA sequencing revealed 66 (44 known and 22 novel) significantly DE miRNAs between RPL and healthy pregnant women. Among these, 37 were downregulated and 29 were upregulated, log2|FC| ≥ 1. Network-based analysis showed highest degree for nine miRNAs (hsa-miR-155-5p, hsa-miR-26a-5p, hsa-miR-204-5p, hsa-miR-140-5p, hsa-miR-139-5p, hsa-let-7e-5p, hsa-miR-149-5p, hsa-miR-374a-5p, and hsa-miR-190a-5p). Gene Ontology (GO) and KEGG pathway analysis of target genes showed significant involvement of Hippo, FoxO, TGF-β, and p53 signaling pathways, which play a crucial role in RPL. Top 10 identified hub genes (NFKB1, IL6, JUN, FOS, CXCL8, PTGS2, TGFB1, MMP9, STAT1, and CD4) were significantly enriched in immunological pathways-Th1/Th2/Th17 differentiation, NF-κB pathway, TNF-α signaling, IL-17 signaling pathway, and vascular endothelial growth factor (VEGF) pathway. Conclusion These results suggest that circulating EV-miRNAs in maternal blood could provide clinical insights into the pathogenesis of RPL and dysregulated immunological and molecular pathways at feto-maternal interface.
Collapse
Affiliation(s)
- Chitra Bhardwaj
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Minakshi Rohilla
- Department of Obstetrics & Gynaecology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Seema Chopra
- Department of Obstetrics & Gynaecology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Anupriya Kaur
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Inusha Panigrahi
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Priyanka Srivastava
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
2
|
Mishra S, Ashish A, Rai S, Sahni C, Tiwari S, Kumar B, Singh R. The Impact of Inflammatory Cytokines on Recurrent Pregnancy Loss: A Preliminary Investigation. Reprod Sci 2025; 32:804-814. [PMID: 39843706 DOI: 10.1007/s43032-025-01786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Recurrent pregnancy loss (RPL), defined as two or more consecutive miscarriages before 20 weeks of gestation, affects 1-2% of couples worldwide. Pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 play critical roles in early pregnancy, while anti-inflammatory cytokines like TGF-β and IL-10 promote immune tolerance to prevent harmful inflammatory responses that play important role in placental and fetal development. This aim of the study is to analyse the levels of inflammatory cytokines in blood serum from RPL patients and healthy women (control). The measured cytokines included TNF-α, IL-6, IL-10, TGF-β, CRP, ferritin, IL-1β and IL-4, IFN-γ and IL-17. Using an unpaired t-test and Pearson correlation, significant difference observed between the groups. The results had significantly elevated CRP levels with decreased levels of TGF-β and ferritin (p < 0.05), whereas, IL-1β and IL-4 also found raised indicating a link between systemic inflammation and recurrent miscarriages. IL-4 and CRP increase further suggest potential oxidative stress role in RPL cases. However, no significant differences observed in IL-10, IL-6, or TNF-α level between the groups. This study highlights immune dysregulation as possible contributors to early pregnancy loss, with significant increases in CRP, IL-1β, and IL-4 levels indicating an imbalanced immune response at the maternal-fetal interface. These cytokine elevations may disrupt immune tolerance, suggesting the need for further exploration into cytokine interactions in pregnancy and their potential as an investigatory biomarker and therapeutic target in RPL.
Collapse
Affiliation(s)
- Shivani Mishra
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Ashish
- Multidisciplinary Research Unit, ICMR-DHR, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sangeeta Rai
- Department of Obstetrics & Gynaecology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chetan Sahni
- Department of Anatomy, All India Institute of Medical Sciences Gorakhpur, Gorakhpur, 273008, India
| | - Shivam Tiwari
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bhupendra Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025; 13:555. [PMID: 40142448 PMCID: PMC11944278 DOI: 10.3390/microorganisms13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.
Collapse
Affiliation(s)
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77808, USA
| |
Collapse
|
4
|
Wen X, Chen X, Li M, Zhou J, Dao S, Li S, Cheng H, Zhao S, Huang G. Effect of Exogenous of Transforming Growth Factor-β1 on Pregnancy Outcome in Mice with Recurrent Pregnancy Loss by Persistent Enhancement of Placental Tissue Indoleamine 2,3-Dioxygenase Expression. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2025; 19:64-69. [PMID: 39827393 PMCID: PMC11744201 DOI: 10.22074/ijfs.2024.2011343.1541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/18/2024] [Accepted: 06/15/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND The immunologic factors are the chief reason for recurrent pregnancy loss (RPL) and induction of maternal-fetal tolerance is the main treatment for this cause of RPL, but the effect of this method is uncertainly and needs multiple doses and/or interventions. The aim of this study was to investigate whether a single administration of transforming growth factor-β1 (TGF-β1) can improve the pregnancy outcomes of RPL mice and whether the improvement is cause by TGF-β1 driving the expression of immune tolerance molecule indoleamine 2,3-dioxygenase (IDO). MATERIALS AND METHODS In this experimental study, 40 RPL model mice were equally divided into a control group, that received 0.01 M phosphate-buffered saline (PBS), and a treatment group, that received PBS containing 2, 20, and 200 ng/ml TGF-β1 via tail vein injection. The mice were sacrificed at 13.5 days of pregnancy and the embryo resorption rate was determined. The expression of IDO, TGF-β1, and TGF-β3 were detected in the placenta using western blotting and immunohistochemistry techniques. RESULTS The expression of IDO was positively correlated with TGF-β1 in the placental tissue of RPL mice (r=0.591, P<0.001). In all treatment groups, the embryo resorption rates were significantly lower than the control group and the expression of IDO in the placental tissue of all treatment groups was significantly higher than the control group. The expression of TGF-β1 increased gradually from, 2, 20 to 200 ng/ml in treatment groups, and the concentration of exogenous TGF-β1 positively correlated with the expression of TGF-β1, in placental tissues in treatment groups (r=0.372, P=0.018). CONCLUSION Exogenous TGF-β1 improves pregnancy outcomes in RPL mice, and the possible therapeutic mechanism is that exogenous TGF-β1 induces the persistent expression of endogenous TGF-β1 and IDO due to mutually induced expression of the other. This experiment may provide a new direction and idea for the future treatment of RPL patients.
Collapse
Affiliation(s)
- Xinghui Wen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Department of Obstetrics and Gynecology, The Second People's Hospital of Guiyang City, Guiyang, Guizhou Province, China
| | - Xiaojuan Chen
- Department of Hyperbaric Oxygen Chamber, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Mei Li
- Department of Obstetrics and Gynecology, The Second People's Hospital of Guiyang City, Guiyang, Guizhou Province, China
| | - Jinnian Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shouli Dao
- Liupanshui Maternal and Child Health Hospital, Liupanshui, Guizhou Province, China
| | - Shixiang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second People's Hospital of Guiyang City, Guiyang, Guizhou Province, China
| | - Hui Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.
| | - Guanyou Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.
| |
Collapse
|
5
|
Khiat N, Girouard J, Kana Tsapi ES, Vaillancourt C, Van Themsche C, Reyes-Moreno C. TGFβ1 Restores Energy Homeostasis of Human Trophoblast Cells Under Hyperglycemia In Vitro by Inducing PPARγ Expression, AMPK Activation, and HIF1α Degradation. Cells 2025; 14:45. [PMID: 39791746 PMCID: PMC11720224 DOI: 10.3390/cells14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function. While HIF1α promotes glycolysis over mitochondrial respiration, PPARγ and AMPK encourage the opposite. However, the interplay between TGFβ1 and these energy-sensing regulators in trophoblast cell glucose metabolism remains unclear. This study aimed to investigate whether and how TGFβ1 regulates energy metabolism in trophoblast cells exposed to normal and high glucose conditions. The trophoblast JEG-3 cells were incubated in normal (5 mM) and high (25 mM) glucose conditions for 24 h in the absence and the presence of TGFβ1. The protein expression levels of phosphor (p)-SMAD2, GLUT1/3, HIF1α, PPARγ, p-AMPK, and specific OXPHOS protein subunits were determined by western blotting, and ATP and lactate production by bioluminescent assay kits. JEG-3 cells exposed to 25 mM glucose decreased ATP production but did not affect lactate production. These changes led to a reduction in the expression levels of GLUT1/3, mitochondrial respiratory chain proteins, and PPARγ, coinciding with an increase in HIF1α expression. Conversely, TGFβ1 treatment at 25 mM glucose reduced HIF1α expression while enhancing the expression levels of GLUT1/3, PPARγ, p-AMPK, and mitochondrial respiratory chain proteins, thereby rejuvenating ATP production. Our findings reveal that high glucose conditions disrupt cellular glucose metabolism in trophoblast cells by perturbing mitochondrial oxidative respiration and decreasing ATP production. Treatment with TGFβ1 appears to counteract this trend, probably by enhancing both glycolytic and mitochondrial metabolism, suggesting a potential regulatory role of TGFβ1 in placental trophoblast cell glucose metabolism.
Collapse
Affiliation(s)
- Nihad Khiat
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Julie Girouard
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Emmanuelle Stella Kana Tsapi
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Cathy Vaillancourt
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
- Institut National de la Recherche Scientifique (INRS)-Centre Armand Frappier Santé Biotechnologie and Research Centre CIUSSS-Nord-de-l’île-de-Montréal, Laval, QC H7V 1B7, Canada
| | - Céline Van Themsche
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Carlos Reyes-Moreno
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| |
Collapse
|
6
|
Cao C, Maimaitijiang Y, Wang Y, Yu Y. An in vitro study of coagulation evaluation in obstetric hemorrhage for pregnancy-induced hypertension with coagulation and platelet function analyzer. Hypertens Pregnancy 2024; 43:2366824. [PMID: 38864450 DOI: 10.1080/10641955.2024.2366824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
This study aimed to establish in vitro hemodilution and resupplementation assays for obstetric hemorrhage in pregnancy-induced hypertension (PIH) and to monitor the coagulation function dynamically using a coagulation and platelet function analyzer. Forty-seven singleton pregnant women were divided into normal (n = 24) and PIH (n = 23) groups. Peripheral blood samples were used to construct the assays, and the activated clotting time (ACT), clotting rate (CR), and platelet function index (PF) were measured. The results showed that the baseline ACT was higher in the PIH group (p < 0.01). Hemodilution assays showed decreased ACT and increased CR and PF, with ACT changes significantly lower in the PIH group (p < 0.05). CR changed most in both groups at lower dilution ratios (35% to 50%), while ACT changed most at a higher dilution ratio (75%). In the resupplementation assay, ACT exhibited the most significant response. The analyzer effectively detected differences between pregnant women with and without PIH. Thus, we need to pay more attention to the changes of ACT in the actual clinical application to assess the coagulation status of parturients.
Collapse
Affiliation(s)
- Caihong Cao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yusupu Maimaitijiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Tong J, Li H, Zhang L, Zhang C. The landscape of N1-methyladenosine (m 1A) modification in mRNA of the decidua in severe preeclampsia. BIOMOLECULES & BIOMEDICINE 2024; 24:1827-1847. [PMID: 38958464 PMCID: PMC11496874 DOI: 10.17305/bb.2024.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Recent discoveries in mRNA modification have highlighted N1-methyladenosine (m1A), but its role in preeclampsia (PE) pathogenesis remains unclear. In this study, we utilized methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to identify m1A peaks and the expression profile of mRNA in the decidua of humans with early-onset PE (EPE), late-onset PE (LPE), and normal pregnancy (NP). We assessed the m1A modification patterns in preeclamptic decidua using 10 m1A modulators. Our bioinformatic analysis focused on differentially methylated mRNAs (DMGs) and differentially expressed mRNAs (DEGs) in pairwise comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE, as well as m1A-related DEGs. The comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE identified 3110, 2801, and 2818 DMGs, respectively. We discerned three different m1A modification patterns from this data. Further analysis revealed that key PE-related DMGs and m1A-related DEGs predominantly influence signaling pathways critical for decidualization, including cAMP, MAPK, PI3K-Akt, Notch, and TGF-β pathways. Additionally, these modifications impact pathways related to vascular smooth muscle contraction, estrogen signaling, and relaxin signaling, contributing to vascular dysfunction. Our findings demonstrate that preeclamptic decidua exhibits unique mRNA m1A modification patterns and gene expression profiles that significantly alter signaling pathways essential for both decidualization and vascular dysfunction. These differences in m1A modification patterns provide valuable insights into the molecular mechanisms influencing the decidualization process and vascular function in the pathogenesis of PE. These m1A modification regulators could potentially serve as potent biomarkers or therapeutic targets for PE, warranting further investigation.
Collapse
Affiliation(s)
- Jing Tong
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hua Li
- Jinan Maternal and Child Health Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cong Zhang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
| |
Collapse
|
8
|
Huang D, Tu Z, Karnoub AE, Wei W, Rezaeian AH. Busulfan Chemotherapy Downregulates TAF7/TNF-α Signaling in Male Germ Cell Dysfunction. Biomedicines 2024; 12:2220. [PMID: 39457533 PMCID: PMC11504710 DOI: 10.3390/biomedicines12102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Busulfan is an FDA-approved alkylating drug used in the chemotherapy of advanced acute myeloid leukemia. The precise mechanisms by which Busulfan kills spermatogonia stem cells (SSCs) are not yet completely understood. Methods: Using a murine model, we evaluated Busulfan-induced apoptosis and DNA damage signaling between testis and ovary tissues. We executed RT-qPCR, analyzed single-nuclei RNA sequencing data and performed in situ hybridization for the localization of the gene expression in the tissues. Results: The results indicate that, in contrast to female germ cells, haploid male germ cells undergo significant apoptosis following Busulfan chemotherapy. Moreover, a gene enrichment analysis revealed that reactive oxygen species may activate the inflammatory response in part through the TNF-α/NF-κB signaling pathway. Interestingly, in the testis, the mRNA levels of TNF-α and TAF7 (TATA box-binding protein-associated factor 7) are downregulated, and testosterone levels suppressed. Mechanistically, the promoter of TNF-α has a conserved motif for binding TAF7, which is necessary for its transcriptional activation and may require further in-depth study. We next analyzed the tumorigenic function of TAF7 and revealed that it is highly overexpressed in several types of human cancers, particularly testicular germ cell tumors, and associated with poor patient survival. Therefore, we executed in situ hybridization and single-nuclei RNA sequencing, finding that less TAF7 mRNA is present in SSCs after chemotherapy. Conclusions: Thus, our data indicate a possible function of TAF7 in the regulation of SSCs and spermatogenesis following downregulation by Busulfan. These findings may account for the therapeutic effects of Busulfan and underlie its potential impact on cancer chemotherapy prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
9
|
Krupa P, Wein H, Zemmrich LS, Zygmunt M, Muzzio DO. Pregnancy-related factors induce immune tolerance through regulation of sCD83 release. Front Immunol 2024; 15:1452879. [PMID: 39328416 PMCID: PMC11424458 DOI: 10.3389/fimmu.2024.1452879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
A well-balanced maternal immune system is crucial to maintain fetal tolerance in case of infections during pregnancy. Immune adaptations include an increased secretion of soluble mediators to protect the semi-allogeneic fetus from excessive pro-inflammatory response. B lymphocytes acquire a higher capacity to express CD83 and secrete soluble CD83 (sCD83) upon exposure to bacteria-derived components such as LPS. CD83 possesses immune modulatory functions and shows a promising therapeutic potential against inflammatory conditions. The administration of sCD83 to pregnant mice reduces LPS-induced abortion rates. The increased CD83 expression by endometrial B cells as compared to peripheral blood B cells suggests its modulatory role in the fetal tolerance, especially in the context of infection. We postulate that in pregnancy, CD83 expression and release is controlled by pregnancy-related hormones. The intra- and extracellular expression of CD83 in leukocytes from peripheral blood or decidua basalis and parietalis at term were analyzed by flow cytometry. After treatment with pregnancy-related hormones and LPS, ELISA and qPCR were performed to study sCD83 release and CD83 gene expression, respectively. Cleavage prediction analysis was used to find potential proteases targeting CD83. Expression of selected proteases was analyzed by ELISA. Higher levels of CD83 were found in CD11c+ dendritic cells, CD3+ T cells and CD19+ B cells from decidua basalis and decidua parietalis after LPS-stimulation in vitro. An increase of intracellular expression of CD83 was also detected in CD19+ B cells from both compartments. Stimulated B cells displayed significantly higher percentages of CD83+ cells than dendritic cells and T cells from decidua basalis and peripheral blood. Treatment of B lymphocytes with pregnancy-related molecules (E2, P4, TGF-β1 and hCG) enhanced the LPS-mediated increase of CD83 expression, while dexamethasone led to a reduction. Similarly, the release of sCD83 was increased under TGF-β1 treatment but decreased upon dexamethasone stimulation. Finally, we found that the hormonal regulation of CD83 expression is likely a result from a balance between gene transcription from CD83 and the modulation of the metalloproteinase MMP-7. Thus, data supports and complements our previous murine studies on hormonal regulation of CD83 expression, reinforcing its immunomodulatory relevance in anti-bacterial responses during pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Damián Oscar Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University Medicine
Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Yuan G, Li D, Du X, Liu Y, Wang X, Hao C. Effects of platelet-rich fibrin on human endometrial stromal cells behavior in comparison to platelet-rich plasma. Front Cell Dev Biol 2024; 12:1445928. [PMID: 39291268 PMCID: PMC11405248 DOI: 10.3389/fcell.2024.1445928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Intrauterine transfusion of platelet-rich plasma (PRP) has become a new treatment for thin endometrium (TE) in recent years, but its low efficacy due to rapid release of growth factors limits its clinical use. Platelet-rich fibrin (PRF) starts the coagulation cascade reaction immediately after the blood comes into contact with the test tube. The natural coagulation process results in stable platelet activation and the slow release of growth factors. Methods In our study, primary human endometrial stromal cells (hESCs) were extracted from endometrial tissue. PRP and PRF were prepared from the patient cubital vein blood. Stromal cells were cultured in conditioned medium supplemented with PRP and PRF. Differences in cell behavior were observed by cell proliferation test and cell migration test. The relative expression levels of apoptotic Bax and antiapoptotic Bcl-2 genes were measured by qRT-PCR. The release of growth factors from PRP and PRF was detected by ELISA. Results We found that both PRP and PRF inhibited apoptosis of hESCs, which favored cell proliferation and migration. In addition, PRF releases growth factors for a longer period of time compared to PRP. Discussion PRF offer a more sustained therapeutic effect compared to PRP, which provides a new idea for endometrial regeneration and repair.
Collapse
Affiliation(s)
- Guanghui Yuan
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Duan Li
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Xin Du
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Yingxue Liu
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Xiaoxiao Wang
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Cuifang Hao
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Fato BR, de Alwis N, Beard S, Binder NK, Pritchard N, Kaitu'u-Lino TJ, Bubb KJ, Hannan NJ. Exploring the Therapeutic Potential of C-Type Natriuretic Peptide for Preeclampsia. Hypertension 2024; 81:1883-1894. [PMID: 39016006 DOI: 10.1161/hypertensionaha.124.22820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Preeclampsia is a serious condition of pregnancy, complicated by aberrant maternal vascular dysfunction. CNP (C-type natriuretic peptide) contributes to vascular homeostasis, acting through NPR-B (natriuretic peptide receptor-B) and NPR-C (natriuretic peptide receptor-C). CNP mitigates vascular dysfunction of arteries in nonpregnant cohorts; this study investigates whether CNP can dilate maternal arteries in ex vivo preeclampsia models. METHODS Human omental arteries were dissected from fat biopsies collected during cesarean section. CNP, NPR-B, and NPR-C mRNA expression was assessed in arteries collected from pregnancies complicated by preeclampsia (n=6) and normotensive controls (n=11). Using wire myography, we investigated the effects of CNP on dilation of arteries from normotensive pregnancies. Arteries were preconstricted with either serum from patients with preeclampsia (n=6) or recombinant ET-1 (endothelin-1; vasoconstrictor elevated in preeclampsia; n=6) to model vasoconstriction associated with preeclampsia. Preconstricted arteries were treated with recombinant CNP (0.001-100 µmol/L) or vehicle and vascular relaxation assessed. In further studies, arteries were preincubated with NPR-B (5 µmol/L) and NPR-C (10 µmol/L) antagonists before serum-induced constriction (n=4-5) to explore mechanistic signaling. RESULTS CNP, NPR-B, and NPR-C mRNAs were not differentially expressed in omental arteries from preeclamptic pregnancies. CNP potently stimulated maternal artery vasorelaxation in our model of preeclampsia (using preeclamptic serum). Its vasodilatory actions were driven through the activation of NPR-B predominantly; antagonism of this receptor alone dampened CNP vasorelaxation. Interestingly, CNP did not reduce ET-1-driven omental artery constriction. CONCLUSIONS Collectively, these data suggest that enhancing CNP signaling through NPR-B offers a potential therapeutic strategy to reduce systemic vascular constriction in preeclampsia.
Collapse
Affiliation(s)
- Bianca R Fato
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Natasha Pritchard
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Kristen J Bubb
- Department of Physiology, Biomedicine Discovery Institute (K.J.B.), Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences (K.J.B.), Monash University, Clayton, Victoria, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
12
|
Xiao Y, Zeng F, Sun J. The improvement of inflammatory infiltration and pregnancy outcome in mice with recurrent spontaneous abortion by human amniotic mesenchymal stem cells. Biol Reprod 2024; 111:351-360. [PMID: 38718142 PMCID: PMC11327314 DOI: 10.1093/biolre/ioae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 08/17/2024] Open
Abstract
Recurrent spontaneous abortion is thought to be mostly triggered by immune-related causes. Mesenchymal stem cells, which exhibit the traits of multi-directional differentiation capacity and low immunogenicity, have recently been recommended as a viable treatment for spontaneous abortion-prone mice to increase the success of pregnancy. Amniotic membrane tissue is a byproduct of pregnancy and delivery that has a wide range of potential uses due to its easy access to raw materials and little ethical constraints. To construct an abortion-prone mouse model for this investigation, CBA/J female mice were coupled with male DBA/2 mice, while CBA/J female mice were paired with male BALB/c mice as a control. The identical volume of human amniotic mesenchymal stem cells or phosphate buffer was injected intraperitoneally on the 4.5th day of pregnancy. CBA/J female mice were sacrificed by cervical dislocation on the 13.5th day of pregnancy, the embryo absorption rate was calculated, and the uterus, decidua tissues and placenta were gathered for examination. Through detection, it was discovered that human amniotic mesenchymal stem cells significantly increased the expression of interleukin 10 and transforming growth factor beta, while they significantly decreased the expression of interleukin 1 beta and interleukin 6, improved vascular formation and angiogenesis, and minimized the embryo absorption rate and inflammatory cell infiltration in the recurrent spontaneous abortion + human amniotic mesenchymal stem cells group. In any case, human amniotic mesenchymal stem cells regulate inflammatory factors and cell balance at the maternal-fetal interface, which result in a reduction in the rate of embryo absorption and inflammatory infiltration and provide an innovative perspective to the clinical therapy of recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Yi Xiao
- Graduate School of China Medical University, Shenyang 110000, China
| | - Fanyu Zeng
- School of Public Health, Fudan University, Shanghai 200000, China
| | - Jingli Sun
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang 110000, China
| |
Collapse
|
13
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
14
|
Horvat Mercnik M, Schliefsteiner C, Sanchez-Duffhues G, Wadsack C. TGFβ signalling: a nexus between inflammation, placental health and preeclampsia throughout pregnancy. Hum Reprod Update 2024; 30:442-471. [PMID: 38519450 PMCID: PMC11215164 DOI: 10.1093/humupd/dmae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFβ) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFβ signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFβ signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFβ signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFβ is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE This comprehensive review aims to explore and elucidate the roles of the major members of the TGFβ superfamily, including TGFβs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfβ', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfβ signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfβ signalling', 'placental macrophages tgfβ', 'endothelial cells tgfβ', 'endothelium tgfβ signalling', 'trophoblast invasion tgfβ signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfβ', 'tgfβ preeclampsia', 'tgfβ placental development', 'TGFβ placental function', 'endothelial dysfunction preeclampsia tgfβ signalling', 'vascular remodelling placenta TGFβ', 'inflammation pregnancy tgfβ', 'immune response pregnancy tgfβ', 'immune tolerance pregnancy tgfβ', 'TGFβ pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfβ pregnancy tregs', 'TGFβ placenta NK cells', 'TGFβ placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES A comprehensive understanding of TGFβ signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFβ ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFβ signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFβ signalling. WIDER IMPLICATIONS The dysregulation of TGFβ signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFβ signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Tissue-Specific BMP Signalling ISPA-HUCA, Oviedo, Spain
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
15
|
Atta S, Mekky R, Ibrahim M, Abdallah MM, Elbaz MAH, Radwan E. Increased Expression of Neprilysin Is Associated with Inflammation in Preeclampsia. Reprod Sci 2024; 31:1385-1390. [PMID: 38114865 PMCID: PMC11090941 DOI: 10.1007/s43032-023-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Preeclampsia (PE) is associated with a finely tuned equilibrium between trophoblast cell invasion and fetal-maternal immunological tolerance. An imbalance between proinflammatory (IL-6) and anti-inflammatory (IL-10) cytokines is a hallmark of PE. Neprilysin (NEP), a membrane-bound metalloprotease, is vulnerable to the inflammatory environment and plays a significant role in modulating vascular tone. The aim of this study was to determine the correlation between NEP (mRNA and protein) levels and the inflammatory status in PE patients compared to healthy pregnant women and to identify the role of NEP in evaluating the severity of preeclampsia. The study group comprised 52 pregnant women with PE while the control group comprised 47 normotensive pregnant women. After a caesarean section, placental tissue samples from patients and controls were collected to measure the expression levels of IL-6, TGF-β, IL-10, and NEP mRNA. In addition, an enzyme-linked immunosorbent assay was used to assess the quantity of NEP protein in blood samples. Our results revealed a significant positive correlation between NEP (mRNA and protein) and proinflammatory markers IL-6 and TGF-β levels in patients compared to controls and a significant inverse correlation between NEP and anti-inflammatory cytokine IL-10. Moreover, this is the first study to find a strong positive correlation between NEP level and PE severity. In conclusion, in PE patients, there is a substantial relationship between NEP, the degree of inflammation, and PE severity. NEP could act as a potential biomarker for diagnosis and prognosis of PE.
Collapse
Affiliation(s)
- Sara Atta
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rehab Mekky
- Institute for Drug Development and Innovation Research, Assiut University, Assiut, Egypt
| | - Mostafa Ibrahim
- Department of Obstetrics and Gynecology, Assiut University, Assiut, Egypt
| | - Mohamed M Abdallah
- Department of Obstetrics and Gynecology, Assiut University, Assiut, Egypt.
| | - Mona A H Elbaz
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Radwan
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- Biochemistry Department, Sphinx University, New Assiut, Assiut, Egypt
| |
Collapse
|
16
|
Zhang J, Liu X, Gao Y. FTO protein regulates the TGF-β signalling pathway through RNA N6-methyladenosine modification to induce unexplained recurrent spontaneous abortion. FEBS J 2024; 291:1545-1559. [PMID: 38245815 DOI: 10.1111/febs.17053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Recent studies have revealed the involvement of RNA m6A modification in embryonic development; however, the relationship between aberrant RNA m6A modification and unexplained recurrent spontaneous abortion (URSA) remains unclear. In this study, we analysed the level of RNA m6A modification in trophoblasts using dot blot, RNA m6A quantification, and MeRIP assays. By integrating data from the GEO database, RNA-Seq, and MeRIP-Seq, we examined the aberrant expression of m6A methyltransferases and their downstream molecules in chorionic villus (placental) tissues. RNA pull-down, RIP, and electrophoretic mobility shift assay were used to analyse the binding relationship between the YTHDC1 protein and MEG3. Additionally, RNA stability and BrU immunoprecipitation chase assays were utilised to elucidate the regulation of MEG3 stability by YTHDC1. ChIP and DNA pull-down RNA experiments were performed to elucidate the mechanism by which MEG3 targets EZH2 to the TGF-β1 promoter. The results showed that the expression of the m6A demethylase FTO protein was significantly increased in URSA trophoblasts, leading to inhibition of the MEG3 m6A modification and weakening of the stabilising effect of the m6A binding protein YTHDC1 on MEG3. Furthermore, MEG3 was found to bind simultaneously with the EZH2 protein and the TGF-β1 gene promoter, enabling the localisation of EZH2 protein to the TGF-β1 gene promoter and subsequent inhibition of TGF-β1 gene expression. In summary, our findings elucidate the mechanism by which FTO protein regulates the MEG3-TGF-β signalling pathway, thereby suppressing trophoblast invasion and proliferation in URSA trophoblast cells. These findings provide new insights for the treatment of URSA.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Reproductive Medicine, Obstetrics and Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), China
| | - Xinqiong Liu
- Department of Reproductive Medicine, Obstetrics and Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), China
| | - Yali Gao
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), China
| |
Collapse
|
17
|
Cambra JM, Gil MA, Cuello C, Gonzalez-Plaza A, Rodriguez-Martinez H, Klymiuk N, Martinez EA, Parrilla I. Cytokine profile in peripheral blood mononuclear cells differs between embryo donor and potential recipient sows. Front Vet Sci 2024; 11:1333941. [PMID: 38601906 PMCID: PMC11006195 DOI: 10.3389/fvets.2024.1333941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Pregnancy success relies on the establishment of a delicate immune balance that requires the early activation of a series of local and systemic immune mechanisms. The changes in the immunological profile that are normally occurring in the pregnant uterus does not take place in cyclic (non-pregnant) uterus, a fact that has been widely explored in pigs at the tissue local level. Such differences would be especially important in the context of embryo transfer (ET), where a growing body of literature indicates that immunological differences at the uterine level between donors and recipients may significantly impact embryonic mortality. However, whether components of peripheral immunity also play a role in this context remains unknown. Accordingly, our hypothesis is that the immune status of donor sows differs from potential recipients, not only at the tissue local level but also at the systemic level. These differences could contribute to the high embryonic mortality rates occurring in ET programs. Methods In this study differences in systemic immunity, based on cytokine gene expression profile in peripheral blood mononuclear cells (PBMCs), between embryo-bearing donor (DO group; N = 10) and potential recipient sows (RE group; N = 10) at Day 6 after the onset of the estrus were explored. Gene expression analysis was conducted for 6 proinflammatory (IL-1α, IL-1β, IL-2, GM-CSF, IFN-γ, and TNF-α) and 6 anti-inflammatory (IL-4, IL-6, IL-10, IL-13, TGF-β1, and LIF) cytokines. Results and discussion All cytokines were overexpressed in the DO group except for IL-4, suggesting that stimuli derived from the insemination and/or the resultant embryos modify the systemic immune profile in DO sows compared to RE (lacking these stimuli). Our results also suggest that certain cytokines (e.g., IL-1α and IL-1β) might have a predictive value for the pregnancy status.
Collapse
Affiliation(s)
- Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Nikolai Klymiuk
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Murcia, Spain
| |
Collapse
|
18
|
Yang Y, Song S, Gu S, Gu Y, Zhao P, Li D, Cheng W, Liu C, Zhang H. Kisspeptin prevents pregnancy loss by modulating the immune microenvironment at the maternal-fetal interface in recurrent spontaneous abortion. Am J Reprod Immunol 2024; 91:e13818. [PMID: 38414308 DOI: 10.1111/aji.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
PROBLEM Immune factors are crucial in the development of recurrent spontaneous abortion (RSA). This study aimed to investigate whether kisspeptin regulates immune cells at the maternal-fetal interface and whether G protein-coupled receptor 54 (GPR54) is involved in this process, through which it contributes to the pathogenesis of RSA. METHOD OF STUDY Normal pregnancy (NP) (CBA/J × BALB/c) and RSA (CBA/J × DBA/2) mouse models were established. NP mice received tail vein injections of PBS and KP234 (blocker of kisspeptin receptor), whereas RSA mice received PBS and KP10 (active fragment of kisspeptin). The changes in immune cells in mouse spleen and uterus were assessed using flow cytometry and immunofluorescence. The expression of critical cytokines was examined by flow cytometry, ELISA, Western blotting, and qPCR. Immunofluorescence was employed to detect the coexpression of FOXP3 and GPR54. RESULTS The findings revealed that the proportion of Treg cells, MDSCs, and M2 macrophages in RSA mice was lower than that in NP mice, but it increased following the tail vein injection of KP10. Conversely, the proportion of these cells was reduced in NP mice after the injection of KP234. However, the trend of γδT cell proportion change is contrary to these cells. Furthermore, FOXP3 and GPR54 were coexpressed in mouse spleen and uterus Treg cells as well as in the human decidua samples. CONCLUSION Our results suggest that kisspeptin potentially participates in the pathogenesis of RSA by influencing immune cell subsets at the maternal-fetal interface, including Treg cells, MDSC cells, γδT cells, and M2 macrophages.
Collapse
Affiliation(s)
- Yanhong Yang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Saizhe Song
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuting Gu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Zhao
- Department of Rheumatology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Dongxiao Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Cheng
- Department of Dermatology, The Affiliated Changshu Hospital of Nantong University, Suzhou, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Green ES, Chan HY, Frost E, Griffiths M, Hutchison J, Martin JH, Mihalas BP, Newman T, Dunleavy JEM. Recent advances in reproductive research in Australia and New Zealand: highlights from the Annual Meeting of the Society for Reproductive Biology, 2022. Reprod Fertil Dev 2024; 36:RD23213. [PMID: 38346692 DOI: 10.1071/rd23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 04/11/2024] Open
Abstract
In 2022, the Society for Reproductive Biology came together in Christchurch New Zealand (NZ), for its first face-to-face meeting since the global COVID-19 pandemic. The meeting showcased recent advancements in reproductive research across a diverse range of themes relevant to human health and fertility, exotic species conservation, and agricultural breeding practices. Here, we highlight the key advances presented across the main themes of the meeting, including advances in addressing opportunities and challenges in reproductive health related to First Nations people in Australia and NZ; increasing conservation success of exotic species, including ethical management of invasive species; improvements in our understanding of developmental biology, specifically seminal fluid signalling, ovarian development and effects of environmental impacts such as endocrine-disrupting chemicals; and leveraging scientific breakthroughs in reproductive engineering to drive solutions for fertility, including in assisted reproductive technologies in humans and agricultural industries, and for regenerative medicine.
Collapse
Affiliation(s)
- Ella S Green
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Hon Y Chan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Emily Frost
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Meaghan Griffiths
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Vic., Australia; and Gynaecology Research Centre, Royal Women's Hospital, Parkville, Vic., Australia
| | - Jennifer Hutchison
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, Vic., Australia; and Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton Vic., Australia; and Department of Molecular and Translational Science, Monash University, Clayton, Vic., Australia
| | - Jacinta H Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia; and Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Bettina P Mihalas
- The Oocyte Biology Research Unit, Discipline of Women's Health, School of Clinical Medicine, Faculty of Medicine and Health, The University of NSW Sydney, Randwick, NSW, Australia
| | - Trent Newman
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, Vic., Australia
| | - Jessica E M Dunleavy
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
20
|
Saito S. Role of immune cells in the establishment of implantation and maintenance of pregnancy and immunomodulatory therapies for patients with repeated implantation failure and recurrent pregnancy loss. Reprod Med Biol 2024; 23:e12600. [PMID: 39091423 PMCID: PMC11292669 DOI: 10.1002/rmb2.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Background Immune cells play an important role in the establishment of pregnancy, and abnormalities in the immune system can cause implantation failure and miscarriage. Methods Previous papers have been summarized and the role of immune cells in reproduction is reviewed. Results The immune environment in the uterus changes drastically from before implantation to after pregnancy to maintain pregnancy. In allogeneic pregnancies, immature dendritic cells (DCs) that induce immune tolerance from outside the uterus flow into the uterus, and mature DCs that remain in the uterus express programmed cell death ligand 2, which suppresses the immune response. Macrophages are classified into M1-macrophages, which induce inflammation, and M2-macrophages, which suppress inflammation; M1-macrophages are required for luteinization, and M2-macrophages induce the differentiation of endometrial epithelial cells to enable implantation. Regulatory T cells, which suppress rejection, are essential for the implantation and maintenance of allogeneic pregnancies. Implantation failure and fetal loss are associated with decreased numbers or qualitative abnormalities of DCs, macrophages, and regulatory T cells. The clinical usefulness of immunomodulatory therapies in patients with repeated implantation failure and recurrent pregnancy loss has been reported. Conclusion The provision of individualized medical care in cases of implantation failure or miscarriage may improve clinical outcomes.
Collapse
|
21
|
Wang YJ, Xu QY, Ye WM, Yi DY, Zheng XQ, Xie L, Lin LR, Lin Y, Yang TC. Treponema pallidum Promotes the Polarization of M2 Subtype Macrophages to M1 Subtype Mediating the Apoptosis and Inhibiting the Angiogenesis of Human Umbilical Vein Endothelial Cells. ACS Infect Dis 2023; 9:2548-2559. [PMID: 37983134 DOI: 10.1021/acsinfecdis.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
M2 macrophages were related to local immune homeostasis and maternal-fetal tolerance in normal pregnancy; whether M2 macrophages can respond to the stimulation of Treponema pallidum to mediate placental vascular inflammation injury is unclear. In this study, M2 macrophages were constructed to investigate the impact of T. pallidum on macrophage polarization and the underlying signaling pathway involved in this process, and the influence of macrophage polarization triggered by T. pallidum on the apoptosis and angiogenesis of human umbilical vein endothelial cells (HUVEC) was also explored. The results showed that M2 macrophage markers (CD206 and PPARγ) and anti-inflammatory factors (TGFβ and CCL18) were decreased, while M1 macrophage marker CD80 and inflammatory cytokines (IL1β and TNFα) were increased when M2 macrophages were treated with T. pallidum, indicating that T. pallidum promoted the polarization of M2 subtype macrophages to the M1 subtype. Moreover, T. pallidum-induced M1 macrophage polarization was found to be significantly correlated with the activation of Janus kinase 1 (JAK1) and signal transducer and activator of transcription 1 (STAT1). In addition, T. pallidum-induced M1 macrophages were found to promote apoptosis and inhibit the angiogenesis of HUVECs, and JAK1 or STAT1 inhibitors could weaken the apoptosis rate and promote the angiogenesis of HUVECs. These findings revealed that T. pallidum promoted the polarization of M2 macrophages to the M1 subtype through the JAK1-STAT1 signal pathway mediating the apoptosis and inhibiting angiogenesis of HUVECs, which may provide a possible mechanism for T. pallidum-induced adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yong-Jing Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan 628000, China
| | - Qiu-Yan Xu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Wei-Ming Ye
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Dong-Yu Yi
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xin-Qi Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Lin Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yu Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
| |
Collapse
|
22
|
Bačenková D, Trebuňová M, Demeterová J, Živčák J. Human Chondrocytes, Metabolism of Articular Cartilage, and Strategies for Application to Tissue Engineering. Int J Mol Sci 2023; 24:17096. [PMID: 38069417 PMCID: PMC10707713 DOI: 10.3390/ijms242317096] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Hyaline cartilage, which is characterized by the absence of vascularization and innervation, has minimal self-repair potential in case of damage and defect formation in the chondral layer. Chondrocytes are specialized cells that ensure the synthesis of extracellular matrix components, namely type II collagen and aggregen. On their surface, they express integrins CD44, α1β1, α3β1, α5β1, α10β1, αVβ1, αVβ3, and αVβ5, which are also collagen-binding components of the extracellular matrix. This article aims to contribute to solving the problem of the possible repair of chondral defects through unique methods of tissue engineering, as well as the process of pathological events in articular cartilage. In vitro cell culture models used for hyaline cartilage repair could bring about advanced possibilities. Currently, there are several variants of the combination of natural and synthetic polymers and chondrocytes. In a three-dimensional environment, chondrocytes retain their production capacity. In the case of mesenchymal stromal cells, their favorable ability is to differentiate into a chondrogenic lineage in a three-dimensional culture.
Collapse
Affiliation(s)
- Darina Bačenková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (M.T.); (J.D.); (J.Ž.)
| | | | | | | |
Collapse
|
23
|
Wen B, Liao H, Lin W, Li Z, Ma X, Xu Q, Yu F. The Role of TGF-β during Pregnancy and Pregnancy Complications. Int J Mol Sci 2023; 24:16882. [PMID: 38069201 PMCID: PMC10706464 DOI: 10.3390/ijms242316882] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Transforming growth factor beta (TGF-β), a multifunctional cytokine, is one of the most important inflammatory cytokines closely related to pregnancy. It plays significant roles in hormone secretion, placental development, and embryonic growth during pregnancy. TGF-β is implicated in embryo implantation and inhibits the invasion of extraepithelial trophoblast cells. It also moderates the mother-fetus interaction by adjusting the secretion pattern of immunomodulatory factors in the placenta, consequently influencing the mother's immune cells. The TGF-β family regulates the development of the nervous, respiratory, and cardiovascular systems by regulating gene expression. Furthermore, TGF-β has been associated with various pregnancy complications. An increase in TGF-β levels can induce the occurrences of pre-eclampsia and gestational diabetes mellitus, while a decrease can lead to recurrent miscarriage due to the interference of the immune tolerance environment. This review focuses on the role of TGF-β in embryo implantation and development, providing new insights for the clinical prevention and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Baohong Wen
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Huixin Liao
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Weilin Lin
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Zhikai Li
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Xiaoqing Ma
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Qian Xu
- Laboratory of Molecular Pathology, Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Feiyuan Yu
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
24
|
Fu Y, Li Z, Lin W, Yao J, Jiang X, Shu Q, Mao X, Tu J, Liang X, Li L. Extramedullary hematopoiesis contributes to enhanced erythropoiesis during pregnancy via TGF-β signaling. Front Immunol 2023; 14:1295717. [PMID: 38045690 PMCID: PMC10693449 DOI: 10.3389/fimmu.2023.1295717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Red blood cells are the predominant cellular component in human body, and their numbers increase significantly during pregnancy due to heightened erythropoiesis. CD71+ erythroid cells (CECs) are immature red blood cells, encompassing erythroblasts and reticulocytes, constitute a rare cell population primarily found in the bone marrow, although they are physiologically enriched in the neonatal mouse spleen and human cord blood. Presently, the mechanisms underlying the CECs expansion during pregnancy remain largely unexplored. Additionally, the mechanisms and roles associated with extramedullary hematopoiesis (EMH) of erythroid cells during pregnancy have yet to be fully elucidated. In this study, our objective was to examine the underlying mechanisms of erythroid-biased hematopoiesis during pregnancy. Our findings revealed heightened erythropoiesis and elevated CECs in both human and mouse pregnancies. The increased presence of transforming growth factor (TGF)-β during pregnancy facilitated the differentiation of CD34+ hematopoietic stem and progenitor cells (HSPCs) into CECs, without impacting HSPCs proliferation, ultimately leading to enhanced erythropoiesis. The observed increase in CECs during pregnancy was primarily attributed to EMH occurring in the spleen. During mouse pregnancy, splenic stromal cells were found to have a significant impact on splenic erythropoiesis through the activation of TGF-β signaling. Conversely, splenic macrophages were observed to contribute to extramedullary erythropoiesis in a TGF-β-independent manner. Our results suggest that splenic stromal cells play a crucial role in promoting extramedullary erythropoiesis and the production of CECs during pregnancy, primarily through TGF-β-dependent mechanisms.
Collapse
Affiliation(s)
- Yao Fu
- Department of Obstetrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
- Post-doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengjuan Li
- South China University of Technology School of Medicine, Guangzhou, China
| | - Wen Lin
- South China University of Technology School of Medicine, Guangzhou, China
| | - Jingxin Yao
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiang Jiang
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qun Shu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyuan Mao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaoqin Tu
- Department of Obstetrics and Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinyuan Liang
- Department of Obstetrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
- Post-doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Li
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Xue H, Jiang J, Gao J, Guo M, Tang Q, Li X, Lu H, Sun X, Wu J, Zhang Y. Correlation of TGF-β signaling pathway gene polymorphisms with unexplained recurrent spontaneous abortion. Medicine (Baltimore) 2023; 102:e35697. [PMID: 37904417 PMCID: PMC10615491 DOI: 10.1097/md.0000000000035697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The association of key genes in the transforming growth factor-β (TGF-β) signaling pathway and their gene polymorphisms with unexplained recurrent spontaneous abortion (URSA) is unclear. OBJECTIVE To investigate the association of gene polymorphisms related to the TGF-β signaling pathway in URSA women. METHODS The study population consisted of 80 women with URSA and 90 normal control women, of which 10 women with URSA and 10 normal control women underwent high-throughput sequencing to select loci, and the remaining 70 women with URSA and 80 normal control women underwent flight mass spectrometry experiments to verify gene loci polymorphism. A total of 7 polymorphic loci in interleukin-6 (IL-6), TGF-β1, TNF-α, SMAD1, and TNFRSF4 genes were screened by high-throughput sequencing combined with a review of databases. An SNP flight mass spectrometer (Mass ARRAY detection system) was applied to detect the polymorphisms and their frequencies in 70 women with URSA and 80 normal control women at the 7 gene loci. RESULTS Among the 7 loci of IL-6, TGF-β1, TNF-α, SMAD1, and TNFRSF4 genes, 2 loci were found to have significantly different allele and genotype frequency distributions between the 70 URSA and 80 normal controls, one was the IL-6 gene -174G/C locus (rs1800795), the risk of disease was 2.636 and 3.231 times higher in individuals carrying the C allele and CC genotype than in those carrying the G allele and GG genotype, respectively; the other was the TGF-β1 gene -509T/C locus (rs1800469), and the risk of disease was 1.959 and 3.609 times higher in individuals carrying the T allele and TT genotype than in those carrying the C allele and CC genotype, respectively. The remaining 5 genetic loci have no statistically significant. CONCLUSION IL-6 gene -174G/C locus (rs1800795) genotype CC and allele C may be the causative factor of URSA, TGF-β1 gene -509T/C locus (rs1800469) genotype TT and allele T may be the causative factor of URSA, and polymorphisms of the 2 loci may be associated with URSA.
Collapse
Affiliation(s)
- Huiqin Xue
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jinsong Jiang
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingbo Gao
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Min Guo
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qiaoyin Tang
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xinyan Li
- Department of Obstetrics and Gynecology, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hongyong Lu
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiayu Sun
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jianrui Wu
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
26
|
Baines KJ, West RC. Sex differences in innate and adaptive immunity impact fetal, placental, and maternal health†. Biol Reprod 2023; 109:256-270. [PMID: 37418168 DOI: 10.1093/biolre/ioad072] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
The differences between males and females begin shortly after birth, continue throughout prenatal development, and eventually extend into childhood and adult life. Male embryos and fetuses prioritize proliferation and growth, often at the expense of the fetoplacental energy reserves. This singular focus on growth over adaptability leaves male fetuses and neonates vulnerable to adverse outcomes during pregnancy and birth and can have lasting impacts throughout life. Beyond this prioritization of growth, male placentas and fetuses also respond to infection and inflammation differently than female counterparts. Pregnancies carrying female fetuses have a more regulatory immune response, whereas pregnancies carrying male fetuses have a stronger inflammatory response. These differences can be seen as early as the innate immune response with differences in cytokine and chemokine signaling. The sexual dimorphism in immunity then continues into the adaptive immune response with differences in T-cell biology and antibody production and transfer. As it appears that these sex-specific differences are amplified in pathologic pregnancies, it stands to reason that differences in the placental, fetal, and maternal immune responses in pregnancy contribute to increased male perinatal morbidity and mortality. In this review, we will describe the genetic and hormonal contributions to the sexual dimorphism of fetal and placental immunity. We will also discuss current research efforts to describe the sex-specific differences of the maternal-fetal interface and how it impacts fetal and maternal health.
Collapse
Affiliation(s)
- Kelly J Baines
- Anatomy, Physiology, Pharmacology Department, Auburn University, Auburn, AL 36849, USA
| | - Rachel C West
- Anatomy, Physiology, Pharmacology Department, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
27
|
Hashimoto K, Miyagawa Y, Watanabe S, Takasaki K, Nishizawa M, Yatsuki K, Takahashi Y, Kamata H, Kihira C, Hiraike H, Sasamori Y, Kido K, Ryo E, Nagasaka K. The TGF-β/UCHL5/Smad2 Axis Contributes to the Pathogenesis of Placenta Accreta. Int J Mol Sci 2023; 24:13706. [PMID: 37762005 PMCID: PMC10530686 DOI: 10.3390/ijms241813706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Placenta accreta is a high-risk condition causing obstetric crisis and hemorrhage; however, its pathogenesis remains unknown. We aimed to identify the factors contributing to trophoblast invasiveness and angiogenic potential, which in turn drive the pathogenesis of placenta accreta. We focused on the transforming growth factor (TGF)-β1-Smad pathway and investigated the intrinsic relationship between the time- and dose-dependent inhibition of the ubiquitinating enzyme UCHL5 using bAP15, a deubiquitinase inhibitor, after TGF-β1 stimulation and the invasive and angiogenic potential of two cell lines, gestational choriocarcinoma cell line JEG-3 and trophoblast cell line HTR-8/SVneo. UCHL5 inhibition negatively regulated TGF-β1-induced Smad2 activation, decreasing extravillous trophoblast invasiveness. Smad1/5/9 and extracellular signal-regulated kinase (ERK) were simultaneously activated, and vascular endothelial growth factor was secreted into the trophoblast medium. However, extravillous trophoblast culture supernatant severely impaired the vasculogenic potential of human umbilical vein endothelial cells. These results suggest that the downstream ERK pathway and Smad1/5/9 potentially regulate the TGF-β1-Smad pathway in extravillous trophoblasts, whereas Smad2 contributes to their invasiveness. The abnormal invasive and angiogenic capacities of extravillous cells, likely driven by the interaction between TGF-β1-Smad and ERK pathways, underlie the pathogenesis of placenta accreta.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
28
|
Tapilskaya NI, Savicheva AM, Shalepo KV, Budilovskaya OV, Gzgzyan AM, Bespalova ON, Khusnutdinova TA, Krysanova AA, Obedkova KV, Safarian GK. Local Immune Biomarker Expression Depending on the Uterine Microbiota in Patients with Idiopathic Infertility. Int J Mol Sci 2023; 24:ijms24087572. [PMID: 37108732 PMCID: PMC10143846 DOI: 10.3390/ijms24087572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The endometrium has traditionally been considered sterile. Nowadays, active studies are performed on the female upper genital tract microbiota. Bacteria and/or viruses colonizing the endometrium are known to alter its functional properties, including receptivity and embryo implantation. Uterine cavity inflammation caused by microorganisms leads to disrupted cytokine expression, which, in turn, is mandatory for the successful implantation of the embryo. The present study assessed the vaginal and endometrial microbiota composition and its relation to the levels of cytokines produced by the endometrium in reproductive-aged women complaining of secondary infertility of unknown origin. The multiplex real-time PCR assay was applied for vaginal and endometrial microbiota analysis. The quantitative measurement of endometrial α-defensin (DEFa1), transforming growth factor (TGFβ1), and basic fibroblast growth factor (bFGF2) was carried out using the ELISA (Cloud-Clone Corporation (Katy, TX, USA; manufactured in Wuhan, China). A reliable decline in endometrial TGFβ1 and bFGF2 and an increase in DEFa1 were demonstrated in women with idiopathic infertility when compared to fertile patients. However, TGFβ1, bFGF2, and DEFa1 expression correlated reliably only with the presence of Peptostreptococcus spp. and HPV in the uterine cavity. The obtained results highlight the importance of local immune biomarker determination in the assessment of certain bacteria and viruses' significance as causative agents of infertility.
Collapse
Affiliation(s)
- Natalya I Tapilskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Alevtina M Savicheva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Kira V Shalepo
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Olga V Budilovskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Aleksandr M Gzgzyan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Olesya N Bespalova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Tatiana A Khusnutdinova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Anna A Krysanova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Kseniia V Obedkova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Galina Kh Safarian
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| |
Collapse
|
29
|
Trinh QD, Pham NTK, Takada K, Ushijima H, Komine-Aizawa S, Hayakawa S. Roles of TGF-β1 in Viral Infection during Pregnancy: Research Update and Perspectives. Int J Mol Sci 2023; 24:ijms24076489. [PMID: 37047462 PMCID: PMC10095195 DOI: 10.3390/ijms24076489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) is a pleiotropic growth factor playing various roles in the human body including cell growth and development. More functions of TGF-β1 have been discovered, especially its roles in viral infection. TGF-β1 is abundant at the maternal-fetal interface during pregnancy and plays an important function in immune tolerance, an essential key factor for pregnancy success. It plays some critical roles in viral infection in pregnancy, such as its effects on the infection and replication of human cytomegalovirus in syncytiotrophoblasts. Interestingly, its role in the enhancement of Zika virus (ZIKV) infection and replication in first-trimester trophoblasts has recently been reported. The above up-to-date findings have opened one of the promising approaches to studying the mechanisms of viral infection during pregnancy with links to corresponding congenital syndromes. In this article, we review our current and recent advances in understanding the roles of TGF-β1 in viral infection. Our discussion focuses on viral infection during pregnancy, especially in the first trimester. We highlight the mutual roles of viral infection and TGF-β1 in specific contexts and possible functions of the Smad pathway in viral infection, with a special note on ZIKV infection. In addition, we discuss promising approaches to performing further studies on this topic.
Collapse
Affiliation(s)
- Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
30
|
Ahlberg E, Al-Kaabawi A, Thune R, Simpson MR, Pedersen SA, Cione E, Jenmalm MC, Tingö L. Breast milk microRNAs: Potential players in oral tolerance development. Front Immunol 2023; 14:1154211. [PMID: 36999032 PMCID: PMC10045994 DOI: 10.3389/fimmu.2023.1154211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Breast milk is an essential source of nutrition and hydration for the infant. In addition, this highly complex biological fluid contains numerous immunologically active factors such as microorganisms, immunoglobulins, cytokines and microRNAs (miRNAs). Here, we set out to predict the function of the top 10 expressed miRNAs in human breast milk, focusing on their relevance in oral tolerance development and allergy prevention in the infant. The top expressed miRNAs in human breast milk were identified on basis of previous peer-reviewed studies gathered from a recent systematic review and an updated literature search. The miRNAs with the highest expression levels in each study were used to identify the 10 most common miRNAs or miRNA families across studies and these were selected for subsequent target prediction. The predictions were performed using TargetScan in combination with the Database for Annotation, Visualization and Integrated Discovery. The ten top expressed miRNAs were: let-7-5p family, miR-148a-3p, miR-30-5p family, miR-200a-3p + miR-141-3p, miR-22-3p, miR-181-5p family, miR-146b-5p, miR-378a-3p, miR-29-3p family, miR-200b/c-3p and miR-429-3p. The target prediction identified 3,588 potential target genes and 127 Kyoto Encyclopedia of Genes and Genomes pathways; several connected to the immune system, including TGF-b and T cell receptor signaling and T-helper cell differentiation. This review highlights the role of breast milk miRNAs and their potential contribution to infant immune maturation. Indeed, breast milk miRNAs seem to be involved in several pathways that influence oral tolerance development.
Collapse
Affiliation(s)
- Emelie Ahlberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ahmed Al-Kaabawi
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rebecka Thune
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sindre Andre Pedersen
- Library Section for Research Support, Data and Analysis, NTNU University Library, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Maria Christina Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lina Tingö
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
- Food and Health Programme, Örebro University, Örebro, Sweden
- *Correspondence: Lina Tingö,
| |
Collapse
|
31
|
Ozer E, Kanit N, Cevizci MC, Cagliyan E, Mifsud W. Profiling of Immunomodulatory Genes and Quantification of CD25+ Cells in Different Types of Early Pregnancy Loss. Pediatr Dev Pathol 2023:10935266231156327. [PMID: 36861642 DOI: 10.1177/10935266231156327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Maternal regulatory T (Treg) cells play a pivotal role in establishing general immune homeostasis in the decidua for maintenance of pregnancy. We aimed in this study to investigate the relationship between mRNA expression of immunomodulatory genes and CD25+ Treg cells with early pregnancy losses. METHODS Our study included 3 groups of early pregnancy losses including sporadic spontaneous abortions, recurrent spontaneous abortions, sporadic spontaneous abortions post IVF treatment and the control group. We performed RT-PCR for analyzing mRNA expression levels of 6 immunomodulatory genes and CD25 immunohistochemistry for quantification of Treg cells. RESULTS Only FOXP3, CD274 (PDL1), and TGFβ1 mRNA expression levels were significantly decreased in the miscarriage groups in comparison to the control group, whereas there was no significant mRNA expression change of CD4, IL2RA, and IL10. We also found significantly lower number of CD25+ cells in the miscarriages. CONCLUSION We conclude that decreased expression of FOXP3 and PD-L1 may play a significant role in the pathogenesis of spontaneous abortion cases whereas decreased expression of TGFβ1 gene may be associated with the occurrence of early loss in IVF-treated pregnancies. Additional immunoprofiling of Treg cell population is needed to quantify Treg cells in early pregnancy losses.
Collapse
Affiliation(s)
- Erdener Ozer
- Department of Pathology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Naz Kanit
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | | | - Erkan Cagliyan
- Department of Gynecology and Obstetrics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - William Mifsud
- Division of Anatomical Pathology, Sidra Medicine and Research Center, Doha, Qatar
| |
Collapse
|
32
|
Ortiz B, Driscoll A, Menon R, Taylor BD, Richardson LS. Chlamydia trachomatis antigen induces TLR4-TAB1-mediated inflammation, but not cell death, in maternal decidua cells. Am J Reprod Immunol 2023; 89:e13664. [PMID: 36495029 PMCID: PMC10436189 DOI: 10.1111/aji.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gestation, the decidua is an essential layer of the maternal-fetal interface, providing immune support and maintaining inflammatory homeostasis. Although Chlamydia (C.) trachomatis is associated with adverse pregnancy outcomes the pathogenic effects on maternal decidua contributing to adverse events are not understood. This study examined how C. trachomatis antigen affects cell signaling, cell death, and inflammation in the decidua. METHODS Primary decidua cells (pDECs) from term, not-in-labor, fetal membrane-decidua were cultured using the following conditions: (1) control - standard cell culture conditions, (2) 100 ng/ml or (3) 200 ng/ml of C. trachomatis antigen to model decidual cell infection in vitro. Differential expression of Toll-like receptor (TLR) 4 (receptor for C. trachomatis antigen), signaling pathway markers phosphorylated TGF-Beta Activated Kinase 1 (PTAB1), TAB1, phosphorylated p38 mitogen-activated protein kinases (Pp38 MAPK), and p38 MAPK (western blot), decidual cell apoptosis and necrosis (flow cytometry), and inflammation (ELISA for cytokines) were determined in cells exposed to C. trachomatis antigen. T-test was used to assess statistical significance (p < 0.05). RESULTS C. trachomatis antigen significantly induced expression of TLR4 (p = 0.03) and activation of TAB1 (p = 0.02) compared to controls. However, it did not induce p38 MAPK activation. In addition, pDECs maintained their stromal cell morphology when exposed to C. trachomatis antigen showing no signs of apoptosis and/or necrosis but did induce pro-inflammatory cytokine interleukin (IL)-6 (100 ng/ml: p = 0.02 and 200 ng/ml: p = 0.03), in pDECs compared to controls. CONCLUSION Prenatal C. trachomatis infection can produce antigens that induce TLR4-TAB1 signaling and IL-6 inflammation independent of Pp38 MAPK and apoptosis and necrosis. This suggests that C. trachomatis can imbalance decidual inflammatory homeostasis, potentially contributing to adverse events during pregnancy.
Collapse
Affiliation(s)
- Briana Ortiz
- School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ashley Driscoll
- School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| | - Brandie D. Taylor
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| |
Collapse
|
33
|
Rezayat F, Esmaeil N, Rezaei A. Potential Therapeutic Effects of Human Amniotic Epithelial Cells on Gynecological Disorders Leading to Infertility or Abortion. Stem Cell Rev Rep 2023; 19:368-381. [PMID: 36331801 DOI: 10.1007/s12015-022-10464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
The induction of feto-maternal tolerance, fetal non-immunogenicity, and the regulation of mother's immune system are essential variables in a successful pregnancy. Fetal membranes have been used as a source of stem cells and biological components in recent decades. Human amniotic epithelial cells (hAEC) have stem/progenitor characteristics like those found in the amniotic membrane. Based on their immunomodulatory capabilities, recent studies have focused on the experimental and therapeutic applications of hAECs in allograft transplantation, autoimmune disorders, and gynecological problems such as recurrent spontaneous abortion (RSA), recurrent implantation failure (RIF), and premature ovarian failure (POF). This review discusses some of the immunomodulatory features and therapeutic potential of hAECs in preventing infertility, miscarriage, and implantation failure by controlling the maternal immune system.
Collapse
Affiliation(s)
- Fatemeh Rezayat
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Immunology, School of Medicine, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran.
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Wang X, Wang T, Wang J, Niu X, Wang K, Hao Z, Gao H. Circulating Transforming Growth Factor-β1 Levels in Preeclamptic Women: a Meta-analysis. Reprod Sci 2022; 30:1952-1964. [DOI: 10.1007/s43032-022-01156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
|
35
|
TGF-β1 Promotes Zika Virus Infection in Immortalized Human First-Trimester Trophoblasts via the Smad Pathway. Cells 2022; 11:cells11193026. [PMID: 36230987 PMCID: PMC9562857 DOI: 10.3390/cells11193026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022] Open
Abstract
The Zika virus (ZIKV) is well known for causing congenital Zika syndrome if the infection occurs during pregnancy; however, the mechanism by which the virus infects and crosses the placenta barrier has not been completely understood. In pregnancy, TGF-β1 is abundant at the maternal–fetal interface. TGF-β1 has been reported to enhance rubella virus binding and infection in human lung epithelial cells. Therefore, in this study, we investigate the role of TGF-β1 in ZIKV infection in the immortalized human first-trimester trophoblasts, i.e., Swan.71. The cells were treated with TGF-β1 (10 ng/mL) for two days before being inoculated with the virus (American strain PRVABC59) at a multiplicity of infection of five. The results showed an enhancement of ZIKV infection, as demonstrated by the immunofluorescent assay and flow cytometry analysis. Such enhanced infection effects were abolished using SB431542 or SB525334, inhibitors of the TGF-β/Smad signaling pathway. An approximately 2-fold increase in the virus binding to the studied trophoblasts was found. In the presence of the Smad inhibitors, virus replication was significantly suppressed. An enhancement in Tyro3 and AXL (receptors for ZIKV) expression induced by TGF-β1 was also noted. The results suggest that TGF-β1 promotes the virus infection via the Smad pathway. Further studies should be carried out to clarify the underlying mechanisms of these findings.
Collapse
|
36
|
Papapavlou Lingehed G, Hellberg S, Huang J, Khademi M, Kockum I, Carlsson H, Tjernberg I, Svenvik M, Lind J, Blomberg M, Vrethem M, Mellergård J, Gustafsson M, Jenmalm MC, Olsson T, Ernerudh J. Plasma protein profiling reveals dynamic immunomodulatory changes in multiple sclerosis patients during pregnancy. Front Immunol 2022; 13:930947. [PMID: 35967338 PMCID: PMC9373039 DOI: 10.3389/fimmu.2022.930947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory and neurodegenerative disorder of the central nervous system. Pregnancy represents a natural modulation of the disease course, where the relapse rate decreases, especially in the 3rd trimester, followed by a transient exacerbation after delivery. Although the exact mechanisms behind the pregnancy-induced modulation are yet to be deciphered, it is likely that the immune tolerance established during pregnancy is involved. In this study, we used the highly sensitive and specific proximity extension assay technology to perform protein profiling analysis of 92 inflammation-related proteins in MS patients (n=15) and healthy controls (n=10), longitudinally sampled before, during, and after pregnancy. Differential expression analysis was performed using linear models and p-values were adjusted for false discovery rate due to multiple comparisons. Our findings reveal gradual dynamic changes in plasma proteins that are most prominent during the 3rd trimester while reverting post-partum. Thus, this pattern reflects the disease activity of MS during pregnancy. Among the differentially expressed proteins in pregnancy, several proteins with known immunoregulatory properties were upregulated, such as PD-L1, LIF-R, TGF-β1, and CCL28. On the other hand, inflammatory chemokines such as CCL8, CCL13, and CXCL5, as well as members of the tumor necrosis factor family, TRANCE and TWEAK, were downregulated. Further in-depth studies will reveal if these proteins can serve as biomarkers in MS and whether they are mechanistically involved in the disease amelioration and worsening. A deeper understanding of the mechanisms involved may identify new treatment strategies mimicking the pregnancy milieu.
Collapse
Affiliation(s)
- Georgia Papapavlou Lingehed
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Jesse Huang
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Hanna Carlsson
- Department of Clinical Chemistry and Transfusion Medicine, Region Kalmar County, and Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Ivar Tjernberg
- Department of Clinical Chemistry and Transfusion Medicine, Region Kalmar County, and Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Maria Svenvik
- Department of Obstetrics and Gynecology, Region Kalmar County, Kalmar, Sweden and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jonas Lind
- Section of Neurology, Department of Internal Medicine, County Hospital Ryhov, Jönköping, Sweden and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Blomberg
- Department of Obstetrics and Gynecology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Magnus Vrethem
- Department of Neurology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Mellergård
- Department of Neurology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
37
|
Diagnostic and Therapeutic Potential for HNP-1, HBD-1 and HBD-4 in Pregnant Women with COVID-19. Int J Mol Sci 2022; 23:ijms23073450. [PMID: 35408809 PMCID: PMC8998699 DOI: 10.3390/ijms23073450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/27/2023] Open
Abstract
Pregnancy is characterized by significant immunological changes and a cytokine profile, as well as vitamin deficiencies that can cause problems for the correct development of a fetus. Defensins are small antimicrobial peptides that are part of the innate immune system and are involved in several biological activities. Following that, this study aims to compare the levels of various cytokines and to investigate the role of defensins between pregnant women with confirmed COVID-19 infection and pregnant women without any defined risk factor. TNF-α, TGF-β, IL-2 and IL-10, β-defensins, have been evaluated by gene expression in our population. At the same time, by ELISA assay IL-6, IL-8, defensin alpha 1, defensin beta 1 and defensin beta 4 have been measured. The data obtained show that mothers affected by COVID-19 have an increase in pro-inflammatory factors (TNF-α, TGF-β, IL-2, IL-6, IL-8) compared to controls; this increase could generate a sort of “protection of the fetus” from virus attacks. Contemporarily, we have an increase in the anti-inflammatory cytokine IL-10 and an increase in AMPs, which highlights how the mother’s body is responding to the viral attack. These results allow us to hypothesize a mechanism of “trafficking” of antimicrobial peptides from the mother to the fetus that would help the fetus to protect itself from the infection in progress.
Collapse
|