1
|
Liu Y, Yin H, Wang T, Chen T, Guo C, Zhang F, Jiang Z. Myeloid SHP2 attenuates myocardial ischemia‑reperfusion injury via regulation of BRD4/SYK/STING/NOX4/NLRP3 signaling. Mol Med Rep 2025; 31:155. [PMID: 40211713 PMCID: PMC12005128 DOI: 10.3892/mmr.2025.13520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/17/2025] [Indexed: 04/19/2025] Open
Abstract
The objective of the present study was to investigate the impact of myeloid Src homology region 2‑containing protein tyrosine phosphatase 2 (SHP2) on myocardial ischemia reperfusion (MI/R) injury and the underlying mechanism. Bioinformatics was used to analyze genes specifically associated with MI/R. In addition, myeloid‑specific SHP2 knockout mice and wild‑type mice were subjected to MI/R or sham surgery. Echocardiography and Masson's staining were used to observe the myocardial function and infarct area of the mice. In addition, double immunofluorescence staining was used to detect the relative fluorescence intensity of SHP2 and bromodomain‑containing protein 4 (BRD4) in bone marrow‑derived macrophages (BMMs) from the mice. Western blot analysis was conducted to determine the expression levels of SHP2, BRD4, spleen tyrosine kinase (SYK), stimulator of interferon genes (STING), NADPH oxidase 4 (NOX4), NLR family pyrin domain containing 3 (NLRP3), IL‑1β and gasdermin D (GSDMD) in BMMs and mouse myocardial cells co‑cultured with the BMMs. In addition, flow cytometry was employed to assess myocardial cell apoptosis. Bioinformatics analysis revealed the downregulated expression of SHP2 and upregulated expression of BRD4 and SYK in mice with MI/R. The deletion of myeloid SHP2 aggravated MI/R injury, impaired cardiac function and increased the infarct area in mice. In addition, myeloid SHP2 deletion in BMMs promoted the expression of BRD4, SYK, STING, NOX4 and NLRP3 in BMMs, and the expression of IL‑1β and GSDMD in mouse myocardial cells co‑cultured with the BMMs. In addition, the deletion of myeloid SHP2 promoted cardiomyocyte apoptosis. These results indicate that myeloid SHP2 inhibits MI/R injury by regulating BRD4/SYK/STING/NOX4/NLRP3 signaling in BMMs.
Collapse
Affiliation(s)
- Yazhong Liu
- Department of Cardiovascular Disease and Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Hongshan Yin
- Department of Cardiovascular Disease and Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Tao Wang
- Department of Cardiovascular Disease and Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Tao Chen
- Department of Cardiovascular Disease and Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Chengda Guo
- Department of Cardiovascular Disease and Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Fue Zhang
- Department of Cardiovascular Disease and Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhian Jiang
- Department of Cardiovascular Disease and Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
2
|
Rey-Campos M, Saco A, Novoa B, Figueras A. Transcriptomic and functional analysis of the antiviral response of mussels after a poly I:C stimulation. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109867. [PMID: 39214263 DOI: 10.1016/j.fsi.2024.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The study of mussels (Mytilus galloprovincialis) has grown in importance in recent years due to their high economic value and resistance to pathogens. Because of the biological characteristics revealed by mussel genome sequencing, this species is a valuable research model. The high genomic variability and diversity, particularly in immune genes, may be responsible for their resistance to pathogens found in seawater and continuously filtered and internalized by them. These facts, combined with the lack of proven mussel susceptibility to viruses in comparison to other bivalves such as oysters, result in a lack of studies on mussel antiviral response. We used RNA-seq to examine the genomic response of mussel hemocytes after they were exposed to poly I:C, simulating immune cell contact with viral dsRNA. Apoptosis and the molecular axis IRFs/STING-IFI44/IRGC1 were identified as the two main pathways in charge of the response but we also found a modulation of lncRNAs. Finally, in order to obtain new information about the response of mussels to putative natural challenges, we used VHSV virus (Viral Hemorrhagic Septicemia Virus) to run some functional analysis and confirm poly I:C's activity as an immunomodulator in a VHSV waterborne stimulation. Both, poly I:C as well as an injury stimulus (filtered sea water injection) accelerated the viral clearance by hemocytes and altered the expression of several immune genes, including IL-17, IRF1 and viperin.
Collapse
Affiliation(s)
- Magalí Rey-Campos
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Amaro Saco
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| | - Antonio Figueras
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.
| |
Collapse
|
3
|
Yu Z, Qiao X, Yu S, Gu X, Jin Y, Tang C, Niu J, Wang L, Song L. The involvement of interferon regulatory factor 8 in regulating the proliferation of haemocytes in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105172. [PMID: 38537730 DOI: 10.1016/j.dci.2024.105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 05/03/2024]
Abstract
Interferon regulatory factor 8 (IRF8) is an important transcriptional regulatory factor involving in multiple biological process, such as the antiviral immune response, immune cell proliferation and differentiation. In the present study, the involvement of a previously identified IRF8 homologue (CgIRF8) in regulating haemocyte proliferation of oyster were further investigated. CgIRF8 mRNA transcripts were detectable in all the stages of C. gigas larvae with the highest level in D-veliger (1.76-fold of that in zygote, p < 0.05). Its mRNA transcripts were also detected in all the three haemocyte subpopulations of adult oysters with the highest expression in granulocytes (2.79-fold of that in agranulocytes, p < 0.01). After LPS stimulation, the mRNA transcripts of CgIRF8 in haemocytes significantly increased at 12 h and 48 h, which were 2.04-fold and 1.65-fold (p < 0.05) of that in control group, respectively. Meanwhile, the abundance of CgIRF8 protein in the haemocytes increased significantly at 12 h after LPS stimulation (1.71-fold of that in seawater, p < 0.05). The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgIRF8 protein in haemocytes. After the expression of CgIRF8 was inhibited by the injection of CgIRF8 siRNA, the percentage of EdU positive haemocytes, the proportion of granulocytes, and the mRNA expression levels of CgGATA and CgSCL all declined significantly at 12 h after LPS stimulation, which was 0.64-fold (p < 0.05), 0.7-fold (p < 0.05), 0.31-fold and 0.54-fold (p < 0.001) of that in the NC group, respectively. While the expression level of cell proliferation-related protein CgCDK2, CgCDC6, CgCDC45 and CgPCNA were significantly increased (1.99-fold, and 2.41-fold, 3.76-fold and 4.79-fold compared to that in the NC group respectively, p < 0.001). Dual luciferase reporter assay demonstrated that CgIRF8 was able to activate the CgGATA promoter in HEK293T cells after transfection of CgGATA and CgIRF8. These results collectively indicated that CgIRF8 promoted haemocyte proliferation by regulating the expression of CgGATA and other related genes in the immune response of oyster.
Collapse
Affiliation(s)
- Zhuo Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chunyu Tang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jixiang Niu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
He Q, Liu C, Liu Q, Wang L, Song L. CgADAR1 involved in regulating the synthesis of interferon-like protein in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109620. [PMID: 38740229 DOI: 10.1016/j.fsi.2024.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Adenosine deaminases acting on RNA 1 (ADAR1) is a dsRNA adenosine (A)-to-inosine (I) editing enzyme that regulates the innate immune response against virus invasion. In the present study, a novel CgADAR1 was identified from the oyster Crassostrea gigas. The open reading frame (ORF) of CgADAR1 was of 3444 bp encoding a peptide of 1147 amino acid residues with two Zα domains, one dsRNA binding motif (DSRM) and one RNA adenosine deaminase domain (ADEAMc). The mRNA transcripts of CgADAR1 were detected in all the examined tissues, with higher expression levels in mantle and gill, which were 7.11-fold and 4.90-fold (p < 0.05) of that in labial palp, respectively. The mRNA transcripts of CgADAR1 in haemocytes were significantly induced at 24 h and 36 h after Poly (A: U) stimulation, which were 6.03-fold (p < 0.01) and 1.37-fold (p < 0.001) of that in control group, respectively. At 48 h after Poly (A:U) stimulation, the mRNA expression of CgRIG-Ⅰ, CgIRF8 and CgIFNLP significantly increased, which were 4.36-fold (p < 0.001), 1.82-fold (p < 0.05) and 1.92-fold (p < 0.05) of that in control group. After CgADAR1 expression was inhibited by RNA interference (RNAi), the mRNA expression levels of CgMDA5, CgRIG-Ⅰ, CgTBK1, CgIRF8 and CgIFNLP were significantly increased, which were 11.88-fold, 11.51-fold, 2.22-fold, 2.85-fold and 2.52-fold of that in control group (p < 0.001), and the phosphorylation level of CgTBK1 was also significantly increased. These results suggested that CgADAR1 played a regulation role in the early stages of viral infection by inhibiting the synthesis of interferon-like protein.
Collapse
Affiliation(s)
- Qianqian He
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Qian Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China.
| |
Collapse
|
5
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
6
|
Zhao X, Huang S, Zhang P, Qiao X, Liu Y, Dong M, Yi Q, Wang L, Song L. A circadian clock protein cryptochrome inhibits the expression of inflammatory cytokines in Chinese mitten crab (Eriocheir sinensis). Int J Biol Macromol 2023; 253:126591. [PMID: 37659496 DOI: 10.1016/j.ijbiomac.2023.126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Cryptochrome (Cry), as important flavoprotein, plays a key role in regulating the innate immune response, such as the release of inflammatory cytokines. In the present study, a cryptochrome homologue (EsCry) was identified from Chinese mitten crab Eriocheir sinensis, which contained a typical DNA photolyase domain, a FAD binding domain. The transcripts of EsCry were highly expressed at 11:00, and lowest at 3:00 within one day, while those of Interleukin enhancer binding factor (EsILF), Lipopolysaccharide-induced TNF-alpha factor (EsLITAF), Tumor necrosis factor (EsTNF) and Interleukin-16 (EsIL-16) showed a rhythm expression pattern contrary to EsCry. After EsCry was knocked down by dsEsCry injection, mRNA transcripts of Timeless (EsTim), Cycle (EsCyc), Circadian locomotor output cycles kaput (EsClock), Period (EsPer), and EsLITAF, EsTNF, EsILF, EsIL-16, as well as phosphorylation level of Dorsal significantly up-regulated. The transcripts of EsLITAF, EsTNF, EsILF, and EsIL-16 in EsCry-RNAi crabs significantly down-regulated after injection of NF-κB inhibitor. The interactions of EsCyc and EsCry, EsCyc and Dorsal were observed in vitro. These results indicated that EsCry negatively regulated the expression of the cytokine TNF and IL-16 via inhibiting their transcription factor LITAF and ILF through NF-κB signaling pathway, which provide evidences to better understand the circadian regulation mechanism of cytokine production in crabs.
Collapse
Affiliation(s)
- Xinyu Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
7
|
Liu Y, He Y, Cao J, Lu H, Zou R, Zuo Z, Li R, Zhang Y, Sun J. Correlative analysis of transcriptome and proteome in Penaeus vannamei reveals key signaling pathways are involved in IFN-like antiviral regulation mediated by interferon regulatory factor (PvIRF). Int J Biol Macromol 2023; 253:127138. [PMID: 37776923 DOI: 10.1016/j.ijbiomac.2023.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Interferon regulatory factors (IRFs) are crucial transcription factors that regulate interferon (IFN) induction in response to pathogen invasion. The regulatory mechanism of IRF has been well studied in vertebrates, but little has been known in arthropods. Therefore, in order to obtain new insights into the potential molecular mechanism of Peneaus vannamei IRF (PvIRF) in response to viral infection, comprehensive comparative analysis of the transcriptome and proteome profiles in shrimp infected with WSSV after knocking down PvIRF was conducted by using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ). The sequence characterization, molecular functional evolution and 3D spatial structure of PvIRF were analyzed by using bioinformatics methods. PvIRF share the higher homology with different species in N-terminal end (containing DNA binding domain (DBD) including DNA sequence recognition sites and metal binding site) than that in C-terminal end. Within 4 IRF subfamilies of vertebrates, PvIRF had closer relationship with IRF1 subfamily. The DBD of PvIRF and C. gigas IRF1a were composed of α-helices and β-folds which was similar with the DBD structure of M. musculus IRF2. Interestingly, different from the five Tryptophan repeats highly homologous in the DBD of vertebrate IRF, the first and fifth tryptophans of PvIRF mutate to Phenylalanine and Leucine respectively, while the mutations were conserved among shrimp IRFs. RNAi knockdown of PvIRF gene by double-strand RNA could obviously promote the in vivo propagation of WSSV in shrimp and increase the mortality of WSSV-infected shrimp. It suggested that PvIRF was involved in inhibiting the replication of WSSV in shrimp. A total of 8787 transcripts and 2846 proteins were identified with significantly differential abundances in WSSV-infected shrimp after PvIRF knockdown, among which several immune-related members were identified and categorized into 10 groups according to their possible functions. Furthermore, the variation of expression profile from members of key signaling pathways involving JAK/STAT and Toll signaling pathway implied that they might participate IRF-mediated IFN-like regulation in shrimp. Correlative analyses indicated that 722 differentially expressed proteins (DEPs) shared the same expression profiles with their corresponding transcripts, including recognition-related proteins (CTLs and ITGs), chitin-binding proteins (peritrophin), and effectors (ALFs and SWD), while 401 DEPs with the opposite expression profiles across the two levels emphasized the critical role of post-transcriptional and post-translational modification. The results provide candidate signaling pathway including pivotal genes and proteins involved in the regulatory mechanism of interferon mediated by IRF on shrimp antiviral response. This is the first report in crustacean to explore the IFN-like antiviral regulation pathway mediated by IRF on the basis of transcriptome and proteomics correlative analysis, and will provide new ideas for further research on innate immune and defense mechanisms of crustacean.
Collapse
Affiliation(s)
- Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yuxin He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinlai Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Hangjia Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ruifeng Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
8
|
Zheng Q, Gao F, Liu Z, Sun C, Dong J, Zhang H, Ke X, Lu M. Nile tilapia TBK1 interacts with STING and TRAF3 and is involved in the IFN-β pathway in the immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109125. [PMID: 37805113 DOI: 10.1016/j.fsi.2023.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Nile tilapia (Oreochromis niloticus) occupies an important position in the culture of economic fish in China. However, the high mortality caused by streptococcal disease has had a significant impact on the tilapia farming industry. Therefore, it is necessary to clarify the immune mechanism of tilapia in response to Streptococcus agalactiae. As a hub in the natural immune signaling pathway, the junction molecule can help the organism defend against and clear pathogens and is crucial in the signaling pathway. In this study, the cDNA sequence of Nile tilapia TBK1 was cloned, and the expression profile was examined in normal fish and challenged fish. The cDNA sequence of the TBK1 gene was 3378 bp, and its open reading frame (ORF) was 2172 bp, encoding 723 amino acids. The deduced TBK1 protein contained an S_TKc domain, a coiled coil domain and a ubiquitin-like domain (ULD). TBK1 had the highest homology with zebra mbuna (Maylandia zebra) and Lake Malawi cichlid fish (Astatotilapia calliptera), both at 97.59%. In the phylogenetic tree, TBK1 forms a large branch with other scleractinian fish. TBK1 expression was highest in the brain and lowest in the liver. LPS, Poly I:C, and S. agalactiae challenge resulted in significant changes in TBK1 expression in the tissues examined. The subcellular localization showed that TBK1-GFP was distributed in the cytoplasm and could significantly increase IFN-β activation. Pull-down results showed that there was an interaction between TBK1 and TRAF3 and an interaction between STING protein and TBK1 protein. The above results provide a basis for further investigation into the mechanism of TBK1 involvement in the signaling pathway.
Collapse
Affiliation(s)
- Qiuyue Zheng
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Fengying Gao
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Zhigang Liu
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Chengfei Sun
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Junjian Dong
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Hetong Zhang
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Maixin Lu
- Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| |
Collapse
|
9
|
Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics. Mar Drugs 2023; 21:503. [PMID: 37888438 PMCID: PMC10608444 DOI: 10.3390/md21100503] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving. The innate immune system of marine invertebrates includes various biologically active compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains, a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities for the development of innovative drugs based on these compounds, which can act against bacteria, fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for the therapeutic use of antimicrobial peptides derived from marine invertebrates.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
| | | | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Li Y, Slavik KM, Toyoda HC, Morehouse BR, de Oliveira Mann CC, Elek A, Levy S, Wang Z, Mears KS, Liu J, Kashin D, Guo X, Mass T, Sebé-Pedrós A, Schwede F, Kranzusch PJ. cGLRs are a diverse family of pattern recognition receptors in innate immunity. Cell 2023; 186:3261-3276.e20. [PMID: 37379839 PMCID: PMC10527820 DOI: 10.1016/j.cell.2023.05.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates STING-dependent downstream immunity. Here, we discover that cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in innate immunity. Building on recent analysis in Drosophila, we identify >3,000 cGLRs present in nearly all metazoan phyla. A forward biochemical screening of 150 animal cGLRs reveals a conserved mechanism of signaling including response to dsDNA and dsRNA ligands and synthesis of isomers of the nucleotide signals cGAMP, c-UMP-AMP, and c-di-AMP. Combining structural biology and in vivo analysis in coral and oyster animals, we explain how synthesis of distinct nucleotide signals enables cells to control discrete cGLR-STING signaling pathways. Our results reveal cGLRs as a widespread family of pattern recognition receptors and establish molecular rules that govern nucleotide signaling in animal immunity.
Collapse
Affiliation(s)
- Yao Li
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Hunter C Toyoda
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Benjamin R Morehouse
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Shani Levy
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Zhenwei Wang
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08349, USA
| | - Kepler S Mears
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jingjing Liu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Dmitry Kashin
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08349, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Frank Schwede
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Qiao X, Wang S, Zong Y, Gu X, Jin Y, Li Y, Wei Z, Wang L, Song L. An IRF2BP member (CgIRF2BP) involved in negative regulation of CgIFNLP expression in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108576. [PMID: 36775182 DOI: 10.1016/j.fsi.2023.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The IRF2BP family of transcription regulators act as corepressor molecules by inhibiting both enhancer-activated and basal transcription involving in many biological contexts. In the present study, an IRF2BP homologue (CgIRF2BP) was identified from oyster C. gigas. Its open reading frame is of 1809 bp encoding a polypeptide of 602 amino acids, which contains an IRF-2BP1_2 domain and a RING domain. The mRNA transcripts of CgIRF2BP were detected in all tested tissues with highest level in haemocytes (28.99-fold of that in mantle, p < 0.05). After poly (I:C) stimulation, the expression level of CgIRF2BP was significantly down-regulated at 3 h (0.50-fold of that in control group, p < 0.001) and gradually increased from 6 h to 48 h (2.69-fold of that in control group, p < 0.01). The recombinant protein of CgIRF2BP (rCgIRF2BP) showed high affinity to both rCgIRF1 and rCgIRF8 with Kd value of 1.02 × 10-7 and 2.09 × 10-7, respectively. In CgIRF2BP-RNAi oysters, the mRNA expression of CgIFNLP, CgMx1, CgViperin and CgIFI44L were significantly increased after poly (I:C) stimulation, which were 2.88 (p < 0.01), 1.83 (p < 0.05), 2.47 (p < 0.05), and 1.99-fold (p < 0.01) of that in EGFP group, respectively. These findings suggested that CgIRF2BP negatively regulated CgIFNLP expression by binding with CgIRF1 and CgIRF8.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhuorui Wei
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
12
|
Li Y, Slavik KM, Morehouse BR, de Oliveira Mann CC, Mears K, Liu J, Kashin D, Schwede F, Kranzusch PJ. cGLRs are a diverse family of pattern recognition receptors in animal innate immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529553. [PMID: 36865129 PMCID: PMC9980059 DOI: 10.1101/2023.02.22.529553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
cGAS (cyclic GMP-AMP synthase) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates the protein STING and downstream immunity. Here we discover cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in animal innate immunity. Building on recent analysis in Drosophila , we use a bioinformatic approach to identify >3,000 cGLRs present in nearly all metazoan phyla. A forward biochemical screen of 140 animal cGLRs reveals a conserved mechanism of signaling including response to dsDNA and dsRNA ligands and synthesis of alternative nucleotide signals including isomers of cGAMP and cUMP-AMP. Using structural biology, we explain how synthesis of distinct nucleotide signals enables cells to control discrete cGLR-STING signaling pathways. Together our results reveal cGLRs as a widespread family of pattern recognition receptors and establish molecular rules that govern nucleotide signaling in animal immunity.
Collapse
Affiliation(s)
- Yao Li
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kailey M. Slavik
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Benjamin R. Morehouse
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Kepler Mears
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jingjing Liu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Dmitry Kashin
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Frank Schwede
- Biolog Life Science Institute GmbH & Co. KG, Flughafendamm 9a, 28199 Bremen, Germany
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Lead Contact
| |
Collapse
|
13
|
Li F, Liu W, Chen J, Huang B, Zheng Y, Ma J, Cai S, Li L, Liu F, Wang X, Wei L, Liu Y, Zhang M, Han Y, Zhang X, Wang X. CfIRF8-like interacts with the TBK1/IKKε family protein and regulates host antiviral innate immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108497. [PMID: 36539167 DOI: 10.1016/j.fsi.2022.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The interferon regulatory factor (IRF) family, a class of transcription factors with key functions, are important in host innate immune defense and stress response. However, further research is required to determine the functions of IRFs in invertebrates. In this study, the coding sequence of an IRF gene was obtained from the Zhikong scallop (Chlamys farreri) and named CfIRF8-like. The open reading frame of CfIRF8-like was 1371 bp long and encoded 456 amino acids. Protein domain prediction revealed a typical IRF domain in the N-terminus of the CfIRF8-like protein and a typical IRF3 domain in the C-terminus. Multiple sequence alignment confirmed the conservation of the amino acid sequences of these two functional protein domains. Phylogenetic analysis showed that CfIRF8-like clustered with mollusk IRF8 proteins and then clustered with vertebrate IRF3, IRF4, and IRF5 subfamily proteins. Quantitative real-time PCR detected CfIRF8-like mRNA in all tested scallop tissues, with the highest expression in the gills. Simultaneously, the expression of CfIRF8-like transcripts in gills was significantly induced by polyinosinic-polycytidylic acid challenge. The results of protein interaction experiments showed that CfIRF8-like could directly bind the TBK1/IKKε family protein of scallop (CfIKK2) via its N-terminal IRF domain, revealing the presence of an ancient functional TBK1/IKKε-IRF signaling axis in scallops. Finally, dual-luciferase reporter assay results showed that the overexpression of CfIRF8-like in human embryonic kidney 293T cells could specifically activate the interferon β promoter of mammals and the interferon-stimulated response element promoter in dose-dependent manners. The findings of this preliminary analysis of the signal transduction and immune functions of scallop CfIRF8-like protein lay a foundation for an in-depth understanding of the innate immune function of invertebrate IRFs and the development of comparative immunology. The experimental results also provide theoretical support for the breeding of scallop disease-resistant strains.
Collapse
Affiliation(s)
- Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China.
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Shuai Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, China; Ocean School, Yantai University, Yantai, China
| | - Fengchen Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
14
|
Gu X, Qiao X, Yu S, Song X, Wang L, Song L. Histone lysine-specific demethylase 1 regulates the proliferation of hemocytes in the oyster Crassostrea gigas. Front Immunol 2022; 13:1088149. [PMID: 36591234 PMCID: PMC9797820 DOI: 10.3389/fimmu.2022.1088149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
Background Lysine-specific demethylase 1 (LSD1) is an essential epigenetic regulator of hematopoietic differentiation, which can specifically mono-methylate H3K4 (H3K4me1) and di-methylate H3K4 (H3K4me2) as a transcriptional corepressor. Previous reports have been suggested that it participated in hematopoiesis and embryonic development process. Here, a conserved LSD1 (CgLSD1) with a SWIRM domain and an amino oxidase (AO) domain was identified from the Pacific oyster Crassostrea gigas. Methods We conducted a comprehensive analysis by various means to verify the function of CgLSD1 in hematopoietic process, including quantitative real-time PCR (qRT-PCR) analysis, western blot analysis, immunofluorescence assay, RNA interference (RNAi) and flow cytometry. Results The qRT-PCR analysis revealed that the transcripts of CgLSD1 were widely expressed in oyster tissues with the highest level in the mantle. And the transcripts of CgLSD1 were ubiquitously expressed during larval development with the highest expression level at the early D-veliger larvae stage. In hemocytes after Vibrio splendidus stimulation, the transcripts of CgLSD1 were significantly downregulated at 3, 6, 24, and 48 h with the lowest level at 3 h compared to that in the Seawater group (SW group). Immunocytochemical analysis showed that CgLSD1 was mainly distributed in the nucleus of hemocytes. After the CgLSD1 was knocked down by RNAi, the H3K4me1 and H3K4me2 methylation level significantly increased in hemocyte protein. Besides, the percentage of hemocytes with EdU-positive signals in the total circulating hemocytes significantly increased after V. splendidus stimulation. After RNAi of CgLSD1, the expression of potential granulocyte markers CgSOX11 and CgAATase as well as oyster cytokine-like factor CgAstakine were increased significantly in mRNA level, while the transcripts of potential agranulocyte marker CgCD9 was decreased significantly after V. splendidus stimulation. Conclusion The above results demonstrated that CgLSD1 was a conserved member of lysine demethylate enzymes that regulate hemocyte proliferation during the hematopoietic process.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China,*Correspondence: Linsheng Song,
| |
Collapse
|
15
|
Canesi L, Auguste M, Balbi T, Prochazkova P. Soluble mediators of innate immunity in annelids and bivalve mollusks: A mini-review. Front Immunol 2022; 13:1051155. [PMID: 36532070 PMCID: PMC9756803 DOI: 10.3389/fimmu.2022.1051155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Annelids and mollusks, both in the superphylum of Lophotrochozoa (Bilateria), are important ecological groups, widespread in soil, freshwater, estuarine, and marine ecosystems. Like all invertebrates, they lack adaptive immunity; however, they are endowed with an effective and complex innate immune system (humoral and cellular defenses) similar to vertebrates. The lack of acquired immunity and the capacity to form antibodies does not mean a lack of specificity: invertebrates have evolved genetic mechanisms capable of producing thousands of different proteins from a small number of genes, providing high variability and diversity of immune effector molecules just like their vertebrate counterparts. This diversity allows annelids and mollusks to recognize and eliminate a wide range of pathogens and respond to environmental stressors. Effector molecules can kill invading microbes, reduce their pathogenicity, or regulate the immune response at cellular and systemic levels. Annelids and mollusks are "typical" lophotrochozoan protostome since both groups include aquatic species with trochophore larvae, which unite both taxa in a common ancestry. Moreover, despite their extensive utilization in immunological research, no model systems are available as there are with other invertebrate groups, such as Caenorhabditis elegans or Drosophila melanogaster, and thus, their immune potential is largely unexplored. In this work, we focus on two classes of key soluble mediators of immunity, i.e., antimicrobial peptides (AMPs) and cytokines, in annelids and bivalves, which are the most studied mollusks. The mediators have been of interest from their first identification to recent advances in molecular studies that clarified their role in the immune response.
Collapse
Affiliation(s)
- Laura Canesi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Manon Auguste
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Petra Prochazkova,
| |
Collapse
|
16
|
Qiao X, Li Y, Jin Y, Wang S, Hou L, Wang L, Song L. The involvement of an interferon-induced protein 44-like (CgIFI44L) in the antiviral immune response of Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 129:96-105. [PMID: 36055558 DOI: 10.1016/j.fsi.2022.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Interferon-stimulated genes (ISGs) encoding proteins are the essential executors of interferon (IFN) mediated antiviral defense. In the present study, an ISG member, interferon-induced protein 44-like (IFI44L) gene (designed as CgIFI44L-1) was identified from the Pacific oyster Crassostrea gigas. The ORF of CgIFI44L-1 cDNA was of 1437 bp encoding a polypeptide of 479 amino acids with a TLDc domain and an MMR_HSR1 domain. The mRNA transcripts of CgIFI44L-1 were detected in all the tested tissues with highest level in haemocytes, which was 15.78-fold of that in gonad (p < 0.001). Among the haemocytes, the CgIFI44L-1 protein was detected to be highly expressed in granulocytes with dominant distribution in cytoplasm. The mRNA expression level of CgIFI44L-1 in haemocytes was significantly induced by poly (I:C) stimulation, and the expression level peaked at 24 h, which was 24.24-fold (p < 0.0001) of that in control group. After the treatment with the recombinant protein of an oyster IFN-like protein (rCgIFNLP), the mRNA expression level of CgIFI44L-1 was significantly enhanced at 6 h, 12 h and 24 h, which was 2.67-fold (p < 0.001), 5.44-fold (p < 0.001) and 5.16-fold (p < 0.001) of that in control group, respectively. When the expressions of CgSTAT and CgIFNLP were knocked down by RNA interference (RNAi), the mRNA transcripts of CgIFI44L-1 were significantly down-regulated after poly (I:C) stimulation, which was 0.09-fold (p < 0.001) and 0.06-fold (p < 0.001) of those in EGFP group, respectively. These results suggested that CgIFI44L-1 was a conserved ISG in oyster, which was regulated by CgIFNLP and CgSTAT, and involved in the oyster antiviral immune response.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
17
|
Li Y, Qiao X, Hou L, Liu X, Li Q, Jin Y, Li Y, Wang L, Song L. A stimulator of interferon gene (CgSTING) involved in antimicrobial immune response of oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 128:82-90. [PMID: 35917891 DOI: 10.1016/j.fsi.2022.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The stimulator of interferon gene (STING), an intracellular sensor of cyclic dinucleotides, is critical to the innate immune response, especially the induction of type I interferon (IFN) during pathogenic infection. A STING homologue (CgSTING) regulating the expression of IFN-like protein (CgIFNLP) was previously identified in the Pacific oyster Crassostrea gigas, and its involvement in antibacterial immunity was further investigated in the present study. The mRNA transcripts of CgSTING were ubiquitously detected in all the three subpopulations of haemocytes with the highest expression in semi-granulocytes. After the stimulation with Vibrio splendidus, the mRNA expression of CgSTING in haemocytes was significantly up-regulated and peaked at 72 h, which was 12.91-fold of that in control group (p < 0.01). The CgSTING protein was mainly located in the cytoplasm of haemocytes. After the expression of CgSTING was knocked down (0.12-fold of that in control group, p < 0.05) by RNAi, the mRNA expression levels of interleukin17-1 (CgIL17-1), interleukin17-3 (CgIL17-3), interleukin17-4 (CgIL17-4), defensins (Cgdefh1, Cgdefh2), big defensin (CgBigDef1), interferon-like protein (CgIFNLP), tumor necrosis factor (CgTNF) and nuclear factor-κB (CgRel) all decreased significantly at 12 h after V. splendidus stimulation, which was 0.12-fold-0.72-fold (p < 0.05) of that in control group, respectively. The positive signals of CgRel were observed in the haemocyte nucleus after V. splendidus stimulation. The nuclear translocation of CgRel was suppressed in CgSTING-RNAi oysters, and the green signals of CgRel were mainly observed in the haemocyte cytoplasm after V. splendidus stimulation. Furthermore, the number of V. splendidus in the haemolymph of CgSTING-RNAi oysters increased significantly, which was 26.78-fold (p < 0.01) of that in the control group at 12 h after V. splendidus stimulation. These results indicated that CgSTING played important role in the immune defense against bacterial infection by inducing the expressions of cytokines and defensins.
Collapse
Affiliation(s)
- Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - YuHao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
18
|
Hou L, Qiao X, Li Y, Jin Y, Liu R, Wang S, Zhou K, Wang L, Song L. A RAC-alpha serine/threonine-protein kinase (CgAKT1) involved in the synthesis of CgIFNLP in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 127:129-139. [PMID: 35709896 DOI: 10.1016/j.fsi.2022.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The RAC-alpha serine/threonine-protein kinase (AKT) is one of the most important protein kinases involved in many biological processes in eukaryotes. In the present study, a novel AKT homologue named CgAKT1 was identified from the Pacific oyster Crassostrea gigas. The open reading frame (ORF) of CgAKT1 cDNA was of 1482 bp encoding a peptide with 493 amino acid residues. There were classical domains in the predicted CgAKT1 protein, including an N-terminal pleckstrin homology domain, a central catalytic domain and a C-terminal hydrophobic domain. The mRNA transcripts of CgAKT1 were detected in all the examined tissues of C. gigas with higher level in gills (8.24-fold of that in mantle, p < 0.05) and haemocytes (3.62-fold of that in mantle, p < 0.05). After poly (I:C) stimulation, the mRNA expression of CgAKT1 decreased significantly in haemocytes from 3 h (0.44-fold of that in the control group, p < 0.001) to 24 h (0.20-fold of that in the control group, p < 0.001), and then increased significantly at 48 h (3.65-fold of that in the control group, p < 0.05). The expression level of CgAKT1 mRNA increased significantly at 6 h after rCgIFNLP stimulation, which was 3.60-fold of that in the control group (p < 0.001). The Alexa Fluor 488 positive signals of CgAKT1 protein were found to be distributed in the cytoplasm and cell membrane of haemocytes, while those in the cytoplasm became weaker after poly (I:C) stimulation. In CgAKT1-RNAi oysters, the mRNA expression of cyclic GMP-AMP synthase (CgcGAS) and TANK-binding kinase 1 (CgTBK1) did not change significantly, but the mRNA expression level of stimulator of interferon gene (CgSTING), interferon regulatory factor-1 (CgIRF-1), interferon regulatory factor-8 (CgIRF-8) and IFN-like protein (CgIFNLP) increased significantly, which was 1.40-fold, 1.53-fold, 1.72-fold and 1.99-fold of that in EGFP-RNAi oysters (p < 0.05), respectively. In CgIFNLP-RNAi oysters, the transcripts of CgAKT1 decreased significantly compared to those in EGFP-RNAi oysters (0.16-fold, p < 0.01). Moreover, the expression of p-CgTBK1, CgSTING and CgIFNLP at the protein level in the oysters treated with p-AKT1 activator (SC-79) was significantly suppressed after poly (I:C) stimulation. After the transfection of CgAKT1, the expression of p-cGAS protein in HEK293T cells increased significantly, while the cyclic GMP-AMP in the cells and the interferon (IFN-β) in the cell culture fluid decreased significantly compared with that in the control group. These results indicated that CgAKT1 might play a negative role in antiviral immunity of oyster by regulating the synthesis of CgIFNLP.
Collapse
Affiliation(s)
- Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ranyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Kai Zhou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
19
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
20
|
Lǚ K, Li H, Wang S, Li A, Weng S, He J, Li C. Interferon-Induced Protein 6-16 (IFI6-16) from Litopenaeus vannamei Regulate Antiviral Immunity via Apoptosis-Related Genes. Viruses 2022; 14:1062. [PMID: 35632802 PMCID: PMC9144789 DOI: 10.3390/v14051062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
A growing number of evidence shows that some invertebrates possess an antiviral immunity parallel to the interferon (IFN) system of higher vertebrates. For example, the IRF (interferon regulatory factor)-Vago-JAK/STAT regulatory axis in an arthropod, shrimp Litopenaeus vannamei (whiteleg shrimp) is functionally similar to the IRF-IFN-JAK/STAT axis of mammals. IFNs perform their cellular immunity by regulating the expression of target genes collectively referred to as IFN-stimulated genes (ISGs). However, the function of invertebrate ISGs in immune responses is almost completely unclear. In this study, a potential ISG gene homologous to the interferon-induced protein 6-16 (IFI6-16) was cloned and identified from L. vannamei, designated as LvIFI6-16. LvIFI6-16 contained a putative signal peptide in the N-terminal, and a classic IFI6-16-superfamily domain in the C-terminal that showed high conservation to other homologs in various species. The mRNA levels of LvIFI6-16 were significantly upregulated after the stimulation of poly (I:C) and challenges of white spot syndrome virus (WSSV). Moreover, silencing of LvIFI6-16 caused a higher mortality rate and heightened virus loads, suggesting that LvIFI6-16 could play a crucial role in defense against WSSV. Interestingly, we found that the transcription levels of several caspases were regulated by LvIFI6-16; meanwhile, the transcription level of LvIFI6-16 self was regulated by the JAK/STAT cascade, suggesting there could be a JAK/STAT-IFI6-16-caspase regulatory axis in shrimp. Taken together, we identified a crustacean IFI6-16 gene (LvIFI6-16) for the first time, and provided evidence that the IFI6-16 participated in antiviral immunity in shrimp.
Collapse
Affiliation(s)
- Kai Lǚ
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Haoyang Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Anxing Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (K.L.); (H.L.); (S.W.); (A.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
21
|
Wang F, Huang L, Liang Q, Liao M, Liu C, Dong W, Zhuang X, Yin X, Liu Y, Wang W. TBC domain family 7-like enhances the tolerance of Penaeus vannamei to ammonia nitrogen by the up-regulation of autophagy. FISH & SHELLFISH IMMUNOLOGY 2022; 122:48-56. [PMID: 35077870 DOI: 10.1016/j.fsi.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
TBC domain family 7 (TBC1D7) is one of the subunits of tuberous sclerosis complex (TSC) and an important regulator of autophagosome biogenesis. However, the function of TBC1D7 is not fully understood in crustaceans. In the present study, TBC1D7 was identified from Penaeus vannamei. The complete coding sequence of PvTBC1D7 was of 960 bp encoding a predicted polypeptide of 319 amino acids with one conserved TBC domain, which shared high similarity with TBC1D7 of that other species. The mRNA of PvTBC1D7 was highly expressed in hemocyte and hepatopancreas, and the PvTBC1D7 protein was localized specifically in the cytoplasm of hemocyte of shrimp. Besides, PvTBC1D7 was co-localized with PvTSC1 in the cytoplasm of shrimp, indicating that there might existed a binding relationship between PvTBC1D7 and PvTSC1. During the ammonia nitrogen stress, the mRNA transcripts of PvTBC1D7 were significantly upregulated in hemocyte, hepatopancreas, and gill. Functionally, overexpression of PvTBC1D7 in vitro restored the inhibition to autophagy caused by chloroquine (CLQ) and increased the autophagy level, while the silencing of PvTBC1D7 could inhibit the autophagy. More importantly, after interfering with PvTBC1D7, the autophagy level decreased significantly both in hepatopancreas and hemocyte of P. vannamei, the mRNA expression of PvmTOR was increased remarkably with the significantly decrease of autophagy-related genes (PvATG12 and PvATG14). And the reduction of PvTBC1D7 remarkably exacerbated the damage of hepatopancreas, increased the accumulation of ROS, and reduced the survival proportion of shrimp under ammonia nitrogen stress. Altogether, these results indicated that PvTBC1D7 might positively regulate the autophagy by stabilizing the negative regulation of mTOR by TSC complex, reduce the oxidative stress damage and improve shrimp ammonia nitrogen tolerance.
Collapse
Affiliation(s)
- Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qingjian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xueqi Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoli Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
22
|
Watson A, Agius J, Ackerly D, Beddoe T, Helbig K. The Role of Anti-Viral Effector Molecules in Mollusc Hemolymph. Biomolecules 2022; 12:345. [PMID: 35327536 PMCID: PMC8945852 DOI: 10.3390/biom12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Molluscs are major contributors to the international and Australian aquaculture industries, however, their immune systems remain poorly understood due to limited access to draft genomes and evidence of divergences from model organisms. As invertebrates, molluscs lack adaptive immune systems or 'memory', and rely solely on innate immunity for antimicrobial defence. Hemolymph, the circulatory fluid of invertebrates, contains hemocytes which secrete effector molecules with immune regulatory functions. Interactions between mollusc effector molecules and bacterial and fungal pathogens have been well documented, however, there is limited knowledge of their roles against viruses, which cause high mortality and significant production losses in these species. Of the major effector molecules, only the direct acting protein dicer-2 and the antimicrobial peptides (AMPs) hemocyanin and myticin-C have shown antiviral activity. A better understanding of these effector molecules may allow for the manipulation of mollusc proteomes to enhance antiviral and overall antimicrobial defence to prevent future outbreaks and minimize economic outbreaks. Moreover, effector molecule research may yield the description and production of novel antimicrobial treatments for a broad host range of animal species.
Collapse
Affiliation(s)
- Angus Watson
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Jacinta Agius
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Danielle Ackerly
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Karla Helbig
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| |
Collapse
|
23
|
Cai H, Meignin C, Imler JL. cGAS-like receptor-mediated immunity: the insect perspective. Curr Opin Immunol 2022; 74:183-189. [PMID: 35149240 DOI: 10.1016/j.coi.2022.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The cGAS-STING pathway plays a central role in the detection of DNA in the cytosol of mammalian cells and activation of immunity. Although the early evolutionary origin of this pathway in animals has been noted, its ancestral functions have remained elusive so far. We review here new findings in invertebrates establishing a role in sensing and signaling infection, triggering potent transcriptional responses, in addition to autophagy. Results from flies and moths/butterflies point to the importance of STING signaling in antiviral immunity in insects. The recent characterization of cGAS-like receptors in Drosophila reveals the plasticity of this family of pattern-recognition receptors, able to accommodate ligands different from DNA and to produce cyclic dinucleotides beyond 2'3'-cGAMP.
Collapse
Affiliation(s)
- Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
24
|
Gao L, Zheng S, Wang Y. The Evasion of Antiviral Innate Immunity by Chicken DNA Viruses. Front Microbiol 2021; 12:771292. [PMID: 34777325 PMCID: PMC8581555 DOI: 10.3389/fmicb.2021.771292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The innate immune system constitutes the first line of host defense. Viruses have evolved multiple mechanisms to escape host immune surveillance, which has been explored extensively for human DNA viruses. There is growing evidence showing the interaction between avian DNA viruses and the host innate immune system. In this review, we will survey the present knowledge of chicken DNA viruses, then describe the functions of DNA sensors in avian innate immunity, and finally discuss recent progresses in chicken DNA virus evasion from host innate immune responses.
Collapse
Affiliation(s)
- Li Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|