1
|
Li M, Li B, Wang S, Liu P, Liu Z, Zheng T, Geng R, Li B, Zheng Q, Ma P. Novel_circ_0004013 targeting miR-29a-3p affects age-related hearing loss in miR-29a mouse model by RNA-seq analysis. Exp Gerontol 2025; 205:112758. [PMID: 40252715 DOI: 10.1016/j.exger.2025.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Age-related hearing loss (ARHL) is a gradual, symmetrical sensorineural disorder. Exploring the pathogenesis of ARHL from a biological perspective is important for its treatment. In this study, we analyzed the circRNA expression profiles of 2-month-old miR-29a+/+ mice and miR-29a-/- mice by transcriptome sequencing to investigate the role of circRNAs in ARHL. We identified 12 differentially expressed circRNAs in the two groups. Our focus was on circRNAs predicted to regulate miR-29a, with novel_circ_0004013 identified as having a targeted binding relationship with miR-29a-3p. Dual luciferase assays confirmed that miR-29a-3p is a direct target of novel_circ_0004013. Fluorescence in situ hybridization (FISH) was employed to localize the novel_circ_0004013 in HEI-OC1 cells and the cochlea. Novel_circ_0004013 was mainly expressed in the cytoplasm. In the hair cells (HCs) and stria vascularis (SV) regions of miR-29a-/- mice, novel_circ_0004013 expression was higher than the corresponding regions in miR-29a+/+ mice. Furthermore, Western blot assays revealed that levels of oxidative stress and apoptosis were significantly decreased in HEI-OC1 cells following the knockdown of novel_circ_0004013, whereas these levels were significantly increased in HEI-OC1 cells after the knockdown of miR-29a-3p. It was indicated in rescue assays that novel_circ_0004013 expedited oxidative stress and apoptosis of HEI-OC1 cells via modulation on miR-29a-3p. These findings may reveal the important role of novel_circ_0004013 in hearing loss and provide a new perspective and theoretical basis for the molecular mechanism of ARHL.
Collapse
Affiliation(s)
- Mulan Li
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bingqian Li
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Pengcheng Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Zhen Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Peng Ma
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China; Department of Medical Genetics and Cell Biology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
2
|
Hodžić A, Duscher GG, Alić A, Beck R, Berry D. Peritrophic matrix: an important determinant of vector competence in hematophagous arthropods. Trends Parasitol 2025; 41:374-386. [PMID: 40148178 DOI: 10.1016/j.pt.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
The peritrophic matrix (PM) is a non-cellular, glycan-rich structure that lines the gut epithelium of most invertebrates, including arthropod vectors that transmit diseases of public health and veterinary concern. This semipermeable barrier, functionally analogous to the vertebrate mucosal layer, separates the gut lumen from epithelial cells and provides protection against invading pathogens and their toxins. Beyond its mechanical protective role in the gut, the PM plays a crucial part in arthropod innate immunity. Here, we summarize the most recent advances in understanding the molecular mechanisms of vector-pathogen interactions in blood-feeding arthropods and discuss the significance of the PM in modulating vector competence. This knowledge could contribute to the development of novel strategies to control vector-borne infections.
Collapse
Affiliation(s)
- Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, 1030 Vienna, Austria.
| | - Georg Gerhard Duscher
- AGES Research Services, Austrian Agency for Health and Food Safety, 2340 Mödling, Austria
| | - Amer Alić
- Department of Clinical Sciences of Veterinary Medicine, Faculty of Veterinary Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Relja Beck
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - David Berry
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, 1030 Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
3
|
Cabezas-Cruz A, Piloto-Sardiñas E, Tonnerre P, Lucas-Torres C, Obregon D. Cross-species immune activation and immunobiotics: a new frontier in vector-borne pathogen control. Trends Parasitol 2025; 41:290-300. [PMID: 40055101 DOI: 10.1016/j.pt.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 04/05/2025]
Abstract
The persistent global burden of vector-borne diseases (VBDs) needs innovative control strategies, as traditional methods are compromised by acaricides and drug resistance and variable vaccine efficacy. We propose a dual-action strategy using cross-species immune activation: human microbiota triggers the production of natural antibodies that directly target pathogens in the host and modulate vector immunity by interacting with vector microbiota. The human microbiota also modulates cytokine responses, enhancing immune defenses in both host and vector. These mechanisms can be further optimized by identifying immunobiotics - specific gut microbes that stimulate protective immune responses against VBDs. This approach offers a sustainable framework to bridge the gap between host and vector immunity, introducing a novel method to combat VBDs.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France.
| | - Elianne Piloto-Sardiñas
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France; Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, Mayabeque 32700, Cuba
| | - Pierre Tonnerre
- Institut de Recherche Saint-Louis, Université Paris-Cité, Inserm U976, Team ATIP-Avenir, Paris, France
| | - Covadonga Lucas-Torres
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Route de Saclay, 91120 Palaiseau, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1H 2W1, Canada
| |
Collapse
|
4
|
Rodríguez-Durán A, Andrade-Silva V, Numan M, Waldman J, Ali A, Logullo C, da Silva Vaz Junior I, Parizi LF. Multi-Omics Technologies Applied to Improve Tick Research. Microorganisms 2025; 13:795. [PMID: 40284631 PMCID: PMC12029647 DOI: 10.3390/microorganisms13040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
The advancement of multi-omics technologies is crucial to deepen knowledge on tick biology. These approaches, used to study diverse phenomena, are applied to experiments that aim to understand changes in gene transcription, protein function, cellular processes, and prediction of systems at global biological levels. This review addressed the application of omics data to investigate and elucidate tick physiological processes, such as feeding, digestion, reproduction, neuronal, endocrine systems, understanding population dynamics, transmitted pathogens, control, and identifying new vaccine targets. Furthermore, new therapeutic perspectives using tick bioactive molecules, such as anti-inflammatory, analgesic, and antitumor, were summarized. Taken together, the application of omics technologies can help to understand the protein functions and biological behavior of ticks, as well as the identification of potential new antigens influencing the development of alternative control strategies and, consequently, the tick-borne disease prevention in veterinary and public health contexts. Finally, tick population dynamics have been determined through a combination of environmental factors, host availability, and genetic adaptations, and recent advances in omics technologies have improved our understanding of their ecological resilience and resistance mechanisms. Future directions point to the integration of spatial omics and artificial intelligence to further unravel tick biology and improve control strategies.
Collapse
Affiliation(s)
- Arlex Rodríguez-Durán
- Programa de Pós-Graduação em Ciências Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (A.R.-D.); (M.N.)
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
- Grupo de Investigación Parasitología Veterinaria, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia (UNAL), Carrera 30 No 45-03, Bogotá 110111, Colombia
| | - Vinícius Andrade-Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
| | - Muhammad Numan
- Programa de Pós-Graduação em Ciências Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (A.R.-D.); (M.N.)
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
| | - Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-853, RJ, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-853, RJ, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| |
Collapse
|
5
|
Chen J, Yuan C, Xu Q, Sun Y, Zheng R, Zeng C, Wu Y, Zou Z, Xia Q. Alterations in the salivary gland microbiota of Haemaphysalis longicornis during tick-to-host transmission of severe fever with thrombocytopenia syndrome virus. Zool Res 2025; 46:459-468. [PMID: 40116024 PMCID: PMC12000141 DOI: 10.24272/j.issn.2095-8137.2024.332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/30/2024] [Indexed: 03/23/2025] Open
Abstract
Haemaphysalis longicornis serves as the primary tick vector for severe fever with thrombocytopenia syndrome virus (SFTSV), the etiological agent responsible for severe fever with thrombocytopenia syndrome (SFTS). Understanding alterations in tick salivary gland microbiota during SFTSV transmission to vertebrate hosts is essential for developing novel control strategies. However, microbial shifts in tick salivary glands during pathogen transmission to hosts have not been reported for any tick-borne pathogens. In this study, SFTSV transmission from H. longicornis to vertebrate hosts was confirmed using a tick-rabbit transmission model. Salivary gland microbiota profiling via 16S rRNA gene sequencing identified significant changes in bacterial composition associated with viral transmission. The relative abundance of three genera ( Serratia, Bifidobacterium, and Akkermansia) increased, whereas five genera (Flavobacterium, Staphylococcus, Enhydrobacter, Massilia, and Stenotrophomonas) decreased. Correlation network analysis revealed a negative association between Akkermansia and Flavobacterium. These findings demonstrated that SFTSV transmission alters the salivary gland microbiota of H. longicornis, providing insights for future functional studies and the development of targeted strategies for SFTS control.
Collapse
Affiliation(s)
- Jingjing Chen
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Chuanfei Yuan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China. E-mail:
| | - Qiong Xu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yu Sun
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Zheng
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Chenghong Zeng
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China. E-mail:
| |
Collapse
|
6
|
Maitre A, Mateos-Hernandez L, Kratou M, Egri N, Maye J, Juan M, Hodžić A, Obregón D, Abuin-Denis L, Piloto-Sardinas E, Fogaça AC, Cabezas-Cruz A. Effects of Live and Peptide-Based Antimicrobiota Vaccines on Ixodes ricinus Fitness, Microbiota, and Acquisition of Tick-Borne Pathogens. Pathogens 2025; 14:206. [PMID: 40137691 PMCID: PMC11945021 DOI: 10.3390/pathogens14030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
This study explored the effects of antimicrobiota vaccines on the acquisition of Borrelia and Rickettsia, and on the microbiota composition of Ixodes ricinus ticks. Using a murine model, we investigated the immunological responses to live Staphylococcus epidermidis and multi-antigenic peptide (MAP) vaccines. Immunized mice were infected with either Borrelia afzelii or Rickettsia helvetica, and subsequently infested with pathogen-free I. ricinus nymphs. We monitored the tick feeding behavior, survival rates, and infection levels. Additionally, we employed comprehensive microbiota analyses, including the alpha and beta diversity assessments and microbial co-occurrence network construction. Our results indicate that both live S. epidermidis and MAP vaccines elicited significant antibody responses in mice, with notable bactericidal effects against S. epidermidis. The vaccination altered the feeding patterns and fitness of the ticks, with the Live vaccine group showing a higher weight and faster feeding time. Microbiota analysis revealed significant shifts in the beta diversity between vaccine groups, with distinct microbial networks and taxa abundances observed. Notably, the MAP vaccine group exhibited a more robust and complex network structure, while the Live vaccine group demonstrated resilience to microbial perturbations. However, the effects of antimicrobiota vaccination on Borrelia acquisition appeared taxon-dependent, as inferred from our results and previous findings on microbiota-driven pathogen refractoriness. Staphylococcus-based vaccines altered the microbiota composition but had no effect on B. afzelii infection, and yielded inconclusive results for R. helvetica. In contrast, previous studies suggest that E. coli-based microbiota modulation can induce a pathogen-refractory state, highlighting the importance of both bacterial species and peptide selection in shaping microbiota-driven pathogen susceptibility. However, a direct comparison under identical experimental conditions across multiple taxa is required to confirm this taxon-specific effect. These findings suggest that antimicrobiota vaccination influences tick fitness and microbiota assembly, but its effects on pathogen transmission depend on the bacterial taxon targeted and the selected peptide epitopes. This research provides insights into the need for strategic bacterial taxon selection to enhance vaccine efficacy in controlling tick-borne diseases.
Collapse
Affiliation(s)
- Apolline Maitre
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
- UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET-LRDE), INRAE, 20250 Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, 20250 Corte, France
| | - Lourdes Mateos-Hernandez
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia;
| | - Natalia Egri
- Servei d’Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain; (N.E.); (M.J.)
| | - Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France;
| | - Manel Juan
- Servei d’Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain; (N.E.); (M.J.)
| | - Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria;
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1H 2W1, Canada;
| | - Lianet Abuin-Denis
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 Between 158 and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Elianne Piloto-Sardinas
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Cuba
| | - Andrea C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Alejandro Cabezas-Cruz
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
| |
Collapse
|
7
|
Kratou M, Maitre A, Abuin-Denis L, Selmi R, Belkahia H, Alanazi AD, Gattan H, Al-Ahmadi BM, Shater AF, Mateos-Hernández L, Obregón D, Messadi L, Cabezas-Cruz A, Ben Said M. Microbial community variations in adult Hyalomma dromedarii ticks from single locations in Saudi Arabia and Tunisia. Front Microbiol 2025; 16:1543560. [PMID: 40008044 PMCID: PMC11850374 DOI: 10.3389/fmicb.2025.1543560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction The camel-infesting tick, Hyalomma dromedarii, is a prominent ectoparasite in the Middle East and North Africa (MENA) region, critically impacting camel health and acting as a vector for tick-borne pathogens. Despite prior studies on its microbiota, the effects of geographic origin and sex on microbial community structure and functional stability remain poorly understood. Methods To address this, we characterized the bacterial microbiota of H. dromedarii ticks collected from camels in Tunisia (TUN) and Saudi Arabia (SA) using 16S rRNA gene sequencing, microbial network analysis, and metabolic pathway prediction. Results Our findings indicate a dominant presence of Francisella endosymbionts in Tunisian ticks, suggesting adaptive roles of H. dromedarii ticks in arid ecosystems. Keystone taxa, particularly Staphylococcus and Corynebacterium, were identified as central to microbial network structure and resilience. Moreover, network robustness analyses demonstrated enhanced ecological stability in the Tunisian tick microbiota under perturbation, indicative of higher resilience to environmental fluctuations compared to Saudi Arabian ticks. Additionally, functional pathway predictions further revealed geographically distinct metabolic profiles between both groups (Tunisia vs. Saudi Arabia and males vs. females), underscoring environmental and biological influences on H. dromedarii microbiota assembly. Discussion These results highlight region-specific and sex-specific microbial adaptations in H. dromedarii, with potential implications for pathogen transmission dynamics and vector resilience. Understanding these microbial interactions may contribute to improved strategies for tick control and tick-borne disease prevention.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Hanène Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Abdullah D. Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Hattan Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| | - Bassam M. Al-Ahmadi
- Department of Biology, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia
| |
Collapse
|
8
|
Abdelali SK, Aissaoui L, Maitre A, Piloto-Sardiñas E, Julie C, Foucault-Simonin A, Moutailler S, Galon C, Mateos-Hernández L, Obregon D, Zając Z, Cabezas-Cruz A. Guild Dynamics and Pathogen Interactions in Hyalomma Ticks From Algerian Cattle. Transbound Emerg Dis 2024; 2024:5384559. [PMID: 40303016 PMCID: PMC12016691 DOI: 10.1155/tbed/5384559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/18/2024] [Indexed: 05/02/2025]
Abstract
Ticks are pivotal in transmitting a variety of pathogens that affect both humans and animals. These pathogens often occur in guilds, groups of species that exploit similar resources in similar ways. Although the composition of tick-borne pathogen (TBP) guilds is well-documented, the interactions among pathogens within these guilds remain poorly understood. We hypothesized that abiotic and biotic factors significantly influence the patterns of occurrence and interactions among pathogens within these guilds. To investigate this, we analyzed microfluidic-based high-throughput data on microorganisms from 166 Hyalomma excavatum ticks (94 male and 72 female) collected across different seasons from cattle in the central Algerian steppe using network analysis to uncover complex pathogen-pathogen interaction patterns. We found that female ticks had a higher infection rate (63.9%) with common pathogens such as Rickettsia slovaca (26.4%), unclassified Apicomplexa (22.2%), and Borrelia afzelii (19.4%). Male ticks showed a 56.4% infection rate, with Rickettsia (31.1%) and R. slovaca (16%) being the most prevalent. Notable pathogen-pathogen interactions within guilds were identified, with positive associations such as between R. slovaca and Rickettsia conorii in males, and B. afzelii and Borrelia spielmanii in females, indicating cooperative interactions. Conversely, negative associations, such as between Anaplasma phagocytophilum and Francisella tularensis, suggested competitive exclusion. The observed variation in interaction patterns under different conditions indicates that ecological determinants, both biotic and abiotic, influence pathogen association dynamics within guilds. These findings have significant implications for understanding disease transmission and developing control strategies.
Collapse
Affiliation(s)
| | - Lynda Aissaoui
- Department of Animal Biology and Physiology, University of Ferhat Abbas, Setif, Algeria
| | - Apolline Maitre
- ANSES, INRAE, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
- Laboratoire de Virologie, Université de Corse, Corte EA 7310, France
| | - Elianne Piloto-Sardiñas
- ANSES, INRAE, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Mayabeque, Cuba
| | - Constance Julie
- ANSES, INRAE, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Angélique Foucault-Simonin
- ANSES, INRAE, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clemence Galon
- ANSES, INRAE, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph ON, N1G 2W1, Canada
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11st, Lublin 20–080, Poland
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
9
|
Abbasi AM, Nasir S, Bajwa AA, Akbar H, Ali MM, Rashid MI. A comparative study of the microbiomes of the ticks Rhipicephalus microplus and Hyalomma anatolicum. Parasite 2024; 31:74. [PMID: 39607975 PMCID: PMC11604214 DOI: 10.1051/parasite/2024074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Hyalomma anatolicum and Rhipicephalus microplus are tick species that are important vectors of numerous pathogens affecting both humans and livestock. Endosymbionts, such as Coxiella-like endosymbionts (CLE), Francisella-like endosymbionts (FLE), and Candidatus Midichloria, play a crucial role in the physiology and vector competence of these ticks. In this study, we investigated the microbial composition of H. anatolicum and R. microplus from four geographically distinct regions of Pakistan to assess whether environmental differences influence their microbiomes. We analyzed the ticks' gut microbiome targeting the V3-V4 hypervariable region of 16S rRNA for Illumina 16S metagenome NGS sequencing and processed overall 144 ticks. Analysis of gut bacterial composition resulted in observation of 1200 R. microplus and 968 H. anatolicum unique amplicon sequencing variants (ASVs). Relative abundance, Alpha diversity (Shannon, Faith's phylogenetic distance) and beta diversity metrics (Bray-Curtis, Jaccard and UniFrac) were analyzed and revealed that H. anatolicum ticks have significantly unique and diverse microbial communities with Acinetobacter indicus and Francisella-like endosymbionts dominating as opposed to Candidatus Midichloria. Rhipicephalus microplus exhibited results consistent with the previous studies with no major changes in microbiome including Coxiella-like endosymbionts as the major contributor. These findings suggest that geographical and environmental factors play a significant role in shaping the tick microbiome, with potential consequences for disease transmission and tick survivability. Further research is needed to elucidate the functional roles of these microbial shifts and their impact on public health and livestock in affected regions.
Collapse
Affiliation(s)
- Adeel Mumtaz Abbasi
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Shiza Nasir
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Amna Arshad Bajwa
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Haroon Akbar
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary & Animal Sciences 54000 Lahore Pakistan
| |
Collapse
|
10
|
de la Fuente J, Sobrino I, Villar M. Design and evaluation of vaccines for the control of the etiological agent of East Coast fever. Parasit Vectors 2024; 17:479. [PMID: 39567980 PMCID: PMC11580188 DOI: 10.1186/s13071-024-06517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 11/22/2024] Open
Abstract
East Coast fever is a tick-borne theileriosis caused by Theileria parva, a protozoan parasite with the primary vector being the tick Rhipicephalus appendiculatus. This disease poses significant challenges in sub-Saharan Africa, leading to severe economic losses by causing the death of over one million livestock annually. Current control measures include vector control with acaricides and the "infection and treatment" method, which involves immunization with live sporozoites of the pathogen and treatment with long acting oxytetracycline. Despite their effectiveness, these methods face scalability and usability issues, necessitating the development of new prevention strategies, particularly in the field of vaccines for the effective and sustainable control of East Coast fever. In this primer focus, East Coast fever serves as a case study to highlight recent concepts and advancements in tick and tick-borne disease vaccine research. Vaccine design and evaluation processes are reviewed, encompassing the utilization of omics datasets and knowledge on vectors and pathogens, and exploring new design methods, such as quantum vaccinomics and messenger RNA (mRNA)-based vaccines. Key limitations and areas requiring further research are addressed, including insufficient understanding of host-pathogen molecular interactions, the impact of post-translational modifications, and vaccine efficacy variability across different trials. Additionally, new research objectives are proposed to address East Coast fever but with possible impact on other tick-borne diseases. It includes advancing knowledge on tick-pathogen-host molecular interactions, studying tick microbiota, developing novel design approaches, such as combining tick and pathogen epitopes in chimeric vaccines (exemplified by the q38-p67c case), and exploring new immunological enhancers and delivery platforms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Isidro Sobrino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain.
- Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
11
|
Li C, Ma R, Gao A, Jiang N, Sang C, Zhang Y, Tian H, Li J, Hu W, Feng X. Deciphering the microbial communities in ticks of Inner Mongolia: ecological determinants and pathogen profiles. Parasit Vectors 2024; 17:448. [PMID: 39497080 PMCID: PMC11533347 DOI: 10.1186/s13071-024-06512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Ticks are vectors of numerous pathogens, with their bacterial composition, abundance, diversity, and interaction influencing both their growth and disease transmission efficiency. Despite the abundance of ticks in Inner Mongolia, China, comprehensive data on their microbial communities are lacking. This study aims to analyze the microbial communities within ticks from Inner Mongolia to inform innovative control strategies for interrupting pathogen transmission. METHODS Tick samples were collected from animals and vegetation in multiple locations across Inner Mongolia and stored at - 80 °C. Ticks were identified using morphological keys and molecular biology methods. Full-length 16S rRNA gene sequencing was performed on collected samples. Bacterial community composition and diversity were mainly analyzed using bioinformatic tools such as QIIME, phyloseq, and DESeq2. Alpha diversity was assessed using Chao1, ACE, and Shannon indices, while beta diversity was evaluated using Bray-Curtis dissimilarity matrices. LEfSe analysis was applied to identify taxa associated with ecological and biological variables. RESULTS A total of 5,048,137 high-quality read counts were obtained, forming an average of 789.3 OTUs per sample. Proteobacteria, Firmicutes, and Bacteroidetes were the most dominant phyla. Bacterial community composition varied significantly with geography, with Dermacentor nuttalli showing a higher abundance of Rickettsia in Xilingol League, while other regions had different dominant genera. The microbial community also differed based on the feeding status of ticks. Additionally, the microbiota of engorged ticks showed organ specificity. Pathogen detection efforts revealed the presence of nine pathogens across all three tick species. D. nuttalli was found to carry a significantly higher burden of pathogenic bacteria, making it the most potentially threatening tick species in Inner Mongolia. CONCLUSIONS The study highlights significant variations in tick microbiomes influenced by geographic location, feeding status, and tick species. It underscores the importance of enhancing tick and tick-borne disease surveillance in Inner Mongolia for early detection and control of emerging pathogens.
Collapse
Affiliation(s)
- Chunfu Li
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Rui Ma
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ai Gao
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Na Jiang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Chunli Sang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanli Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Haoqiang Tian
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jian Li
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Basic Medical College, Guangxi Traditional Chinese Medical University, Nanning, 530005, Guangxi, China.
| | - Wei Hu
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xinyu Feng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China.
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 20025, China.
| |
Collapse
|
12
|
Aželytė J, Maitre A, Abuin-Denis L, Wu-Chuang A, Žiegytė R, Mateos-Hernandez L, Obregon D, Palinauskas V, Cabezas-Cruz A. Nested patterns of commensals and endosymbionts in microbial communities of mosquito vectors. BMC Microbiol 2024; 24:434. [PMID: 39455905 PMCID: PMC11520040 DOI: 10.1186/s12866-024-03593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Mosquitoes serve as vectors for numerous pathogens, posing significant health risks to humans and animals. Understanding the complex interactions within mosquito microbiota is crucial for deciphering vector-pathogen dynamics and developing effective disease management strategies. Here, we investigated the nested patterns of Wolbachia endosymbionts and Escherichia-Shigella within the microbiota of laboratory-reared Culex pipiens f. molestus and Culex quinquefasciatus mosquitoes. We hypothesized that Wolbachia would exhibit a structured pattern reflective of its co-evolved relationship with both mosquito species, while Escherichia-Shigella would display a more dynamic pattern influenced by environmental factors. RESULTS Our analysis revealed different microbial compositions between the two mosquito species, although some microorganisms were common to both. Network analysis revealed distinct community structures and interaction patterns for these bacteria in the microbiota of each mosquito species. Escherichia-Shigella appeared prominently within major network modules in both mosquito species, particularly in module P4 of Cx. pipiens f. molestus, interacting with 93 nodes, and in module Q3 of Cx. quinquefasciatus, interacting with 161 nodes, sharing 55 nodes across both species. On the other hand, Wolbachia appeared in disparate modules: module P3 in Cx. pipiens f. molestus and a distinct module with a single additional taxon in Cx. quinquefasciatus, showing species-specific interactions and no shared taxa. Through computer simulations, we evaluated how the removal of Wolbachia or Escherichia-Shigella affects network robustness. In Cx. pipiens f. molestus, removal of Wolbachia led to a decrease in network connectivity, while Escherichia-Shigella removal had a minimal impact. Conversely, in Cx. quinquefasciatus, removal of Escherichia-Shigella resulted in decreased network stability, whereas Wolbachia removal had minimal effect. CONCLUSIONS Contrary to our hypothesis, the findings indicate that Wolbachia displays a more dynamic pattern of associations within the microbiota of Culex pipiens f. molestus and Culex quinquefasciatus mosquitoes, than Escherichia-Shigella. The differential effects on network robustness upon Wolbachia or Escherichia-Shigella removal suggest that these bacteria play distinct roles in maintaining community stability within the microbiota of the two mosquito species.
Collapse
Affiliation(s)
- Justė Aželytė
- Nature Research Centre, Akademijos 2, Vilnius, LT-08412, Lithuania
| | - Apolline Maitre
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France
- Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), INRAE, UR 0045, Corte, 20250, France
- Laboratoire de Virologie, Université de Corse, EA 7310, Corte, France
| | - Lianet Abuin-Denis
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana, 10600, Cuba
| | - Alejandra Wu-Chuang
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France
| | - Rita Žiegytė
- Nature Research Centre, Akademijos 2, Vilnius, LT-08412, Lithuania
| | - Lourdes Mateos-Hernandez
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Alejandro Cabezas-Cruz
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, F-94700, France.
| |
Collapse
|
13
|
Kratou M, Maitre A, Abuin-Denis L, Piloto-Sardiñas E, Corona-Guerrero I, Cano-Argüelles AL, Wu-Chuang A, Bamgbose T, Almazan C, Mosqueda J, Obregón D, Mateos-Hernández L, Said MB, Cabezas-Cruz A. Disruption of bacterial interactions and community assembly in Babesia-infected Haemaphysalis longicornis following antibiotic treatment. BMC Microbiol 2024; 24:322. [PMID: 39237861 PMCID: PMC11378419 DOI: 10.1186/s12866-024-03468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND A previous study highlighted the role of antibiotic-induced dysbiosis in the tick microbiota, facilitating the transstadial transmission of Babesia microti from nymph to adult in Haemaphysalis longicornis. This study builds on previous findings by analyzing sequence data from an earlier study to investigate bacterial interactions that could be linked to enhanced transstadial transmission of Babesia in ticks. The study employed antibiotic-treated (AT) and control-treated (CT) Haemaphysalis longicornis ticks to investigate shifts in microbial community assembly. Network analysis techniques were utilized to assess bacterial interactions, comparing network centrality measures between AT and CT groups, alongside studying network robustness and connectivity loss. Additionally, functional profiling was conducted to evaluate metabolic diversity in response to antibiotic treatment. RESULTS The analysis revealed notable changes in microbial community assembly in response to antibiotic treatment. Antibiotic-treated (AT) ticks displayed a greater number of connected nodes but fewer correlations compared to control-treated (CT) ticks, indicating a less interactive yet more connected microbial community. Network centrality measures such as degree, betweenness, closeness, and eigenvector centrality, differed significantly between AT and CT groups, suggesting alterations in local network dynamics due to antibiotic intervention. Coxiella and Acinetobacter exhibited disrupted connectivity and roles, with the former showing reduced interactions in AT group and the latter displaying a loss of connected nodes, emphasizing their crucial roles in microbial network stability. Robustness tests against node removal showed decreased stability in AT networks, particularly under directed attacks, confirming a susceptibility of the microbial community to disturbances. Functional profile analysis further indicated a higher diversity and richness in metabolic capabilities in the AT group, reflecting potential shifts in microbial metabolism as a consequence of antimicrobial treatment. CONCLUSIONS Our findings support that bacterial interaction traits boosting the transstadial transmission of Babesia could be associated with reduced colonization resistance. The disrupted microbial interactions and decreased network robustness in AT ticks suggest critical vulnerabilities that could be targeted for managing tick-borne diseases.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia.
| | - Apolline Maitre
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lianet Abuin-Denis
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Avenue 31 Between 158 and 190, Havana, 10600, Cuba
| | - Elianne Piloto-Sardiñas
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de Las Lajas, Mayabeque, 32700, Cuba
| | - Ivan Corona-Guerrero
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Ana Laura Cano-Argüelles
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, Salamanca, 37008, Spain
| | - Alejandra Wu-Chuang
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
| | - Timothy Bamgbose
- Department of Biological Sciences, Microbiology Unit, Kings University, Odeomu, Osun State, Nigeria
- National Agency for Food and Drug Control and Administration (NAFDAC), Isolo, Lagos State, Nigeria
| | - Consuelo Almazan
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lourdes Mateos-Hernández
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94700, France.
| |
Collapse
|
14
|
Maitre A, Kratou M, Corona-Guerrero I, Abuin-Denis L, Mateos-Hernández L, Mosqueda J, Almazan C, Said MB, Piloto-Sardiñas E, Obregon D, Cabezas-Cruz A. Differential interactions of Rickettsia species with tick microbiota in Rh. sanguineus and Rh. turanicus. Sci Rep 2024; 14:20674. [PMID: 39237587 PMCID: PMC11377539 DOI: 10.1038/s41598-024-71539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Tick-borne rickettsioses, caused by Gram-negative bacteria of the Rickettsia genus, pose a growing global threat, with various arthropod vectors contributing to their transmission. Understanding the complex interactions within tick microbiota, including the role of Rickettsia species, is crucial for elucidating the dynamics of rickettsial diseases. Here, we investigate the taxonomic profiles and co-occurrence networks of Rickettsia in Rh. sanguineus sensus lato (s.l.) and Rh. turanicus ticks, revealing significant differences in community composition and local connectivity of Rickettsia species. While the microbiota of both tick species share common taxa, distinct differences in relative abundance and network topology suggest unique ecological niches. Moreover, robustness analysis demonstrates varying resilience to perturbations, indicating different strategies for network organization. Our findings also highlight metabolic differences between tick species, suggesting potential implications for Rickettsia interactions. Overall, this study provides insights into the intricate microbial landscape within ticks, shedding light on the functional redundancy and metabolic pathways associated with Rickettsia, thus advancing our understanding of tick-borne diseases.
Collapse
Affiliation(s)
- Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches sur le Développement de l'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Ivan Corona-Guerrero
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Consuelo Almazan
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
- C.A. Salud Animal y Microbiologia Ambiental. Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro, Mexico
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Elianne Piloto-Sardiñas
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
15
|
Cano-Argüelles AL, Piloto-Sardiñas E, Maitre A, Mateos-Hernández L, Maye J, Wu-Chuang A, Abuin-Denis L, Obregón D, Bamgbose T, Oleaga A, Cabezas-Cruz A, Pérez-Sánchez R. Microbiota-driven vaccination in soft ticks: Implications for survival, fitness and reproductive capabilities in Ornithodoros moubata. Mol Ecol 2024; 33:e17506. [PMID: 39161118 DOI: 10.1111/mec.17506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
The Ornithodoros moubata (Om) soft tick, a vector for diseases like tick-borne human relapsing fever and African swine fever, poses challenges to conventional control methods. With diminishing insecticide efficacy, harnessing the tick's microbiota through innovative approaches like microbiota-driven vaccination emerges as a promising strategy for sustainable and targeted disease control. This study investigated the intricate relationship between Pseudomonas, a keystone taxon in the Om microbiome, and its impact on tick fitness, microbiome structure and network dynamics. Utilizing in silico analyses and empirical vaccination experiments, the role of Pseudomonas within microbial networks in the tick midguts (MG) and salivary glands (SG) of Om was studied. Additionally, the consequences of anti-microbiota vaccines targeting Pseudomonas and Lactobacillus on tick fitness, microbiome diversity and community assembly were explored. The result of the study shows that in Om, Pseudomonas plays a central role in microbial networks, influencing keystone species despite being categorized as peripheral (interacting with 47 different taxa, 13 of which are keystone species). Anti-microbiota vaccination targeting Pseudomonas and Lactobacillus yields distinct effects on tick fitness, with Pseudomonas vaccination significantly impacting female tick survival, while Lactobacillus significantly reduced oviposition and fertility. Microbiome changes post-vaccination reveal diversity alterations, emphasizing the impact of vaccine choice. Community assembly dynamics and network robustness analyses highlight Pseudomonas' pivotal role, in influencing topological features and network resilience. The findings of the study provide comprehensive insights into the intricate dynamics of Om microbial networks and the potential of targeted microbiota-driven vaccines for tick control.
Collapse
Affiliation(s)
- Ana Laura Cano-Argüelles
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Salamanca, Spain
| | - Elianne Piloto-Sardiñas
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, San José de las Lajas, Mayabeque, Cuba
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, France
| | - Apolline Maitre
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lourdes Mateos-Hernández
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, France
| | - Jennifer Maye
- SEPPIC Paris La Défense, La Garenne Colombes, France
| | - Alejandra Wu-Chuang
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, France
| | - Lianet Abuin-Denis
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Timothy Bamgbose
- Microbiology Unit, Department of Biological Sciences, Kings University, Odeomu, Osun State, Nigeria
- National Agency for Food and Drug Control and Administration (NAFDAC), Isolo, Lagos State, Nigeria
| | - Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Salamanca, Spain
| | - Alejandro Cabezas-Cruz
- Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Maisons-Alfort, France
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Salamanca, Spain
| |
Collapse
|
16
|
Abuin-Denis L, Piloto-Sardiñas E, Maitre A, Wu-Chuang A, Mateos-Hernández L, Paulino PG, Bello Y, Bravo FL, Gutierrez AA, Fernández RR, Castillo AF, Mellor LM, Foucault-Simonin A, Obregon D, Estrada-García MP, Rodríguez-Mallon A, Cabezas-Cruz A. Differential nested patterns of Anaplasma marginale and Coxiella-like endosymbiont across Rhipicephalus microplus ontogeny. Microbiol Res 2024; 286:127790. [PMID: 38851009 DOI: 10.1016/j.micres.2024.127790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Understanding the intricate ecological interactions within the microbiome of arthropod vectors is crucial for elucidating disease transmission dynamics and developing effective control strategies. In this study, we investigated the ecological roles of Coxiella-like endosymbiont (CLE) and Anaplasma marginale across larval, nymphal, and adult stages of Rhipicephalus microplus. We hypothesized that CLE would show a stable, nested pattern reflecting co-evolution with the tick host, while A. marginale would exhibit a more dynamic, non-nested pattern influenced by environmental factors and host immune responses. Our findings revealed a stable, nested pattern characteristic of co-evolutionary mutualism for CLE, occurring in all developmental stages of the tick. Conversely, A. marginale exhibited variable occurrence but exerted significant influence on microbial community structure, challenging our initial hypotheses of its non-nested dynamics. Furthermore, in silico removal of both microbes from the co-occurrence networks altered network topology, underscoring their central roles in the R. microplus microbiome. Notably, competitive interactions between CLE and A. marginale were observed in nymphal network, potentially reflecting the impact of CLE on the pathogen transstadial-transmission. These findings shed light on the complex ecological dynamics within tick microbiomes and have implications for disease management strategies.
Collapse
Affiliation(s)
- Lianet Abuin-Denis
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana 10600, Cuba; ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Elianne Piloto-Sardiñas
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France; Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, Mayabeque 32700, Cuba
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France; INRAE, UR 0045 Laboratoire de Recherches sur le Développement de l'Elevage (SELMET-LRDE), Corte 20250, France; EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Patrícia Gonzaga Paulino
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica 23890-000, Brazil
| | - Yamil Bello
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Frank Ledesma Bravo
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Anays Alvarez Gutierrez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Rafmary Rodríguez Fernández
- National Laboratory of Parasitology, Ministry of Agriculture, Autopista San Antonio de los Baños, Km 112, San Antonio de los Baños, Artemisa 38100, Cuba
| | - Alier Fuentes Castillo
- National Laboratory of Parasitology, Ministry of Agriculture, Autopista San Antonio de los Baños, Km 112, San Antonio de los Baños, Artemisa 38100, Cuba
| | - Luis Méndez Mellor
- National Laboratory of Parasitology, Ministry of Agriculture, Autopista San Antonio de los Baños, Km 112, San Antonio de los Baños, Artemisa 38100, Cuba
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mario Pablo Estrada-García
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Alina Rodríguez-Mallon
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana 10600, Cuba.
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France.
| |
Collapse
|
17
|
Ossa-López PA, Ramírez-Chaves HE, Álvarez López ME, Castaño Villa GJ, Rivera-Páez FA. Bacterial community of ticks (Acari: Ixodidae) and mammals from Arauca, Colombian Orinoquia. Int J Parasitol Parasites Wildl 2024; 24:100943. [PMID: 38778917 PMCID: PMC11109883 DOI: 10.1016/j.ijppaw.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Ticks are obligate hematophagous ectoparasites of vertebrates and are relevant worldwide due to the number of bacterial and other pathogens they can transmit. To date, the knowledge about the microorganisms that ticks harbor and transmit to their hosts is incipient. In this study, 24 samples of mammals belonging to four taxonomic orders and ticks of the genera Amblyomma and Rhipicephalus from the Orinoco region of Colombia were analyzed to described and compare the bacterial microbiome. Genetic extraction was performed, and the V3-V4 region of the 16S rRNA gene was amplified by PCR. Libraries were created, and those samples with adequate quality indices were sequenced using Illumina MiSeq technology. Bacterial taxonomic assignment analyses were conducted through Amplicon Sequence Variants (ASVs) and Operational Taxonomic Units (OTUs). The results correspond to 16 samples that passed the quality filters, with 3218 OTUs (415 families). Although a considerable number of unknown bacteria was found, Enterobacteriaceae, Beijerinckiaceae, Moraxellaceae, and Burkholderiaceae are the most prevalent families, and the presence of the genera Coxiella, Escherichia-Shigella, Enterobacter, which can harbor pathogenic species was confirmed. In individuals of Amblyomma mixtum found actively feeding on Hydrochoerus hydrochaeris, bacteria of the genera Escherichia-Shigella and Enterobacter were documented. Similarly, Rhipicephalus microplus found actively feeding on Odocoileus virginianus cariacou shared Escherichia-Shigella. Ralstonia was shared among the blood samples of H. hydrochaeris, while Anaplasma and Eubacterium were shared in blood and liver samples of O. v. cariacou. Shared bacteria between A. mixtum and R. microplus included Bacillus, Coxiella, and Escherichia-Shigella. The results highlight the need of additional studies in other natural regions of Colombia and other American countries where tick-borne diseases have been detected. Likewise, the recorded data are the first at the level of bacterial communities in ticks of the family Ixodidae and provide valuable knowledge for the understanding host-tick and pathogen interactions.
Collapse
Affiliation(s)
- Paula A. Ossa-López
- Doctorado en Ciencias, Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E. Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - María Elena Álvarez López
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Básicas, Facultad de Ciencias para la Salud, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Gabriel Jaime Castaño Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Desarrollo Rural y Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Fredy A. Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| |
Collapse
|
18
|
Paulino PG, Abuin-Denis L, Maitre A, Piloto-Sardiñas E, Obregon D, Santos HA, Cabezas-Cruz A. Dissecting the impact of Anaplasma phagocytophilum infection on functional networks and community stability of the tick microbiome. Int Microbiol 2024; 27:1205-1218. [PMID: 38151633 DOI: 10.1007/s10123-023-00473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
CONTEXT Pathogens can manipulate microbial interactions to ensure survival, potentially altering the functional patterns and microbiome assembly. The present study investigates how Anaplasma phagocytophilum infection affects the functional diversity, composition, and assembly of the Ixodes scapularis microbiome, with a focus on high central pathways-those characterized by elevated values in centrality metrics such as eigenvector, betweenness, and degree measures, in the microbial community. METHODS Using previously published data from nymphs' gut V4 region's amplicons of bacterial 16S rRNA, we predicted the functional diversity and composition in control and A. phagocytophilum-infected ticks and inferred co-occurrence networks of taxa and ubiquitous pathways in each condition to associate the high central pathways to the microbial community assembly. RESULTS Although no differences were observed concerning pathways richness and diversity, there was a significant impact on taxa and functional assembly when ubiquitous pathways in each condition were filtered. Moreover, a notable shift was observed in the microbiome's high central functions. Specifically, pathways related to the degradation of nucleosides and nucleotides emerged as the most central functions in response to A. phagocytophilum infection. This finding suggests a reconfiguration of functional relationships within the microbial community, potentially influenced by the pathogen's limited metabolic capacity. This limitation implies that the tick microbiome may provide additional metabolic resources to support the pathogen's functional needs. CONCLUSIONS Understanding the metabolic interactions within the tick microbiome can enhance our knowledge of pathogen colonization mechanisms and uncover new disease control and prevention strategies. For example, certain pathways that were more abundant or highly central during infection may represent potential targets for microbiota-based vaccines.
Collapse
Affiliation(s)
- Patrícia Gonzaga Paulino
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, 23890-000, Brazil.
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 Between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Elianne Piloto-Sardiñas
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Huarrisson Azevedo Santos
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, 23890-000, Brazil
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France.
| |
Collapse
|
19
|
de la Fuente J, Ghosh S. Evolution of tick vaccinology. Parasitology 2024; 151:1045-1052. [PMID: 38586999 PMCID: PMC11770523 DOI: 10.1017/s003118202400043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Ticks represent a major concern for society worldwide. Ticks are also difficult to control, and vaccines represent the most efficacious, safe, economically feasible and environmentally sustainable intervention. The evolution of tick vaccinology has been driven by multiple challenges such as (1) Ticks are difficult to control, (2) Vaccines control tick infestations by reducing ectoparasite fitness and reproduction, (3) Vaccine efficacy against multiple tick species, (4) Impact of tick strain genetic diversity on vaccine efficacy, (5) Antigen combination to improve vaccine efficacy, (6) Vaccine formulations and delivery platforms and (7) Combination of vaccines with transgenesis and paratransgenesis. Tick vaccine antigens evolved from organ protein extracts to recombinant proteins to chimera designed by vaccinomics and quantum vaccinomics. Future directions will advance in these areas together with other novel technologies such as multiomics, AI and Big Data, mRNA vaccines, microbiota-driven probiotics and vaccines, and combination of vaccines with other interventions in collaboration with regions with high incidence of tick infestations and tick-borne diseases for a personalized medicine approach.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Srikant Ghosh
- Entomology Laboratory, Parasitology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, UP, India
- Eastern Regional Station- Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| |
Collapse
|
20
|
Le Dortz LL, Rouxel C, Polack B, Boulouis HJ, Lagrée AC, Deshuillers PL, Haddad N. Tick-borne diseases in Europe: Current prevention, control tools and the promise of aptamers. Vet Parasitol 2024; 328:110190. [PMID: 38714064 DOI: 10.1016/j.vetpar.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
In Europe, tick-borne diseases (TBDs) cause significant morbidity and mortality, affecting both human and animal health. Ticks can transmit a wide variety of pathogens (bacteria, viruses, and parasites) and feed on many vertebrate hosts. The incidence and public health burden of TBDs are tending to intensify in Europe due to various factors, mainly anthropogenic and often combined. Early detection of tick-borne pathogens (TBPs), preventive measures and treatment are of great importance to control TBDs and their expansion. However, there are various limitations in terms of the sensitivity and/or specificity of detection and prevention methods, and even in terms of feasibility. Aptamers are single-stranded DNA or RNA that could address these issues as they are able to bind with high affinity and specificity to a wide range of targets (e.g., proteins, small compounds, and cells) due to their unique three-dimensional structure. To date, aptamers have been selected against TBPs such as tick-borne encephalitis virus, Francisella tularensis, and Rickettsia typhi. These studies have demonstrated the benefits of aptamer-based assays for pathogen detection and medical diagnosis. In this review, we address the applications of aptamers to TBDs and discuss their potential for improving prevention measures (use of chemical acaricides, vaccination), diagnosis and therapeutic strategies to control TBDs.
Collapse
Affiliation(s)
- Lisa Lucie Le Dortz
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Clotilde Rouxel
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Bruno Polack
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Henri-Jean Boulouis
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France
| | - Nadia Haddad
- ANSES, INRAE, EnvA (Ecole nationale vétérinaire d'Alfort), UMR BIPAR, Laboratory of Animal Health, Maisons-Alfort F-94700, France.
| |
Collapse
|
21
|
Wu-Chuang A, Mateos-Hernandez L, Abuin-Denis L, Maitre A, Avellanet J, García A, Fuentes D, Cabezas-Cruz A. Exploring the impact of breast cancer on colonization resistance of mouse microbiota using network node manipulation. Heliyon 2024; 10:e30914. [PMID: 38784541 PMCID: PMC11112314 DOI: 10.1016/j.heliyon.2024.e30914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, a global health concern affecting women, has been linked to alterations in the gut microbiota, impacting various aspects of human health. This study investigates the interplay between breast cancer and the gut microbiome, particularly focusing on colonization resistance-an essential feature of the microbiota's ability to prevent pathogenic overgrowth. Using a mouse model of breast cancer, we employ diversity analysis, co-occurrence network analysis, and robustness tests to elucidate the impact of breast cancer on microbiome dynamics. Our results reveal that breast cancer exposure affects the bacterial community's composition and structure, with temporal dynamics playing a role. Network analysis demonstrates that breast cancer disrupts microbial interactions and decreases network complexity, potentially compromising colonization resistance. Moreover, network robustness analysis shows the susceptibility of the microbiota to node removal, indicating potential vulnerability to pathogenic colonization. Additionally, predicted metabolic profiling of the microbiome highlights the significance of the enzyme EC 6.2.1.2 - Butyrate--CoA ligase, potentially increasing butyrate, and balancing the reduction of colonization resistance. The identification of Rubrobacter as a key contributor to this enzyme suggests its role in shaping the microbiota's response to breast cancer. This study uncovers the intricate relationship between breast cancer, the gut microbiome, and colonization resistance, providing insights into potential therapeutic strategies and diagnostic approaches for breast cancer patients.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Lianet Abuin-Denis
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Janet Avellanet
- Center of Molecular Immunology (CIM), Calle 15 esq. 216, Atabey, Playa, Havana, Cuba
| | - Arlem García
- Center of Molecular Immunology (CIM), Calle 15 esq. 216, Atabey, Playa, Havana, Cuba
| | - Dasha Fuentes
- National Center for Laboratory Animal Breeding (CENPALAB), Calle 3ra # 40759 entre 6ta y carretera de Tirabeque, Rpto La Unión, Boyeros, Havana, Cuba
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
22
|
Abuin-Denis L, Piloto-Sardiñas E, Maître A, Wu-Chuang A, Mateos-Hernández L, Obregon D, Corona-González B, Fogaça AC, Palinauskas V, Aželytė J, Rodríguez-Mallon A, Cabezas-Cruz A. Exploring the impact of Anaplasma phagocytophilum on colonization resistance of Ixodes scapularis microbiota using network node manipulation. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100177. [PMID: 38765730 PMCID: PMC11098721 DOI: 10.1016/j.crpvbd.2024.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Upon ingestion from an infected host, tick-borne pathogens (TBPs) have to overcome colonization resistance, a defense mechanism by which tick microbiota prevent microbial invasions. Previous studies have shown that the pathogen Anaplasma phagocytophilum alters the microbiota composition of the nymphs of Ixodes scapularis, but its impact on tick colonization resistance remains unclear. We analyzed tick microbiome genetic data using published Illumina 16S rRNA sequences, assessing microbial diversity within ticks (alpha diversity) through species richness, evenness, and phylogenetic diversity. We compared microbial communities in ticks with and without infection with A. phagocytophilum (beta diversity) using the Bray-Curtis index. We also built co-occurrence networks and used node manipulation to study the impact of A. phagocytophilum on microbial assembly and network robustness, crucial for colonization resistance. We examined network robustness by altering its connectivity, observing changes in the largest connected component (LCC) and the average path length (APL). Our findings revealed that infection with A. phagocytophilum does not significantly alter the overall microbial diversity in ticks. Despite a decrease in the number of nodes and connections within the microbial networks of infected ticks, certain core microbes remained consistently interconnected, suggesting a functional role. The network of infected ticks showed a heightened vulnerability to node removal, with smaller LCC and longer APL, indicating reduced resilience compared to the network of uninfected ticks. Interestingly, adding nodes to the network of infected ticks led to an increase in LCC and a decrease in APL, suggesting a recovery in network robustness, a trend not observed in networks of uninfected ticks. This improvement in network robustness upon node addition hints that infection with A. phagocytophilum might lower ticks' resistance to colonization, potentially facilitating further microbial invasions. We conclude that the compromised colonization resistance observed in tick microbiota following infection with A. phagocytophilum may facilitate co-infection in natural tick populations.
Collapse
Affiliation(s)
- Lianet Abuin-Denis
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana, 10600, Cuba
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Elianne Piloto-Sardiñas
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, Mayabeque, 32700, Cuba
| | - Apolline Maître
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- INRAE, UR 0045 Laboratoire de Recherches sur le Développement de l'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Belkis Corona-González
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, Mayabeque, 32700, Cuba
| | - Andréa Cristina Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| | | | - Justė Aželytė
- Nature Research Centre, Akademijos 2, Vilnius, Lithuania
| | - Alina Rodríguez-Mallon
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana, 10600, Cuba
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
23
|
Piloto‐Sardiñas E, Abuin‐Denis L, Maitre A, Foucault‐Simonin A, Corona‐González B, Díaz‐Corona C, Roblejo‐Arias L, Mateos‐Hernández L, Marrero‐Perera R, Obregon D, Svobodová K, Wu‐Chuang A, Cabezas‐Cruz A. Dynamic nesting of Anaplasma marginale in the microbial communities of Rhipicephalus microplus. Ecol Evol 2024; 14:e11228. [PMID: 38571811 PMCID: PMC10985379 DOI: 10.1002/ece3.11228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Interactions within the tick microbiome involving symbionts, commensals, and tick-borne pathogens (TBPs) play a pivotal role in disease ecology. This study explored temporal changes in the microbiome of Rhipicephalus microplus, an important cattle tick vector, focusing on its interaction with Anaplasma marginale. To overcome limitations inherent in sampling methods relying on questing ticks, which may not consistently reflect pathogen presence due to variations in exposure to infected hosts in nature, our study focused on ticks fed on chronically infected cattle. This approach ensures continuous pathogen exposure, providing a more comprehensive understanding of the nesting patterns of A. marginale in the R. microplus microbiome. Using next-generation sequencing, microbiome dynamics were characterized over 2 years, revealing significant shifts in diversity, composition, and abundance. Anaplasma marginale exhibited varying associations, with its increased abundance correlating with reduced microbial diversity. Co-occurrence networks demonstrated Anaplasma's evolving role, transitioning from diverse connections to keystone taxa status. An integrative approach involving in silico node removal unveils the impact of Anaplasma on network stability, highlighting its role in conferring robustness to the microbial community. This study provides insights into the intricate interplay between the tick microbiome and A. marginale, shedding light on potential avenues for controlling bovine anaplasmosis through microbiome manipulation.
Collapse
Affiliation(s)
- Elianne Piloto‐Sardiñas
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Lianet Abuin‐Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
- Animal Biotechnology DepartmentCenter for Genetic Engineering and BiotechnologyHavanaCuba
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET‐LRDE)CorteFrance
- EA 7310, Laboratoire de Virologie, Université de CorseCorteFrance
| | - Angélique Foucault‐Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - Belkis Corona‐González
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Cristian Díaz‐Corona
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Lisset Roblejo‐Arias
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Lourdes Mateos‐Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - Roxana Marrero‐Perera
- Direction of Animal Health, National Center for Animal and Plant HealthCarretera de Tapaste y Autopista NacionalSan José de las LajasCuba
| | - Dasiel Obregon
- School of Environmental SciencesUniversity of GuelphGuelphOntarioCanada
| | - Karolína Svobodová
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Alejandra Wu‐Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - Alejandro Cabezas‐Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| |
Collapse
|
24
|
Aželytė J, Maitre A, Abuin-Denis L, Piloto-Sardiñas E, Wu-Chuang A, Žiegytė R, Mateos-Hernández L, Obregón D, Cabezas-Cruz A, Palinauskas V. Impact of Plasmodium relictum Infection on the Colonization Resistance of Bird Gut Microbiota: A Preliminary Study. Pathogens 2024; 13:91. [PMID: 38276164 PMCID: PMC10819382 DOI: 10.3390/pathogens13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Avian malaria infection has been known to affect host microbiota, but the impact of Plasmodium infection on the colonization resistance in bird gut microbiota remains unexplored. This study investigated the dynamics of Plasmodium relictum infection in canaries, aiming to explore the hypothesis that microbiota modulation by P. relictum would reduce colonization resistance. Canaries were infected with P. relictum, while a control group was maintained. The results revealed the presence of P. relictum in the blood of all infected canaries. Analysis of the host microbiota showed no significant differences in alpha diversity metrics between infected and control groups. However, significant differences in beta diversity indicated alterations in the microbial taxa composition of infected birds. Differential abundance analysis identified specific taxa with varying prevalence between infected and control groups at different time points. Network analysis demonstrated a decrease in correlations and revealed that P. relictum infection compromised the bird microbiota's ability to resist the removal of taxa but did not affect network robustness with the addition of new nodes. These findings suggest that P. relictum infection reduces gut microbiota stability and has an impact on colonization resistance. Understanding these interactions is crucial for developing strategies to enhance colonization resistance and maintain host health in the face of parasitic infections.
Collapse
Affiliation(s)
- Justė Aželytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; (J.A.); (R.Ž.)
| | - Apolline Maitre
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET-LRDE), F-20250 Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, F-20250 Corte, France
| | - Lianet Abuin-Denis
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, Havana CU-10600, Cuba
| | - Elianne Piloto-Sardiñas
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas CU-32700, Cuba
| | - Alejandra Wu-Chuang
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
| | - Rita Žiegytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; (J.A.); (R.Ž.)
| | - Lourdes Mateos-Hernández
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Alejandro Cabezas-Cruz
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
| | - Vaidas Palinauskas
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; (J.A.); (R.Ž.)
| |
Collapse
|
25
|
Maldonado-Ruiz LP, Reif KE, Ghosh A, Foré S, Johnson RL, Park Y. High levels of alpha-gal with large variation in the salivary glands of lone star ticks fed on human blood. Sci Rep 2023; 13:21409. [PMID: 38049505 PMCID: PMC10695944 DOI: 10.1038/s41598-023-48437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Tick bites, associated with the secretion of tick saliva containing the xenoglycan galactose-alpha-1, 3-galactose (alpha-gal or aGal), are recognized as the causal factors of alpha-Gal syndrome (AGS; or red meat allergy) in humans. AGS occurs after the increased production of IgE antibodies against aGal, which is found in most mammalian cells, except for the Old World monkey and humans. The aGal sensitization event has been linked to an initial tick bite, followed by consumption of red meat containing the aGal glycan, which triggers the onset of the allergic response resulting in urticaria, anaphylaxis, or even death. In North America, the lone star tick, Amblyomma americanum, has been identified as the main culprit for AGS. However, only a subset of the human population exposed to lone star tick bites develops AGS. This suggests the presence of unidentified variables associated with the sensitization event. To evaluate the quantitative variations of the aGal in ticks, we evaluated the differences in aGal levels in different strains of A. americanum ticks partially fed on different blood sources using an artificial feeding system and animal hosts. We found significantly higher aGal levels in the female ticks fed on human blood than those fed on the blood of other mammals with large variations among different tick populations and individuals. We propose that host-specific genetic components in the A. americanum ticks are involved in the production of high aGal epitope in the tick saliva, which provides a part of the explanation for the variables associated with the AGS sensitization event of the tick bite.
Collapse
Affiliation(s)
| | - Kathryn E Reif
- Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anuradha Ghosh
- Department of Biology, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Stephanie Foré
- Department of Biology, Truman State University, Kirksville, MO, 63501, USA
| | - Rachel L Johnson
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
26
|
Mateos-Hernández L, Maitre A, Abuin-Denis L, Obregon D, Martin E, Luis P, Maye J, Wu-Chuang A, Valiente Moro C, Cabezas-Cruz A. Hierarchical shift of the Aedes albopictus microbiota caused by antimicrobiota vaccine increases fecundity and egg-hatching rate in female mosquitoes. FEMS Microbiol Ecol 2023; 99:fiad140. [PMID: 37898556 DOI: 10.1093/femsec/fiad140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
Recent studies show that mosquito-microbiota interactions affects vector competence and fitness. We investigated if host antibodies modifying microbiota impact mosquito physiology. We focused on three prevalent bacteria (Acinetobacter, Pantoea, and Chryseobacterium), originally isolated from the Asian tiger mosquito Aedes albopictus. Our goal was to assess the impact of host antibodies on mosquito microbiota and life traits. Female mosquitoes were fed with blood from rabbits immunized with each bacterium or a mock vaccine. We compared various factors, including feeding behavior, survival rates, and reproductive success of the mosquitoes. Interestingly, mosquitoes fed with blood from a Chryseobacterium-immunized rabbit showed a significant increase in fecundity and egg-hatching rate. This outcome correlated with a decrease in the abundance of Chryseobacterium within the mosquito microbiota. While no significant changes were observed in the alpha and beta diversity indexes between the groups, our network analyses revealed an important finding. The antimicrobiota vaccines had a considerable impact on the bacterial community assembly. They reduced network robustness, and altered the hierarchical organization of nodes in the networks. Our findings provide the basis for the rational design of antimicrobiota vaccines to reduce mosquito fitness and potentially induce infection-refractory states in the microbiota to block pathogen transmission.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMETLRDE), Corte 20250, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte 20250, France
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Edwige Martin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne 69622, France
| | - Patricia Luis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne 69622, France
| | - Jennifer Maye
- SEPPIC Paris La Défense, La Garenne Colombes 92250, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne 69622, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort 94701, France
| |
Collapse
|
27
|
Wu-Chuang A, Hartmann D, Maitre A, Mateos-Hernández L, Frantová H, Urbanová V, Obregon D, Cabezas-Cruz A, Perner J. Variation of bacterial community assembly over developmental stages and midgut of Dermanyssus gallinae. MICROBIAL ECOLOGY 2023; 86:2400-2413. [PMID: 37249591 DOI: 10.1007/s00248-023-02244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Bacterial microbiota play an important role in the fitness of arthropods, but the bacterial microflora in the parasitic mite Dermanyssus gallinae is only partially explored; there are gaps in our understanding of the microbiota localization and in our knowledge of microbial community assembly. In this work, we have visualized, quantified the abundance, and determined the diversity of bacterial occupancy, not only across developmental stages of D. gallinae, but also in the midgut of micro-dissected female D. gallinae mites. We explored community assembly and the presence of keystone taxa, as well as predicted metabolic functions in the microbiome of the mite. The diversity of the microbiota and the complexity of co-occurrence networks decreased with the progression of the life cycle. However, several bacterial taxa were present in all samples examined, indicating a core symbiotic consortium of bacteria. The relatively higher bacterial abundance in adult females, specifically in their midguts, implicates a function linked to the biology of D. gallinae mites. If such an association proves to be important, the bacterial microflora qualifies itself as an acaricidal or vaccine target against this troublesome pest.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - David Hartmann
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Helena Frantová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France.
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
28
|
Tonk-Rügen M, Zając Z, Cabezas-Cruz A. Can Tick Microbiome Explain Nonlinear Relationship between Tick Abundance and Lyme Disease Incidence? Pathogens 2023; 12:1229. [PMID: 37887745 PMCID: PMC10610533 DOI: 10.3390/pathogens12101229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Ticks (Acari: Ixodida) are hematophagous ectoparasitic arachnids that feed on the blood of vertebrate hosts, posing significant concern due to their unrivaled capacity to transmit various pathogens, which surpasses those of all other known arthropod vectors [...].
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Zbigniew Zając
- Department of Biology and Parasitology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| |
Collapse
|
29
|
Maye J, Cabezas-Cruz A. Alternative and Complementary Approaches to Consider for Effective Babesia Vaccine Development. Pathogens 2023; 12:1166. [PMID: 37764974 PMCID: PMC10537028 DOI: 10.3390/pathogens12091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The Babesia genus encompasses several species of apicomplexan hemoprotozoan parasites [...].
Collapse
Affiliation(s)
- Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| |
Collapse
|
30
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
31
|
Kolo AO, Raghavan R. Impact of endosymbionts on tick physiology and fitness. Parasitology 2023; 150:859-865. [PMID: 37722758 PMCID: PMC10577665 DOI: 10.1017/s0031182023000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Ticks transmit pathogens and harbour non-pathogenic, vertically transmitted intracellular bacteria termed endosymbionts. Almost all ticks studied to date contain 1 or more of Coxiella, Francisella, Rickettsia or Candidatus Midichloria mitochondrii endosymbionts, indicative of their importance to tick physiology. Genomic and experimental data suggest that endosymbionts promote tick development and reproductive success. Here, we review the limited information currently available on the potential roles endosymbionts play in enhancing tick metabolism and fitness. Future studies that expand on these findings are needed to better understand endosymbionts’ contributions to tick biology. This knowledge could potentially be applied to design novel strategies that target endosymbiont function to control the spread of ticks and pathogens they vector.
Collapse
Affiliation(s)
- Agatha O. Kolo
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Rahul Raghavan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
32
|
Maitre A, Wu-Chuang A, Mateos-Hernández L, Piloto-Sardiñas E, Foucault-Simonin A, Cicculli V, Moutailler S, Paoli JC, Falchi A, Obregón D, Cabezas-Cruz A. Rickettsial pathogens drive microbiota assembly in Hyalomma marginatum and Rhipicephalus bursa ticks. Mol Ecol 2023; 32:4660-4676. [PMID: 37366236 DOI: 10.1111/mec.17058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Most tick-borne pathogens (TBPs) are secondarily acquired by ticks during feeding on infected hosts, which imposes 'priority effect' constraints, as arrival order influences the establishment of new species in a microbial community. Here we tested whether once acquired, TBPs contribute to bacterial microbiota functioning by increasing community stability. For this, we used Hyalomma marginatum and Rhipicephalus bursa ticks collected from cattle in different locations of Corsica and combined 16S rRNA amplicon sequencing and co-occurrence network analysis, with high-throughput pathogen detection, and in silico removal of nodes to test for impact of rickettsial pathogens on network properties. Despite its low centrality, Rickettsia showed preferential connections in the networks, notably with a keystone taxon in H. marginatum, suggesting facilitation of Rickettsia colonisation by the keystone taxon. In addition, conserved patterns of community assembly in both tick species were affected by Rickettsia removal, suggesting that privileged connections of Rickettsia in the networks make this taxon a driver of community assembly. However, Rickettsia removal had minor impact on the conserved 'core bacterial microbiota' of H. marginatum and R. bursa. Interestingly, networks of the two tick species with Rickettsia have similar node centrality distribution, a property that is lost after Rickettsia removal, suggesting that this taxon drives specific hierarchical interactions between bacterial microbes in the microbiota. The study indicates that tick-borne Rickettsia play a significant role in the tick bacterial microbiota, despite their low centrality. These bacteria are influential and contribute to the conservation of the 'core bacterial microbiota' while also promoting community stability.
Collapse
Affiliation(s)
- Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Elianne Piloto-Sardiñas
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, San José de las Lajas, Cuba
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Vincent Cicculli
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Jean-Christophe Paoli
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
| | - Alessandra Falchi
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
33
|
Wu-Chuang A, Mateos-Hernandez L, Maitre A, Rego ROM, Šíma R, Porcelli S, Rakotobe S, Foucault-Simonin A, Moutailler S, Palinauskas V, Aželytė J, Sǐmo L, Obregon D, Cabezas-Cruz A. Microbiota perturbation by anti-microbiota vaccine reduces the colonization of Borrelia afzelii in Ixodes ricinus. MICROBIOME 2023; 11:151. [PMID: 37482606 PMCID: PMC10364381 DOI: 10.1186/s40168-023-01599-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Ticks can transmit a broad variety of pathogens of medical importance, including Borrelia afzelii, the causative agent of Lyme borreliosis in Europe. Tick microbiota is an important factor modulating, not only vector physiology, but also the vector competence. Anti-microbiota vaccines targeting keystone taxa of tick microbiota can alter tick feeding and modulate the taxonomic and functional profiles of bacterial communities in the vector. However, the impact of anti-microbiota vaccine on tick-borne pathogen development within the vector has not been tested. RESULTS Here, we characterized the Ixodes ricinus microbiota modulation in response to B. afzelii infection and found that the pathogen induces changes in the microbiota composition, its beta diversity and structure of bacterial community assembly. Tick microbiota perturbation by anti-microbiota antibodies or addition of novel commensal bacteria into tick midguts causes departures from the B. afzelii-induced modulation of tick microbiota which resulted in a lower load of the pathogen in I. ricinus. Co-occurrence networks allowed the identification of emergent properties of the bacterial communities which better defined the Borrelia infection-refractory states of the tick microbiota. CONCLUSIONS These findings suggest that Borrelia is highly sensitive to tick microbiota perturbations and that departure from the modulation induced by the pathogen in the vector microbiota pose a high cost to the spirochete. Network analysis emerges as a suitable tool to identify emergent properties of the vector microbiota associated with infection-refractory states. Anti-microbiota vaccines can be used as a tool for microbiota perturbation and control of important vector-borne pathogens. Video Abstract.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Biopticka Laborator S.R.O, Plzen, Czech Republic
| | - Stefania Porcelli
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sabine Rakotobe
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | | | - Justė Aželytė
- Nature Research Centre, Akademijos 2, 09412, Vilnius, Lithuania
| | - Ladislav Sǐmo
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
34
|
Fernández-Ruiz N, Pinecki-Socias S, Estrada-Peña A, Wu-Chuang A, Maitre A, Obregón D, Cabezas-Cruz A, de Blas I, Nijhof AM. Decontamination protocols affect the internal microbiota of ticks. Parasit Vectors 2023; 16:189. [PMID: 37286996 DOI: 10.1186/s13071-023-05812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023] Open
Abstract
Studies on the microbiota of ticks have promoted hypotheses about the combined effects of the bacterial community, its functional contributions to the tick's physiology or probable competition effects with some tick-borne pathogens. However, knowledge on the origin of the microbiota of newly hatched larvae is missing. This study aimed to elucidate the source(s) of the microbiota in unfed tick larvae, addressing the composition of the "core microbiota" and the best ways to decontaminate eggs for microbiota studies. We applied laboratory degree bleach washes and/or ultraviolet light treatments on engorged Rhipicephalus australis females and/or their eggs. No significant effects of these treatments on the reproductive parameters of females and the hatching rates of eggs were observed. However, the different treatments did show striking effects on the composition of the microbiota. The results indicated that bleach washes disrupted the internal tick microbiota in females, implying that bleach may have entered the tick and subsequently affected the microbiota. Furthermore, the analyses of results demonstrated that the ovary is a main source of tick microbiota, while the contribution of Gené's organ (a part of the female reproductive system that secretes a protective wax coat onto tick eggs) or the male's spermatophore requires further investigation. Further studies are needed to identify best practice protocols for the decontamination of ticks for microbiota studies.
Collapse
Affiliation(s)
- Natalia Fernández-Ruiz
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain.
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013, Zaragoza, Spain.
| | - Sophia Pinecki-Socias
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Agustín Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013, Zaragoza, Spain
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Ignacio de Blas
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
| | - Ard M Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
35
|
Mazuecos L, Alberdi P, Hernández-Jarguín A, Contreras M, Villar M, Cabezas-Cruz A, Simo L, González-García A, Díaz-Sánchez S, Neelakanta G, Bonnet SI, Fikrig E, de la Fuente J. Frankenbacteriosis targeting interactions between pathogen and symbiont to control infection in the tick vector. iScience 2023; 26:106697. [PMID: 37168564 PMCID: PMC10165458 DOI: 10.1016/j.isci.2023.106697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Tick microbiota can be targeted for the control of tick-borne diseases such as human granulocytic anaplasmosis (HGA) caused by model pathogen, Anaplasma phagocytophilum. Frankenbacteriosis is inspired by Frankenstein and defined here as paratransgenesis of tick symbiotic/commensal bacteria to mimic and compete with tick-borne pathogens. Interactions between A. phagocytophilum and symbiotic Sphingomonas identified by metaproteomics analysis in Ixodes scapularis midgut showed competition between both bacteria. Consequently, Sphingomonas was selected for frankenbacteriosis for the control of A. phagocytophilum infection and transmission. The results showed that Franken Sphingomonas producing A. phagocytophilum major surface protein 4 (MSP4) mimic pathogen and reduce infection in ticks by competition and interaction with cell receptor components of infection. Franken Sphingomonas-MSP4 transovarial and trans-stadial transmission suggests that tick larvae with genetically modified Franken Sphingomonas-MSP4 could be produced in the laboratory and released in the field to compete and replace the wildtype populations with associated reduction in pathogen infection/transmission and HGA disease risks.
Collapse
Affiliation(s)
- Lorena Mazuecos
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Angélica Hernández-Jarguín
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Ladislav Simo
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Almudena González-García
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Sandra Díaz-Sánchez
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Sarah I. Bonnet
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR 2000, Université de Paris, 75015 Paris, France
- Animal Health Department, INRAE, 37380 Nouzilly, France
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 208022, USA
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Corresponding author
| |
Collapse
|
36
|
Piloto-Sardiñas E, Cano-Argüelles AL, Maitre A, Wu-Chuang A, Mateos-Hernández L, Corduneanu A, Obregón D, Oleaga A, Pérez-Sánchez R, Cabezas-Cruz A. Comparison of salivary gland and midgut microbiome in the soft ticks Ornithodoros erraticus and Ornithodoros moubata. Front Microbiol 2023; 14:1173609. [PMID: 37228376 PMCID: PMC10203192 DOI: 10.3389/fmicb.2023.1173609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Ornithodoros erraticus and Ornithodoros moubata are the main vectors of African swine fever virus (ASFV) and the human relapsing fever spirochetes Borrelia hispanica and Borrelia crocidurae in the Mediterranean region and Borrelia duttoni in continental Africa. Manipulation of the tick microbiome has been shown to reduce vector fitness and competence in tick vectors, suggesting that the identification of key microbial players associated with tick tissues can inform interventions such as anti-microbiota vaccines to block pathogen development in the midgut and/or salivary glands. Methods In this study, we analyzed and compared the microbiome of the salivary glands and midgut of O. erraticus and O. moubata. For the taxonomic and functional characterization of the tissue-specific microbiome, we used 16S rRNA amplicon sequencing and prediction of metabolic profiles using PICRUSt2. Co-occurrence networks were built to characterize the community assembly and identify keystone taxa in each tick species. Results Our results revealed differences in the composition, diversity, and assembly of the bacterial microbiome of salivary glands and midgut within each tick species, but differences were more noticeable in O. moubata. Differences were also found in the microbiome of each tissue, salivary gland and midgut, between species. However, the 'Core Association Networks (CAN)' analysis revealed conserved patterns of interacting taxa in tissues within and between tick species. Different keystone taxa were identified in O. erraticus and O. moubata tissues, but Muribaculaceae and Alistipes were found as keystone taxa in the salivary glands of both tick species which justifies their use as anti-microbiota vaccine candidates to alter the microbiome and reduce tick fitness and/or block pathogen transmission. The high similarity of predicted metabolic pathways profiles between tissues of the two tick species suggests that taxonomic variability of the microbiome is not associated with significant changes in microbial functional profiles. Conclusion We conclude that the taxonomic structure of the microbiome in O. erraticus and O. moubata is tissue-specific, suggesting niche partitioning of bacterial communities associated to these soft ticks. However, shared keystone taxa and conserved patterns of interacting taxa between tissues and tick species suggest the presence of key microbial players that could be used as anti-microbiota vaccine candidates to affect tick physiology and/or pathogen colonization.
Collapse
Affiliation(s)
- Elianne Piloto-Sardiñas
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, San José de las Lajas, Mayabeque, Cuba
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Ana Laura Cano-Argüelles
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Salamanca, Spain
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET-LRDE), INRAE, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dasiel Obregón
- School of Environmental Sciences University of Guelph, Guelph, ON, Canada
| | - Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Salamanca, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Salamanca, Spain
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
37
|
Hodžić A, Dheilly NM, Cabezas-Cruz A, Berry D. The helminth holobiont: a multidimensional host-parasite-microbiota interaction. Trends Parasitol 2023; 39:91-100. [PMID: 36503639 DOI: 10.1016/j.pt.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Gastrointestinal helminths have developed multiple mechanisms by which they manipulate the host microbiome to make a favorable environment for their long-term survival. While the impact of helminth infections on vertebrate host immunity and its gut microbiota is relatively well studied, little is known about the structure and functioning of microbial populations supported by metazoan parasites. Here we argue that an integrated understanding of the helminth-associated microbiome and its role in the host disease pathogenesis may facilitate the discovery of specific microbial and/or genetic patterns critical for parasite biology and subsequently pave the way for the development of alternative control strategies against parasites and parasitic disease.
Collapse
Affiliation(s)
- Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Nolwenn M Dheilly
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - David Berry
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
38
|
Grandi G, Chiappa G, Ullman K, Lindgren PE, Olivieri E, Sassera D, Östlund E, Omazic A, Perissinotto D, Söderlund R. Characterization of the bacterial microbiome of Swedish ticks through 16S rRNA amplicon sequencing of whole ticks and of individual tick organs. Parasit Vectors 2023; 16:39. [PMID: 36717919 PMCID: PMC9885626 DOI: 10.1186/s13071-022-05638-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/24/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The composition of the microbial flora associated with ixodid ticks has been studied in several species, revealing the importance of geographical origin, developmental stage(s) and feeding status of the tick, as well as substantial differences between tissues and organs. Studying the microbiome in the correct context and scale is therefore necessary for understanding the interactions between tick-borne pathogens and other microorganisms as well as other aspects of tick biology. METHODS In the present study the microbial flora of whole Ixodes ricinus, I. persulcatus and I. trianguliceps ticks were analyzed with 16S rRNA amplicon sequencing. Additionally, tick organs (midguts, Malpighian tubules, ovaries, salivary glands) from flat and engorged I. ricinus female ticks were examined with the same methodology. RESULTS The most abundant bacteria belonged to the group of Proteobacteria (Cand. Midichloria mitochondrii and Cand. Lariskella). 16S amplicon sequencing of dissected tick organs provided more information on the diversity of I. ricinus-associated microbial flora, especially when organs were collected from engorged ticks. Bacterial genera significantly associated with tick feeding status as well as genera associated with the presence of tick-borne pathogens were identified. CONCLUSIONS These results contribute to the knowledge of microbial flora associated with ixodid ticks in their northernmost distribution limit in Europe and opens new perspectives for other investigations on the function of these bacteria, including those using other approaches like in vitro cultivation and in vitro models.
Collapse
Affiliation(s)
- Giulio Grandi
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden ,grid.6341.00000 0000 8578 2742Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), Ulls Väg 26, 750 07 Uppsala, Sweden
| | - Giulia Chiappa
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Karin Ullman
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Per-Eric Lindgren
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, 581 85 Linköping, Sweden ,grid.413253.2Department of Clinical Microbiology, County Hospital Ryhov, 551 85 Jönköping, Sweden
| | - Emanuela Olivieri
- grid.419583.20000 0004 1757 1598Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Strada Campeggi, 59/61, 27100 Pavia, Italy
| | - Davide Sassera
- grid.8982.b0000 0004 1762 5736Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Emma Östlund
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Anna Omazic
- grid.419788.b0000 0001 2166 9211Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Debora Perissinotto
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Robert Söderlund
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| |
Collapse
|
39
|
Rodríguez O, de la Fuente G, Fernández de Mera IG, Vaz-Rodrigues R, Gortázar C, de la Fuente J. The Saharan antelope addax (Addax nasomaculatus) as a host for Hyalomma marginatum, tick vector of Crimean-Congo hemorrhagic fever virus. Ticks Tick Borne Dis 2022; 13:102034. [PMID: 36041296 DOI: 10.1016/j.ttbdis.2022.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Tick infestation and pathogen prevalence in ticks infesting the Saharan antelope addax (Addax nasomaculatus) are factors that may constitute a risk for both human and animal health. In this study we describe season distribution of adult Hyalomma marginatum and analyzed the tick-borne pathogens and their seroprevalence in natural-living addax in Morocco. The results showed that addax is an important host species for H. marginatum adults. The seroprevalence of Bluetongue virus (BTV; 61.5-92.3%, n = 8/13-84/91), Coxiella burnetii (36.3-69.2%, n = 33/91-9/13) and Brucella spp. (0.0-4.8%, n = 0/50-2/42) was characterized in addax during various years (sampled animals per year, n = 13-91). Presence of Aigai virus (AIGV), a recent taxonomic differentiation of Crimean-Congo hemorrhagic fever virus (CCHFV) of 100% (4/4, years 2016 and 2017) together with Babesia ovis (75%, 3/4, year 2014), Anaplasma spp. (75%, 3/4, year 2014), Rickettsia spp. (50%, 2/4, year 2014) and Theileria spp. (25%, 1/4, year 2014) was observed in H. marginatum collected from the addax (4 pools of 10 adult ticks each). The results support the role of addax host in H. marginatum life cycle and exposure to AIGV and other tick-borne pathogens. The development of control interventions including anti-tick vaccines for wildlife species will contribute to the implementation of effective measures for the prevention and control of tick-borne diseases and might be relevant for the preservation of this threatened species and others such as Arabian oryx (Oryx leucoryx) and African elk (Taurotragus oryx) that share habitat.
Collapse
Affiliation(s)
| | - Gabriela de la Fuente
- Sabiotec, Edificio incubadora de empresas UCLM, Camino de Moledores s/n, Ciudad Real 13071, Spain
| | - Isabel G Fernández de Mera
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Rita Vaz-Rodrigues
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Christian Gortázar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain; Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
40
|
Wu-Chuang A, Obregon D, Estrada-Peña A, Cabezas-Cruz A. Thermostable Keystone Bacteria Maintain the Functional Diversity of the Ixodes scapularis Microbiome Under Heat Stress. MICROBIAL ECOLOGY 2022; 84:1224-1235. [PMID: 34817640 DOI: 10.1007/s00248-021-01929-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Variations in the composition and diversity of tick microbiome due to high temperatures may influence the hierarchy of community members as a response to environmental change. Modifications in the community structure are hypothesized to drive alterations in the presence and/or abundance of functional pathways in the bacterial metagenome. In this study, this hypothesis was tested by using published 16S rRNA datasets of Ixodes scapularis males incubated at different temperatures (i.e., 4, 20, 30, and 37 °C) in a laboratory setting. Changes in community structure and functional profiles in response to temperature shifts were measured using co-occurrence networks and metagenome inference. Results from laboratory-reared ticks were then compared with those of field-collected ticks. The results from laboratory-reared ticks showed that high temperature altered the structure of the microbial community and decreased the number of keystone taxa. Notably, four taxa were identified as keystone in all the temperatures, and the functional diversity of the tick microbiome was contained in the four thermostable keystone their associated bacterial taxa. Three of the thermostable keystone taxa were also found in free-living ticks collected in Massachusetts. Moreover, the comparison of functional profiles of laboratory-reared and field-collected ticks revealed the existence of an important set of metabolic pathways that were common among the different datasets. Similar to the laboratory-reared ticks, the keystone taxa identified in field-collected ticks alongside their consortia (co-occurring taxa) were sufficient to retain the majority of the metabolic pathways in the functional profile. These results suggest that keystone taxa are essential in the stability and the functional resiliency of the tick microbiome under heat stress.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France.
| |
Collapse
|
41
|
Elias L, Hearn AJM, Blazier JC, Rogovska YV, Wang J, Li S, Liu S, Nebogatkin IV, Rogovskyy AS. The Microbiota of Ixodes ricinus and Dermacentor reticulatus Ticks Collected from a Highly Populated City of Eastern Europe. MICROBIAL ECOLOGY 2022; 84:1072-1086. [PMID: 34767049 DOI: 10.1007/s00248-021-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Recent investigations have examined, through sequencing the V6 region of 16S rRNA gene, the microbiota of questing Ixodes ricinus and Dermacentor reticulatus ticks collected from rural areas of Central (Dnipropetrovs'k (region D) and Poltava (region P)) and Northeastern (Kharkiv (region K)) Ukraine. In addition to defining the bacterial microbiota of both tick species, the previous investigations also revealed a high degree of inter-sex and inter-regional variations in the tick microbiota. As a continuation of the two studies, the present investigation has analyzed individual microbiota of questing I. ricinus (n = 50) and D. reticulatus (n = 50) ticks originating from Kyiv, the largest city of Ukraine. The Kyiv tick microbiota were compared between males and females for each tick species. Additionally, a cross-regional analysis was performed to compare the microbiota of Kyiv ticks to those from regions D, K, and P. Numerous statistically significant inter-sex and inter-regional variations were detected when alpha diversity, beta diversity, the bacterial relative and differential abundances were assessed. The overall results demonstrated that the microbiota of Kyiv ticks were statistically different compared to the ticks of the other three regions. Besides existing climatic and geographical differences between the four regions, the authors hypothesize that various anthropogenic factors of the megapolis (e.g., animal species translocation, land management, ecology) could have contributed to the distinct microbiota of Kyiv ticks observed in this study.
Collapse
Affiliation(s)
- Leta Elias
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, 4467 TAMU, Texas A&M University, College Station, TX, 77843, USA
| | - Aimee-Joy M Hearn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, 4467 TAMU, Texas A&M University, College Station, TX, 77843, USA
| | - John C Blazier
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
| | - Yuliya V Rogovska
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, 4467 TAMU, Texas A&M University, College Station, TX, 77843, USA
| | - Jiangli Wang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China (USTC), Hefei, 230026, Anhui, China
| | - Sijia Li
- Statistical Collaboration Center, Department of Statistics, College of Science, Texas A&M University, College Station, TX, 77843, USA
| | - Shuling Liu
- Statistical Collaboration Center, Department of Statistics, College of Science, Texas A&M University, College Station, TX, 77843, USA
| | - Igor V Nebogatkin
- I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, 01601, Ukraine
| | - Artem S Rogovskyy
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, 4467 TAMU, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
42
|
Almazán C. Impact of the Paper by Allen and Humphreys (1979) on Anti-Tick Vaccine Research. Pathogens 2022; 11:1253. [PMID: 36365004 PMCID: PMC9692451 DOI: 10.3390/pathogens11111253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
The classic paper by Allen and Humphreys "Immunisation of guinea pigs and cattle against ticks" Nature, 1979, 280: 491-493 led to a surge in the development of tick vaccines as a nonchemical method for prevention of tick infestations in susceptible hosts living in tick-endemic regions. Although observations of host resistance to ticks had been documented since the beginning of the last century, it was not until publication of this paper that the proof of concept of anti-tick vaccines was developed. The described experimental methods directly impacted further investigations on the discovery and evaluation of new anti-tick vaccines.
Collapse
Affiliation(s)
- Consuelo Almazán
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro 76140, Mexico
| |
Collapse
|
43
|
Keystone taxa: an emerging area of microbiome research for future disease diagnosis and health safety in human. Microbiol Res 2022. [DOI: 10.1016/j.micres.2022.127203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Wu-Chuang A, Bates KA, Obregon D, Estrada-Peña A, King KC, Cabezas-Cruz A. Rapid evolution of a novel protective symbiont into keystone taxon in Caenorhabditis elegans microbiota. Sci Rep 2022; 12:14045. [PMID: 35982076 PMCID: PMC9388637 DOI: 10.1038/s41598-022-18269-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Protective microbes have a major role in shaping host-pathogen interactions, but their relative importance in the structure of the host microbiota remains unclear. Here, we used a network approach to characterize the impact of a novel, experimentally evolved 'protective microbial symbiont' (Enterococcus faecalis) on the structure and predicted function of the natural microbiota of the model organism Caenorhabditis elegans. We used microbial network analysis to identify keystone taxa and describe the hierarchical placement of protective and non-protective symbionts in the microbiota. We found that early colonization with symbionts produce statistically significant changes in the structure of the community. Notably, only the protective E. faecalis became a keystone taxon in the nematode microbiota. Non-protective lineages of the same bacterial species remained comparatively unimportant to the community. Prediction of functional profiles in bacterial communities using PICRUSt2 showed that the presence of highly protective E. faecalis decreased the abundance of ergothioneine (EGT) biosynthesis pathway involved in the synthesis of the antioxidant molecule EGT, a potential public good. These data show that in addition to direct antagonism with virulent pathogens, keystone protective symbionts are linked to modified bacterial community structure and possible reductions in public goods, potentially driving decreased antioxidant defense. We suggest that this response could suppress infection via wholesale microbial community changes to further benefit the host. These findings extend the concept of protective symbionts beyond bodyguards to ecosystem engineers.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Kieran A Bates
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
45
|
Maitre A, Wu-Chuang A, Mateos-Hernández L, Foucault-Simonin A, Moutailler S, Paoli JC, Falchi A, Díaz-Sánchez AA, Banović P, Obregón D, Cabezas-Cruz A. Rickettsia helvetica infection is associated with microbiome modulation in Ixodes ricinus collected from humans in Serbia. Sci Rep 2022; 12:11464. [PMID: 35794219 PMCID: PMC9259644 DOI: 10.1038/s41598-022-15681-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
Rickettsia helvetica is an emerging pathogen of the Spotted Fever Group Rickettsia (SFGR) causing spotted fever diseases in various European countries. This tick-borne pathogen replicates in tick tissues such as the midgut and salivary gland, but its potential interactions with the vector microbiota is poorly characterized. The vector microbiome plays a pivotal role in tick-pathogen interactions, and some microbiota members facilitate or impede tick-borne pathogen infection. Manipulations of the tick microbiome have led to reduction in pathogen colonization in the tick vector. However, translating these findings into disease control applications requires a thorough characterization of vector microbiota response to different pathogens. In this study, we analyzed and compared the microbiota of Ixodes ricinus ticks attached on humans and collected in Serbia. Ticks were either infected with R. helvetica, or uninfected with major tick-borne pathogens (referred hereafter as 'pathogen-free'). We used microbial co-occurrence network analysis to determine keystone taxa of each set of samples, and to study the interaction patterns of the microbial communities in response to pathogen infection. The inferred functional profiles of the tick microbiome in R. helvetica-positive and pathogen-free samples were also compared. Our results show that R. helvetica infection reduces significantly the diversity of the microbiota and the connectivity of the co-occurrence network. In addition, using co-occurrence network we identified bacterial taxa (i.e., Enterobacteriaceae, Comamonadaceae, and Bacillus) that were negatively associated with 'Rickettsia' in R. helvetica-infected ticks, suggesting competition between R. helvetica and some members of the tick microbiota. The reconstruction of microbial metabolic pathways shows that the presence of R. helvetica might have a major impact on the metabolic functions of the tick microbiome. These results can inform novel interventions for the prevention of R. helvetica, or other SFGR infections in humans.
Collapse
Affiliation(s)
- Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.,INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France.,EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Jean-Christophe Paoli
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
| | - Alessandra Falchi
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Adrian A Díaz-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000, Novi Sad, Serbia.,Department of Microbiology With Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
46
|
Functional characterization of α-Gal producing lactic acid bacteria with potential probiotic properties. Sci Rep 2022; 12:7484. [PMID: 35524154 PMCID: PMC9075922 DOI: 10.1038/s41598-022-11632-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
The possibility of exploiting the human immune response to glycan α-Gal for the control of multiple infectious diseases has been the objective of recent investigations. In this field of research, the strain of Escherichia coli O86:B7 has been at the forefront, but this Gram-negative microorganism presents a safety concern and therefore cannot be considered as a probiotic. To address this challenge, this study explored the identification of novel lactic acid bacteria with a safe history of use, producing α-Gal and having probiotic potential. The lactic acid bacteria were isolated from different traditionally fermented foods (kununn-zaki, kindirmo, and pulque) and were screened for the production of α-Gal and some specific probiotic potential indicators. The results showed that Ten (10) out of forty (40) [25%] of the tested lactic acid bacteria (LAB) produced α-Gal and were identified as Limosilactobacillus fermentum, Levilactobacillus brevis, Agrilactobacillus composti, Lacticaseibacillus paracasei, Leuconostoc mesenteroides and Weissella confusa. Four (4) LAB strains with highest levels of α-Gal were further selected for in vivo study using a mouse model (α1,3GT KO mice) to elucidate the immunological response to α-Gal. The level of anti-α-Gal IgG observed were not significant while the level of anti-α-Gal IgM was lower in comparison to the level elicited by E. coli O86:B7. We concluded that the lactic acid bacteria in this study producing α-Gal have potential probiotic capacity and can be further explored in α-Gal-focused research for both the prevention and treatment of various infectious diseases and probiotic development.
Collapse
|
47
|
Aželytė J, Wu-Chuang A, Žiegytė R, Platonova E, Mateos-Hernandez L, Maye J, Obregon D, Palinauskas V, Cabezas-Cruz A. Anti-Microbiota Vaccine Reduces Avian Malaria Infection Within Mosquito Vectors. Front Immunol 2022; 13:841835. [PMID: 35309317 PMCID: PMC8928750 DOI: 10.3389/fimmu.2022.841835] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Animal and human pathogens that are transmitted by arthropods are a global concern, particularly those vectored by mosquitoes (e.g., Plasmodium spp. and dengue virus). Vector microbiota may hold the key to vector-borne pathogen control, as mounting evidence suggests that the contributions of the vector microbiota to vector physiology and pathogen life cycle are so relevant that vectorial capacity cannot be understood without considering microbial communities within the vectors. Anti-tick microbiota vaccines targeting commensal bacteria of the vector microbiota alter vector feeding and modulate the taxonomic and functional profiles of vector microbiome, but their impact on vector-borne pathogen development within the vector has not been tested. In this study, we tested whether anti-microbiota vaccination in birds targeting Enterobacteriaceae within mosquito midguts modulates the mosquito microbiota and disrupt Plasmodium relictum development in its natural vector Culex quinquefasciatus. Domestic canaries (Serinus canaria domestica) were experimentally infected with P. relictum and/or immunized with live vaccines containing different strains of Escherichia coli. Immunization of birds induced E. coli-specific antibodies. The midgut microbial communities of mosquitoes fed on Plasmodium-infected and/or E. coli-immunized birds were different from those of mosquitoes fed on control birds. Notably, mosquito midgut microbiota modulation was associated with a significant decrease in the occurrence of P. relictum oocysts and sporozoites in the midguts and salivary glands of C. quinquefasciatus, respectively. A significant reduction in the number of oocysts was also observed. These findings suggest that anti-microbiota vaccines can be used as a novel tool to control malaria transmission and potentially other vector-borne pathogens.
Collapse
Affiliation(s)
- Justė Aželytė
- Nature Research Centre, Akademijos 2, Vilnius, Lithuania
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Rita Žiegytė
- Nature Research Centre, Akademijos 2, Vilnius, Lithuania
| | | | - Lourdes Mateos-Hernandez
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Jennifer Maye
- SEPPIC Paris La Défense, La Garenne Colombes, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
48
|
Chigwada AD, Mapholi NO, Ogola HJO, Mbizeni S, Masebe TM. Pathogenic and Endosymbiotic Bacteria and Their Associated Antibiotic Resistance Biomarkers in Amblyomma and Hyalomma Ticks Infesting Nguni Cattle (Bos spp.). Pathogens 2022; 11:pathogens11040432. [PMID: 35456107 PMCID: PMC9028808 DOI: 10.3390/pathogens11040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Deciphering the interactions between ticks and their microbiome is key to revealing new insights on tick biology and pathogen transmission. However, knowledge on tick-borne microbiome diversity and their contribution to drug resistance is scarce in sub–Saharan Africa (SSA), despite endemism of ticks. In this study, high-throughput 16S rRNA amplicon sequencing and PICRUSt predictive function profiling were used to characterize the bacterial community structure and associated antibiotic resistance markers in Amblyomma variegatum, A. hebraeum, and Hyalomma truncatum ticks infesting Nguni cattle (Bos spp.). Twenty-one (seven families and fourteen genera) potentially pathogenic and endosymbiotic bacterial taxa were differentially enriched in two tick genera. In H. truncatum ticks, a higher abundance of Corynebacterium (35.6%), Porphyromonas (14.4%), Anaerococcus (11.1%), Trueperella (3.7%), and Helcococcus (4.7%) was detected. However, Rickettsia (38.6%), Escherichia (7%), and Coxiellaceae (2%) were the major differentially abundant taxa in A. variegatum and A. hebraeum. Further, an abundance of 50 distinct antibiotic resistance biomarkers relating to multidrug resistance (MDR) efflux pumps, drug detoxification enzymes, ribosomal protection proteins, and secretion systems, were inferred in the microbiome. This study provides theoretical insights on the microbiome and associated antibiotic resistance markers, important for the design of effective therapeutic and control decisions for tick-borne diseases in the SSA region.
Collapse
Affiliation(s)
- Aubrey Dickson Chigwada
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa; (A.D.C.); (N.O.M.); (H.J.O.O.); (S.M.)
| | - Ntanganedzeni Olivia Mapholi
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa; (A.D.C.); (N.O.M.); (H.J.O.O.); (S.M.)
| | - Henry Joseph Oduor Ogola
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa; (A.D.C.); (N.O.M.); (H.J.O.O.); (S.M.)
- School of Agricultural and Food Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo P.O. Box 210-40601, Kenya
| | - Sikhumbuzo Mbizeni
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa; (A.D.C.); (N.O.M.); (H.J.O.O.); (S.M.)
| | - Tracy Madimabi Masebe
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa; (A.D.C.); (N.O.M.); (H.J.O.O.); (S.M.)
- Correspondence: ; Tel.: +27-11-471-2268
| |
Collapse
|
49
|
Hussain S, Perveen N, Hussain A, Song B, Aziz MU, Zeb J, Li J, George D, Cabezas-Cruz A, Sparagano O. The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Front Microbiol 2022; 13:854803. [PMID: 35369485 PMCID: PMC8969565 DOI: 10.3389/fmicb.2022.854803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Among blood-sucking arthropods, ticks are recognized as being of prime global importance because of their role as vectors of pathogens affecting human and animal health. Ticks carry a variety of pathogenic, commensal, and symbiotic microorganisms. For the latter, studies are available concerning the detection of endosymbionts, but their role in the physiology and ecology of ticks remains largely unexplored. This review paper focuses on tick endosymbionts of the genera Coxiella, Rickettsia, Francisella, Midichloria, and Wolbachia, and their impact on ticks and tick-pathogen interactions that drive disease risk. Tick endosymbionts can affect tick physiology by influencing nutritional adaptation, fitness, and immunity. Further, symbionts may influence disease ecology, as they interact with tick-borne pathogens and can facilitate or compete with pathogen development within the vector tissues. Rickettsial symbionts are frequently found in ticks of the genera of Ixodes, Amblyomma, and Dermacentor with relatively lower occurrence in Rhipicephalus, Haemaphysalis, and Hyalomma ticks, while Coxiella-like endosymbionts (CLEs) were reported infecting almost all tick species tested. Francisella-like endosymbionts (FLEs) have been identified in tick genera such as Dermacentor, Amblyomma, Ornithodoros, Ixodes, and Hyalomma, whereas Wolbachia sp. has been detected in Ixodes, Amblyomma, Hyalomma, and Rhipicephalus tick genera. Notably, CLEs and FLEs are obligate endosymbionts essential for tick survival and development through the life cycle. American dog ticks showed greater motility when infected with Rickettsia, indirectly influencing infection risk, providing evidence of a relationship between tick endosymbionts and tick-vectored pathogens. The widespread occurrence of endosymbionts across the tick phylogeny and evidence of their functional roles in ticks and interference with tick-borne pathogens suggests a significant contribution to tick evolution and/or vector competence. We currently understand relatively little on how these endosymbionts influence tick parasitism, vector capacity, pathogen transmission and colonization, and ultimately on how they influence tick-borne disease dynamics. Filling this knowledge gap represents a major challenge for future research.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
50
|
Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A. Current debates and advances in tick microbiome research. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100036. [PMID: 35284884 PMCID: PMC8906078 DOI: 10.1016/j.crpvbd.2021.100036] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The main importance of ticks resides in their ability to harbor pathogens that can be transmitted to terrestrial vertebrates including humans. Recently, studies have focused on the taxonomic and functional composition of the tick microbiome, its microbial diversity and variation under different factors including tick species, sex, and environment among others. Of special interest are the interactions between the tick, the microbiome and pathogens since tick microbiome can influence pathogen colonization within the tick vector, and potentially, transmission to the vertebrate host. In this review, we tackled a synthesis on the growing field of tick microbiomes. We focus on the current state of tick microbiome research, addressing controversial and hotly debated topics and advances in the precise manipulation of tick microbiome. Furthermore, we discuss the innovative anti-tick microbiota vaccines as a possible tool for microbiome modulation and thus, control of tick-borne diseases. Deciphering tick-microbiome pathogen interactions can spur new strategies to control tick-borne diseases via modulation of tick microbiome. Whether the diversity observed in tick microbiomes concerns the biology or the methodology remains an open question. Tick immunity must play a major role in selecting ‘who stays and who leaves’ the microbiome. Anti-tick microbiota vaccines can target specific bacteria and subsequently modulate tick microbiome.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | | | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13400-970, Brazil
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Corresponding author.
| |
Collapse
|