1
|
Friedlová N, Bortlíková L, Dosedělová L, Uhrík L, Hupp TR, Hernychová L, Vojtěšek B, Nekulová M. IFITM1 as a modulator of surfaceome dynamics and aggressive phenotype in cervical cancer cells. Oncol Rep 2025; 53:71. [PMID: 40314078 DOI: 10.3892/or.2025.8904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/27/2025] [Indexed: 05/03/2025] Open
Abstract
Interferon‑induced transmembrane proteins (IFITMs) are frequently overexpressed in cancer cells, including cervical carcinoma cells, and play a role in the progression of various cancer types. However, their mechanisms of action remain incompletely understood. In the present study, by employing a combination of surface membrane protein isolation and quantitative mass spectrometry, it was comprehensively described how the IFITM1 protein influences the composition of the cervical cancer cell surfaceome. Additionally, the effects of interferon‑γ on protein expression and cell surface exposure were evaluated in the presence and absence of IFITM1. The IFITM1‑regulated membrane and membrane‑associated proteins identified are involved mainly in processes such as endocytosis and lysosomal transport, cell‑cell and cell‑extracellular matrix adhesion, antigen presentation and the immune response. To complement the proteomic data, gene expression was analyzed using reverse transcription‑quantitative PCR to distinguish whether the observed changes in protein levels were attributable to transcriptional regulation or differential protein dynamics. Furthermore, the proteomic and gene expression data are supported by functional studies demonstrating the impact of the IFITM1 and IFITM3 proteins on the adhesive, migratory and invasive capabilities of cervical cancer cells, as well as their interactions with immune cells.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lucie Bortlíková
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lenka Dosedělová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lukáš Uhrík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Ted R Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lenka Hernychová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| |
Collapse
|
2
|
Chen X, Jiang Z, Pan J, Xu W, Li Y, Chen X, Pan Y, Weng Y, Hu D, Qiu S. Integrated multi-omics reveal lactate metabolism-related gene signatures and PYGL in predicting HNSCC prognosis and immunotherapy efficacy. BMC Cancer 2025; 25:773. [PMID: 40275154 PMCID: PMC12023518 DOI: 10.1186/s12885-025-13982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) treatment faces significant clinical challenges. Lactate metabolism plays a crucial role in the initiation of many cancers and the tumor microenvironment (TME). However, the prognostic significance of lactate metabolism-related genes (LMRGs) and the role of TME in HNSCC require further elucidation. METHODS We built a prognostic multigene signature with LMRGs and systematically correlated the risk signature with immunological characteristics and immunotherapy efficacy. Next, a series of single-cell sequencing analyses were used to characterize lactate metabolism in TME. Finally, single-cell sequencing analysis, immunofluorescence analyses, and a series of in vitro experiments were used to explore the role of PYGL in HNSCC. Potential drugs targeting PYGL were screened using AutoDock 4.2. RESULTS A prognostic multigene signature based on LMRGs was developed, which effectively stratified patients into high- and low-risk groups, with significant differences in overall survival (OS) and progression-free survival (PFS). Patients in the low-risk group exhibited reduced lactate metabolism, higher CD8 + T cell infiltration, and improved response to immunotherapy. Single-cell sequencing revealed that tumor cells had the most active lactate metabolism compared to other cells in the TME. PYGL, identified as the most critical prognostic gene, was highly expressed in tumor-associated macrophages and played a role in inhibiting M1 macrophage polarization. Knockdown of PYGL led to reduced lactate levels, and its expression was inversely correlated with CD8 + T cell infiltration. Furthermore, PYGL was involved in copper-dependent cell death, highlighting its potential as a therapeutic target. Drug screening identified elesclomol, which showed promising results in PYGL-knockdown cells. CONCLUSIONS The study established a robust LMRGs-based prognostic model that not only predicts patient survival but also correlates with the immune microenvironment in HNSCC. PYGL emerged as a key biomarker with significant implications for both prognosis and therapeutic intervention. Its role in regulating lactate metabolism and immune suppression suggests that targeting PYGL could enhance the efficacy of immunotherapies. This research provides a foundation for future clinical strategies aimed at improving outcomes in HNSCC by modulating the tumor's metabolic and immune landscapes.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zhangying Jiang
- Department of Pathology, Fuzhou Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Junping Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wenqian Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xin Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuhui Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Dan Hu
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| |
Collapse
|
3
|
Gu R, Jiang L, Dai S, Yue Y, Li S, Zheng S, Wu L, Zhao S. Identification of exosome-related SERPINB1 as a novel predictor for tumor immune microenvironment and clinical outcomes in ovarian cancer. J Ovarian Res 2025; 18:65. [PMID: 40155942 PMCID: PMC11954311 DOI: 10.1186/s13048-025-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND With a high global incidence of over three million new cases in 2020 and a high mortality of over two million fatalities, ovarian cancer is one of the most common malignant tumors in gynecology. Exosomes can control the immunological condition of the tumor microenvironment (TME) by participating in intercellular interactions. Therefore, we aimed to construct an exosome-related prognostic model to predict the clinical outcomes of ovarian cancer patients. METHODS In this research, expression patterns of exosome-related genes were examined in multiple single-cell RNA-sequencing and bulk RNA-sequencing datasets. In addition, a novel exosome-related prognostic model was established by the least absolute shrinkage and selection operator (LASSO) regression method. Then, the correlations between risk score and immunological characteristics of the TME were explored. Moreover, SERPINB1, a gene in the prognostic signature, was further analyzed to reveal its value as a novel biomarker. RESULTS In the current study, combined with single-cell and bulk omics datasets, we constructed an exosome-related prognostic model of four genes (LGALS3BP, SAT1, SERPINB1, and SH3BGRL3). Moreover, the risk score was associated with worse overall survival (OS) in ovarian cancer patients. Further analysis found that patients with high-risk score tended to shape a desert TME with hardly infiltration of immune cells. Then, SERPINB1, positively correlated with the favorable OS and negatively with the risk score, was chosen as the representative biomarker of the model. Moreover, SERPINB1 was positively correlated with the infiltration of immune subpopulations in both public and in-house cohort. In addition, the high-resolution analysis found that SERPINB1+ tumor cells communicated with microenvironment cells frequently, further explaining the potential reason for shaping an inflamed TME. CONCLUSION To sum up, we established a novel exosome-related prognostic model (LGALS3BP, SAT1, SERPINB1, and SH3BGRL3) to predict the prognosis of patients with ovarian cancer and identify the immunological characteristics of the TME. In addition, SERPINB1 was identified as a promising biomarker for prognostic prediction in ovarian cancer.
Collapse
Affiliation(s)
- Rui Gu
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Liping Jiang
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Shuqin Dai
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Yajie Yue
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Shangjin Li
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Shudan Zheng
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Liwei Wu
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China.
| | - Shaojie Zhao
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China.
| |
Collapse
|
4
|
Luan Y, Zhang Y, Li S, Gao C, Ying X, Zhao S, Zhang B. CD47 is a tumor cell-derived exosomal signature and regulates tumor immune microenvironment and immunotherapy responses. Transl Oncol 2025; 53:102291. [PMID: 39864342 PMCID: PMC11803903 DOI: 10.1016/j.tranon.2025.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The pathogenesis of ovarian cancer (OvCa) involves a complex interplay of genetic, environmental, and hormonal factors. With the in-depth exploration of tumor ecosystem, exosomes can mediate the immunological status of tumor microenvironment (TME). Therefore, we aimed to recognize the tumor-derived exosomes (TEXs) which can distinguish the immune-hot and cold tumors and reflect the immunotherapeutic responses. METHODS A large set of transcriptomic and single-cell RNA-sequencing (scRNA-seq) datasets were downloaded and used to analyze the expression pattern of CD47 and its immuno-correlations in OvCa and multiple epithelial cell carcinomas such as breast cancers. In addition, a pan-gynecological cancer cohort was used to validate the correlation between CD47 and the inflamed TME. RESULTS In the current study, we found that CD47 was a TEX signature and had no transcriptional differences among patients with different clinicopathological features. Moreover, CD47 expression was positively correlated with the activation of immunological signaling pathways and enrichment of immune cell subpopulations in OvCa. Furthermore, in breast cancer and gynecological cancers, CD47, specially expressed in tumor cells, also showed favorable ability to distinguish the immune-hot and cold carcinomas. Moreover, in immunotherapy cohorts of breast cancer and other epithelial cell carcinomas, patients with CD47-high phenotype were more sensitive to immunotherapy and tended to achieve remission after treatment. Results from the TMA showed that CD47 was upregulated in tumor tissues and positively correlated with CD8 level. CONCLUSION In conclusion, CD47 is associated with an inflammatory TME, immune-hot tumors, and sensitivity of immunotherapy, highlighting the values of CD47 in identifying immunological traits and an immunotherapeutic response.
Collapse
Affiliation(s)
- Yifei Luan
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Yinghui Zhang
- Wuxi Maternal and Child Health Care Hospital, The Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, PR China
| | - Shangjin Li
- Wuxi Maternal and Child Health Care Hospital, The Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, PR China
| | - Caiyun Gao
- Market Supervision and Law Enforcement Guarantee Service Center of Xihu District, Hangzhou 310013, PR China
| | - Xinyi Ying
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Shaojie Zhao
- Wuxi Maternal and Child Health Care Hospital, The Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, PR China.
| | - Bing Zhang
- Wuxi Maternal and Child Health Care Hospital, The Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, PR China.
| |
Collapse
|
5
|
Xu R, Wan M, Pan J, Mei J, Zhou J, Shen Y, Yang J, Zhu Y, Sun J. Formin protein DAAM1 positively regulates PD-L1 expression via mediating the JAK1/STAT1 axis in pancreatic cancer. Cancer Cell Int 2025; 25:28. [PMID: 39881344 PMCID: PMC11776260 DOI: 10.1186/s12935-024-03631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer. METHODS Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer. The LinkedOmics platform was employed to perform enrichment analysis of DAAM1-associated molecular pathways in pancreatic cancer. Subsequently, a series of in vitro and in vivo experiments were conducted to evaluate the biological roles of DAAM1 in pancreatic cancer cells and its effects on intratumoral T cells. RESULTS DAAM1 was found to be upregulated in pancreatic cancer tissues, with higher expression levels observed in tumor cells. Additionally, high expression of DAAM1 was associated with poor prognosis. DAAM1 acted as an oncogene in pancreatic cancer, and its inhibition suppressed tumor cell proliferation, migration, and invasion, while promoted apoptosis. Furthermore, DAAM1 was involved in the JAK1/STAT1 signaling pathway and regulated PD-L1 expression in pancreatic cancer cells. The inhibition of DAAM1 also significantly reduced the exhaustion levels of CD8+ T cells. CONCLUSION In conclusion, DAAM1 functions as an oncogene and is immunologically implicated in pancreatic cancer, these findings suggest that DAAM1 may serve as a promising therapeutic target for the clinical management of pancreatic cancer.
Collapse
Affiliation(s)
- Rui Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengyun Wan
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jiadong Pan
- Departments of Gastroenterology, The Third People's Hospital of Kunshan, Suzhou, 215300, China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji Zhou
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayue Yang
- Departments of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Yichao Zhu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Jing Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Mei J, Luo Z, Cai Y, Wan R, Qian Z, Chu J, Sun Y, Shi Y, Jiang Y, Zhang Y, Yin Y, Chen S. Altered Atlas of Exercise-Responsive MicroRNAs Revealing miR-29a-3p Attacks Armored and Cold Tumors and Boosts Anti-B7-H3 Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0590. [PMID: 39845707 PMCID: PMC11751204 DOI: 10.34133/research.0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers. Here, we reported that miR-29a-3p was the exercise-responsive miRNA, which was lowly expressed in tumor tissues and associated with unfavorable prognosis in BRCA. Mechanistically, miR-29a-3p targeted macrophages, fibroblasts, and tumor cells to down-regulate B7 homolog 3 (B7-H3) expression. Single-cell RNA sequencing (scRNA-seq) and cytometry by time-of-flight (CyTOF) demonstrated that miR-29a-3p attacked the armored and cold tumors, thereby shaping an immuno-hot tumor microenvironment (TME). Translationally, liposomes were developed and loaded with miR-29a-3p (lipo@miR-29a-3p), and lipo@miR-29a-3p exhibited promising antitumor effects in a mouse model with great biocompatibility. In conclusion, we uncovered that miR-29a-3p is a critical exercise-responsive miRNA, which attacked armored and cold tumors by inhibiting B7-H3 expression. Thus, miR-29a-3p restoration could be an alternative strategy for antitumor therapy.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yun Cai
- Department of Central Laboratory, Changzhou Jintan First People’s Hospital, Jiangsu University, Changzhou 213200, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Zhiwen Qian
- Departments of Gynecology, Wuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuxin Shi
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing 211166, China
| | - Ying Jiang
- Department of Gynecology, The Obstetrics and Gynecology Hospital Affiliated to Jiangnan University, Wuxi 214023, China
| | - Yan Zhang
- Departments of Gynecology, Wuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department of Gynecology, The Obstetrics and Gynecology Hospital Affiliated to Jiangnan University, Wuxi 214023, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
7
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
8
|
Baracuhy EM, Cormier O, Davola ME, Collins S, Mossman K. Virus replication is not required for oncolytic bovine herpesvirus-1 immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200906. [PMID: 39691853 PMCID: PMC11650296 DOI: 10.1016/j.omton.2024.200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
Oncolytic viruses are a promising approach for cancer treatment where viruses selectively target and kill cancer cells while also stimulating an immune response. Among viruses with this ability, bovine herpesvirus-1 (BoHV-1) has several advantages, including observations suggesting it may not require viral replication for its anti-cancer effects. We previously demonstrated that binding and penetration of enveloped virus particles are sufficient to trigger intrinsic and innate immune signaling in normal cells, while other groups have published the efficacy of non-replicating viruses as viable immunotherapies in different cancer models. In this work, we definitively show that live and UV-inactivated (UV) (non-replicating) BoHV-1-based regimens extend survival of tumor-bearing mice to similar degrees and induce infiltration of similar immune cell populations, with the exception of neutrophils. Transcriptomic analysis of tumors treated with either live or UV BoHV-1-based regimens revealed similar pathway enrichment and a subset of overlapping differentially regulated genes, suggesting live and UV BoHV-1 have similar mechanisms of activity. Last, we present a gene signature across our in vitro and in vivo models that could potentially be used to validate new BoHV-1 therapeutics. This work contributes to the growing body of literature showing that replication may not be necessary for therapeutic efficacy of viral immunotherapies.
Collapse
Affiliation(s)
- Enzo Mongiovi Baracuhy
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Olga Cormier
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Maria Eugenia Davola
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Susan Collins
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Karen Mossman
- Center for Discovery in Cancer Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Wang YX, Ding ZJ, Wang QL, Zhao CC, Liu SQ, Du SL, Zhou S, Zheng LY, Gao M, Shen CC, Chen XD. CRISPR-Cas9 screening identified novel subtypes of cutaneous melanoma based on essential cancer genes. Arch Dermatol Res 2024; 317:86. [PMID: 39644349 DOI: 10.1007/s00403-024-03633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Our primary objective was to identify genes critical for cutaneous melanoma (CM) and related typing, based on essential genes, to generate novel insights for clinical management and immunotherapy of patients with CM. We analyzed RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), and sequencing data of 29 CM cell line from Cancer Cell Line Encyclopedia (CCLE) databases. Combined with DepMap database, 406 CM essential cancer genes were finally obtained. Based on the expression of essential genes in cancer, the patients included in TCGA and Gene Expression Omnibus (GEO) databases were divided into three different molecular subtypes (C1, C2, and C3) by the NMF algorithm. Data analysis from TCGA and GEO datasets revealed that subtype C3 had the poorest prognosis, while subtype C1 exhibited the best prognosis. Combined with the CIBERSORT, ESTIMATE and ssGSEA algorithm, patients with different molecular subtypes can be divided into two immune subtypes (hot and cold). We found that subtype C1 was characterized by hot tumors, in contrast to subtypes C2 and C3, which were characterized by cold tumors. Then, we used univariate Cox regression, LASSO, and multifactor Cox regression analysis to select risk genes and constructed a prognostic model based on eight genes: RABIF, CDCA8, FOXM1, SPRR2E, AIP, CAP1, CTSW, and IFITM3. All patients were divided into two risk subtypes (high and low ) according to the median of risk scores. We found that most hot tumor subtypes were found in the low-risk subtypes and most patients with this subtype survived for longer. Ultimately, we selected RABIF, which exhibits the highest risk coefficient, for histological and cytological verification. The results showed that RABIF was overexpressed in melanoma. Inhibition of RABIF expression could suppress the proliferation and invasion of melanoma cells and promote the apoptosis of melanoma cells. In conclusion, we used CRISPR-Cas9 screening to verify the association between molecular subtypes (C1, C2, and C3), immune subtypes (hot and cold), and risk subtypes (high and low) in patients with CM, particularly in distinguishing survival and prognosis. These findings can be used to guide clinical management and immunotherapy of patients with CM.
Collapse
Affiliation(s)
- Yi-Xiao Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Zhang-Jun Ding
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, China
- Department of Dermatology, Dongtai People's Hospital, Yancheng, 224001, Jiangsu Province, China
| | - Qian-Ling Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Cai-Chou Zhao
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Si-Qi Liu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Shu-Li Du
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Shan Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Li-Yun Zheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Min Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China.
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui Province, China.
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui Province, China.
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| | - Cong-Cong Shen
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Xiao-Dong Chen
- Department of Dermatology, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
10
|
He Z, Yang H, Chen Q, Chen YPP, Qin H, He W, Chen Z. Role of TAP1 in the identification of immune-hot tumor microenvironment and its prognostic significance for immunotherapeutic efficacy in gastric carcinoma. J Gastrointest Oncol 2024; 15:890-907. [PMID: 38989426 PMCID: PMC11231864 DOI: 10.21037/jgo-24-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Background Gastric cancer (GC), a multifaceted gastrointestinal malignancy, is the fourth most prevalent contributor to cancer-related fatalities globally. As a member of the ATP-binding cassette (ABC) family, transporter associated with antigen processing 1 (TAP1) is crucial for conveying antigen peptides from the cytoplasm to the lumen of the endoplasmic reticulum and subsequently loading them onto the major histocompatibility complex (MHC) class I molecules. Recent studies have established the biological significance of TAP1 in upholding tumor survival and facilitating immune evasion by remodeling the tumor microenvironment (TME) and orchestrating immune infiltration. The study was conducted to elucidate the association of TAP1 expression with immunological characteristics, and sought to exploit the value of TAP1 as a biomarker reflecting the inflamed TME and immunotherapeutic response. Methods RNA-sequencing profiles and clinical annotations were obtained from The Cancer Genome Atlas-stomach adenocarcinoma (TCGA-STAD) cohort and Gene Expression Omnibus (GEO) portal. Preprocessing was conducting using the limma package. Weighted gene co-expression network analysis (WGCNA) was used to identify gene modules and TAP1 co-expressed genes (CEGs) based on correlation patterns. Consensus clustering and silhouette analysis determined the optimal number of TAP1-related groups. Gene expression profiles were integrated and classified using the pamr package. The Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate immunological characteristics. Differential expression analysis was conducted using the limma package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Single-cell RNA sequencing (scRNA-seq) datasets were analyzed using the Seurat toolkit to characterize cell types. Results Within this investigation, no significant differences in TAP1 expression were observed among patients exhibiting various clinicopathological features, indicating that TAP1 expression was not specific to molecular subtypes. Subsequent analysis revealed a positive correlation between TAP1 and diverse immunological traits, encompassing immunomodulators, tumor-infiltrating immune cells, as well as immune checkpoints across multiple datasets. Besides, within a GC immunotherapy cohort, individuals displaying high TAP1 expression demonstrated an increased likelihood of achieving complete remission (CR) post-treatment, suggesting heightened sensitivity to immunotherapy. In the clinical cohort, TAP1 overexpression in GC patients was positively correlated with CD8. Conclusions TAP1 appears linked to an inflamed TME and serves as a prospective biomarker for discerning immunological attributes and gauging immunotherapeutic responses in GC, particularly in identifying immune-reactive tumors.
Collapse
Affiliation(s)
- Zehua He
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Hong Yang
- Department of Anesthesia Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
| | - Huabo Qin
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Wanrong He
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
| | - Zhihui Chen
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Xiong G, Shan J, Chong Q, Cui Y. Tertiary lymphoid structures associated with enhanced anti-tumor immunity and favorable prognosis in cervical squamous carcinoma. Aging (Albany NY) 2024; 16:6898-6920. [PMID: 38709170 PMCID: PMC11087108 DOI: 10.18632/aging.205733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Cervical squamous carcinoma (CESC) is the main subtype of cervical cancer. Unfortunately, there are presently no effective treatment options for advanced and recurrent CESC. Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells that resemble secondary lymphoid organs; nevertheless, there is no summary of the clinical importance of TLS in CESC. METHODS A large set of transcriptomic and single-cell RNA-sequencing (scRNA-seq) datasets were used to analyze the pattern of TLS and its immuno-correlations in CESC. Additionally, an independent in-house cohort was collected to validate the correlation between TLS and TME features. RESULTS In the current study, we found that the presence of TLS could predict better prognosis in CESC and was correlated with the activation of immunological signaling pathways and enrichment of immune cell subpopulations. In addition, TLS was associated with reduced proliferation activity in tumor cells, indicating the negative correlation between TLS and the degree of malignancy. Last but not least, in two independent immunotherapy cohorts, tumors with the presence of TLS were more sensitive to immunotherapy. CONCLUSION Overall, TLS is related to an inflamed TME and identified immune-hot tumors, which could be an indicator for the identification of immunological features in CESC.
Collapse
Affiliation(s)
- Guohai Xiong
- Department of Gynaecology, Yancheng Third People’s Hospital, Yancheng 224008, China
- Department of Gynaecology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224008, China
| | - Jinmei Shan
- Department of Gynaecology, Yancheng Third People’s Hospital, Yancheng 224008, China
- Department of Gynaecology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224008, China
| | - Qingguo Chong
- Department of Gynaecology, Yancheng Third People’s Hospital, Yancheng 224008, China
- Department of Gynaecology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224008, China
| | - Yueqing Cui
- Department of Gynaecology, Yancheng Third People’s Hospital, Yancheng 224008, China
- Department of Gynaecology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224008, China
| |
Collapse
|
12
|
Wang P, Pan Y, Zhang Y, Chen C, Hu J, Wang X. Role of interferon-induced transmembrane protein family in cancer progression: a special focus on pancreatic cancer. Med Oncol 2024; 41:85. [PMID: 38472606 DOI: 10.1007/s12032-024-02308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
Human interferon-induced transmembrane protein family (IFITMs) consists of five main proteins. IFITM1, IFITM2, and IFITM3 can be induced by interferon, while IFITM5 and IFITM10 are insensitive to interferon. IFITMs has various functions, including well-researched antiviral effects. As a molecule whose expression is significantly increased by interferon in the immune microenvironment, IFITMs has drawn growing interest in recent years for their role in the cancer progression. Unlike antiviral effects, the role and mechanism of IFITMs in cancer progression have not been clearly studied, especially the role and molecular mechanism of IFITMs in pancreatic cancer are rarely reported in the literature. This article focuses on the role and potential mechanism of IFITMs in pancreatic cancer progression by analyzing the function and mechanism of IFITM1-3 in other cancers and conducting bioinformatics analysis using the databases, so as to provide a new target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Yan Pan
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Yu Zhang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Congliang Chen
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Junmei Hu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Wu Y, Zhou Z, Qi Q, Xu S, Chen L, Wang F. Anoikis-related gene signature is associated with immune infiltration and predicts the prognosis of non-small cell lung cancer. Aging (Albany NY) 2024; 16:2908-2933. [PMID: 38329444 PMCID: PMC10911374 DOI: 10.18632/aging.205522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. With the in-depth exploration of cell death manners, numerous studies found that anoikis is an important mechanism that associated with treatment. Therefore, we aimed to explore the prognostic value and treatment guidance of anoikis in NSCLC patients. In the current study, we first constructed a prognostic model based on the anoikis-related genes based on bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) dataset. Then, immuno-correlations of anoikis-related risk scores (ARGRS) were analyzed. In addition, HMGA1, a risky gene in ARGRS, was further explored to define its expression and immuno-correlation. Results showed that patients with higher ARGRS had worse clinical outcomes. Moreover, the five genes in the prognostic model were all highly expressed on tumor cells. Moreover, further analysis found that the ARGRS was negatively correlated with ImmuneScore, but positively with tumor purity. Besides, patients in the ARGRS-high group had lower levels of immunological characteristics, such as the immune-related signaling pathways and subpopulations. Additionally, in the immunotherapy cohorts, patients with the ARGRS-high phenotype were more resistant to immunotherapy and tended to not achieve remission after treatment. Last, HMGA1 was chosen as the representative biomarker, and analysis of the in-house cohort showed that HMGA1 was highly expressed in tumor tissues and correlated with decreased T cell infiltration. To sum up, ARGRS was correlated with a desert tumor microenvironment and identified immune-cold tumors, which can be a novel biomarker for the recognition of immunological characteristics and an immunotherapeutic response in NSCLC.
Collapse
Affiliation(s)
- Yixuan Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhou Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Qianyi Qi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shirong Xu
- Department of Laboratory Medicine, Taizhou Second People’s Hospital, Taizhou 225511, China
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People’s Hospital Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, China
| | - Feng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
14
|
Xiong Z, Xu X, Zhang Y, Ma C, Hou C, You Z, Shu L, Ke Y, Liu Y. IFITM3 promotes glioblastoma stem cell-mediated angiogenesis via regulating JAK/STAT3/bFGF signaling pathway. Cell Death Dis 2024; 15:45. [PMID: 38218875 PMCID: PMC10787840 DOI: 10.1038/s41419-023-06416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) has been previously verified to be an endosomal protein that prevents viral infection. Recent findings suggested IFITM3 as a key factor in tumor invasion and progression. To clarify the role and molecular mechanism of IFITM3 in Glioblastoma multiforme (GBM) progression, we investigated the expression of IFITM3 in glioma datasets culled from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Primary GBM stem cells (GSCs) were cultured and identified in vitro. Loss-of-function and gain-of-function experiments were established by using shRNAs and lentiviral vectors targeting IFITM3. Co-culture system of GSCs and vascular endothelial cells was constructed in a Transwell chamber. Tube formation and spheroid-based angiogenesis assays were performed to determine the angiogenic capacity of endothelial cells. Results revealed that IFITM3 is elevated in GBM samples and predictive of adverse outcome. Mechanistically, GSCs-derived IFITM3 causes activation of Jak2/STAT3 signaling and leads to robust secretion of bFGF into tumor environment, which eventually results in enhanced angiogenesis. Taken together, these evidence indicated IFITM3 as an essential factor in GBM angiogenesis. Our findings provide a new insight into mechanism by which IFITM3 modulates GBM angiogenesis.
Collapse
Affiliation(s)
- Zhangsheng Xiong
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Xiangdong Xu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Yuxuan Zhang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Chengcheng Ma
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Chongxian Hou
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Zhongsheng You
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Guangzhou, PR China.
| | - Yiquan Ke
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China.
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China.
| | - Yang Liu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China.
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China.
| |
Collapse
|
15
|
Mei J, Cai Y, Chen L, Wu Y, Liu J, Qian Z, Jiang Y, Zhang P, Xia T, Pan X, Zhang Y. The heterogeneity of tumour immune microenvironment revealing the CRABP2/CD69 signature discriminates distinct clinical outcomes in breast cancer. Br J Cancer 2023; 129:1645-1657. [PMID: 37715025 PMCID: PMC10646008 DOI: 10.1038/s41416-023-02432-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND It has been acknowledged that the tumour immune microenvironment (TIME) plays a critical role in determining therapeutic responses and clinical outcomes in breast cancer (BrCa). Thus, the identification of the TIME features is essential for guiding therapy and prognostic assessment for BrCa. METHODS The heterogeneous cellular composition of the TIME in BrCa by single-cell RNA sequencing (scRNA-seq). Two subtype-special genes upregulated in the tumour-rich subtype and the immune-infiltrating subtype were extracted, respectively. The CRABP2/CD69 signature was established based on CRABP2 and CD69 expression, and its predictive values for the clinical outcome and the neoadjuvant chemotherapy (NAT) responses were validated in multiple cohorts. Moreover, the oncogenic role of CRABP2 was explored in BrCa cells. RESULTS Based on the heterogeneous cellular composition of the TIME in BrCa, the BrCa samples could be divided into the tumour-rich subtype and the immune-infiltrating subtype, which exhibited distinct prognosis and chemotherapeutic responses. Next, we extracted CRABP2 as the biomarker for the tumour-rich subtype and CD69 as the biomarker for the immune-infiltrating subtype. Based on the CRABP2/CD69 signature, BrCa samples were re-divided into three subtypes, and the CRABP2highCD69low subtype exhibited the worst prognosis and the lowest chemotherapeutic response, while the CRABP2lowCD69high subtype showed the opposite results. Furthermore, CARBP2 functioned as a novel oncogene in BrCa, which promoted tumour cell proliferation, migration, and invasion, and CRABP2 inhibition triggered the activation of cytotoxic T lymphocytes (CTLs). CONCLUSION The CRABP2/CD69 signature is significantly associated with the TIME features and could effectively predict the clinical outcome. Also, CRABP2 is determined to be a novel oncogene, which could be a therapeutic target in BrCa.
Collapse
Affiliation(s)
- Jie Mei
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
- The First Clinical Medical College, Nanjing Medical University, 211166, Nanjing, China
| | - Yun Cai
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
| | - Youqing Wu
- School of Artificial Intelligence and Computer Science, Jiangnan University, 214122, Wuxi, China
| | - Jiayu Liu
- Department of Oncology, The Women's Hospital of Jiangnan University, 214023, Wuxi, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
| | - Ying Jiang
- Department of Oncology, The Women's Hospital of Jiangnan University, 214023, Wuxi, China
| | - Ping Zhang
- Department of Breast Surgery, The Women's Hospital of Jiangnan University, 214023, Wuxi, China
| | - Tiansong Xia
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Xiang Pan
- School of Artificial Intelligence and Computer Science, Jiangnan University, 214122, Wuxi, China.
| | - Yan Zhang
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China.
- Department of Oncology, The Women's Hospital of Jiangnan University, 214023, Wuxi, China.
| |
Collapse
|
16
|
Wang Y, Pan J, An F, Chen K, Chen J, Nie H, Zhu Y, Qian Z, Zhan Q. GBP2 is a prognostic biomarker and associated with immunotherapeutic responses in gastric cancer. BMC Cancer 2023; 23:925. [PMID: 37784054 PMCID: PMC10544588 DOI: 10.1186/s12885-023-11308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The interferon-induced protein known as guanylate-binding protein 2 (GBP2) has been linked to multiple different cancer types as an oncogenic gene. Although the role of GBP2 in cancer has been preliminarily explored, it is unclear how this protein interacts with tumor immunity in gastric cancer. METHODS The expression, prognostic value, immune-correlations of GBP2 in gastric cancer was explored in multiple public and in-house cohorts. In addition, the pan-cancer analysis was performed to investigate the immunological role of GBP2 based on The Cancer Genome Atlas (TCGA) dataset, and the predictive value of GBP2 for immunotherapy was also examined in multiple public cohorts. RESULTS GBP2 was highly expressed in tumor tissues and associated with poor prognosis in gastric cancer. In addition, GBP2 was associated with the immune-hot phenotype. To be more specific, GBP2 was positively related to immuno-modulators, tumor-infiltrating immune cells (TIICs), immunotherapy biomarkers, and even well immunotherapeutic response. In addition to gastric cancer, GBP2 was expected to be an indicator of high immunogenicity in most cancer types. Importantly, GBP2 could predict the immunotherapeutic responses in at least four different cancer types, including melanoma, urothelial carcinoma, non-small cell lung cancer, and breast cancer. CONCLUSIONS To sum up, GBP2 expression is a promising pan-cancer biomarker for estimating the immunological characteristics of tumors and may be utilized to detect immuno-hot tumors in gastric cancer.
Collapse
Affiliation(s)
- Yunfei Wang
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Jiadong Pan
- Departments of Gastroenterology, The Third People's Hospital of Kunshan, Suzhou, 215300, China
| | - Fangmei An
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Ke Chen
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Jiawei Chen
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - He Nie
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Yanping Zhu
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, China.
| | - Qiang Zhan
- Departments of Gastroenterology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
17
|
Lu G, Wang H, Xu R, Xu J, An F, Xu H, Nie H, Mei J, Zhan Q, Zhang Q. Formin protein FMNL1 is a biomarker for tumor-infiltrating immune cells and associated with well immunotherapeutic response. J Cancer 2023; 14:2978-2989. [PMID: 37859818 PMCID: PMC10583584 DOI: 10.7150/jca.86965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023] Open
Abstract
Background: Increased studies on the basis of bulk RNA-sequencing (RNA-seq) data of cancer identify numbers of immune-related genes which may play potential regulatory roles in the tumor microenvironment (TME) without in-depth validation. Methods: In the current study, the immunological correlation and cell subpopulation expression pattern of FMNL1 were analyzed using public data. In addition, the cell subpopulation expression pattern of FMNL1 was also deeply validated using single-cell RNA-sequencing (scRNA-seq) and multiplexed quantitative immunofluorescence (mQIF). Results: Bulk FMNL1 mRNA was related to better prognosis in hepatocellular carcinoma (HCC) and was able to identify immuno-hot tumor in not only HCC but also multiple cancer types. Bulk FMNL1 mRNA also predicted the response to immunotherapy in multiple cancers. Further validation using scRNA-seq and mQIF revealed that FMNL1 was a biomarker for immune cells. Conclusions: FMNL1 is a biomarker for immune cells in not only hepatocellular carcinoma, but also multiple cancer types. Moreover, immune infiltration analysis using the bulk RNA-seq data would be further validated using scRNA-seq and/or mQIF to describe the cell subpopulation expression pattern in tumor tissues for more in-depth and appropriate understanding.
Collapse
Affiliation(s)
- Guomin Lu
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Hui Wang
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Rui Xu
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junying Xu
- Departments of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Fangmei An
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Haoran Xu
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - He Nie
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jie Mei
- Departments of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Qiang Zhan
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Qinglin Zhang
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| |
Collapse
|
18
|
Huang W, Qian Z, Shi Y, Zhang Z, Hou R, Mei J, Xu J, Ding J. PSMC2 is a Novel Prognostic Biomarker and Predicts Immunotherapeutic Responses: From Pancreatic Cancer to Pan-Cancer. Pharmgenomics Pers Med 2023; 16:747-758. [PMID: 37581119 PMCID: PMC10423611 DOI: 10.2147/pgpm.s418533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Background Proteasome 26S subunit ATPase 2 (PSMC2) is a part of the 19S regulatory complex, which catalyzes the unfolding and transport of substrates into the 20S proteasome. Our previous research demonstrated that PSMC2 participates in the tumorigenesis and progression of pancreatic cancer (PC). However, no systematic analysis has been conducted to conclude its expression pattern and correlation with tumor immunity. Aim To investigate the expression level of PSMC2 in PC, its prognostic value and its relationship with tumor immunity. Methods In numerous public and internal cohorts, the expression, prognostic significance, and immunological connections of PSMC2 in PC were investigated. Additionally, using data from The Cancer Genome Atlas (TCGA), a pan-cancer analysis was carried out to examine PSMC2's immunological assocaition, and the predictive power of PSMC2 for immunotherapy was also evaluated in numerous public cohorts. Results PSMC2 was overexpressed in tumor tissues and linked to unfavorable prognosis in PC. PSMC2 was not only positively correlated with TIICs, also positively correlated with immune checkpoints in PC. In addition to PC, PSMC2 was expected to be an indicator of high immunogenicity in most cancer types. Importantly, PSMC2 could predict the immunotherapeutic responses in various cancer types, including urothelial carcinoma and breast cancer. Conclusion From PC to pan-cancer analysis, we report that PSMC2 is a novel prognostic biomarker in multiple cancer types. PSMC2 is related to the immuno-hot phenotype and predicts the outcome of immunotherapy. Therefore, the current study emphasizes that cancer patients with high PMSC2 expression should actively receive immunotherapy to improve their prognosis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, People's Republic of China
| | - Yuxin Shi
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Zheming Zhang
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Rui Hou
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Jie Mei
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
- Wuxi School of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Junying Xu
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Junli Ding
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| |
Collapse
|
19
|
Cai Y, Cheng Y, Wang Z, Li L, Qian Z, Xia W, Yu W. A novel metabolic subtype with S100A7 high expression represents poor prognosis and immuno-suppressive tumor microenvironment in bladder cancer. BMC Cancer 2023; 23:725. [PMID: 37543645 PMCID: PMC10403905 DOI: 10.1186/s12885-023-11182-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Bladder cancer (BLCA) represents a highly heterogeneous disease characterized by distinct histological, molecular, and clinical features, whose tumorigenesis and progression require aberrant metabolic reprogramming of tumor cells. However, current studies have not expounded systematically and comprehensively on the metabolic heterogeneity of BLCA. METHODS The UCSC XENA portal was searched to obtain the expression profiles and clinical annotations of BLCA patients in the TCGA cohort. A total of 1,640 metabolic-related genes were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, consensus clustering was performed to divide the BLCA patients into two metabolic subtypes according to the expression of metabolic-related genes. Kaplan-Meier analysis was used to measure the prognostic values of the metabolic subtypes. Subsequently, comparing the immune-related characteristics between the two metabolic subtypes to describe the immunological difference. Then, the Scissor algorithm was applied to link the metabolic phenotypes and single-cell transcriptome datasets to determine the biomarkers associated with metabolic subtypes and prognosis. Finally, the clinical cohort included 63 BLCA and 16 para-cancerous samples was used to validate the prognostic value and immunological correlation of the biomarker. RESULTS BLCA patients were classified into two heterogeneous metabolic-related subtypes (MRSs) with distinct features: MRS1, the subtype with no active metabolic characteristics but an immune infiltration microenvironment; and MRS2, the lipogenic subtype with upregulated lipid metabolism. These two subtypes had distinct prognoses, molecular subtypes distributions, and activations of therapy-related pathways. MRS1 BLCAs preferred to be immuno-suppressive and up-regulated immune checkpoints expression, suggesting the well-therapeutic response of MRS1 patients to immunotherapy. Based on the Scissor algorithm, we found that S100A7 both specifically up-regulated in the MRS1 phenotype and MRS1-tumor cells, and positively correlated with immunological characteristics. In addition, in the clinical cohort included 63 BLCA and 16 para-cancerous samples, S100A7 was obviously associated with poor prognosis and enhanced PD-L1 expression. CONCLUSIONS The metabolic subtype with S100A7 high expression recognizes the immuno-suppressive tumor microenvironment and predicts well therapeutic response of immunotherapy in BLCA. The study provides new insights into the prognostic and therapeutic value of metabolic heterogeneity in BLCA.
Collapse
Affiliation(s)
- Yun Cai
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, China
| | - Yifei Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyu Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
| | - Zhengtao Qian
- Department of Clinical laboratory, Changshu Medicine Examination Institute, No.36, Qingduntang Road, Suzhou, 215500, China.
| | - Wei Xia
- Department of IntensiveCareUnit, TheAffiliated Wuxi People's Hospital of NanjingMedicalUniversity, Wuxi, China.
- Department of Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China.
| | - Weiwei Yu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
20
|
Deen NS, Ahmed A, Tasnim NT, Khan N. Clinical relevance of expanded quantitative urine culture in health and disease. Front Cell Infect Microbiol 2023; 13:1210161. [PMID: 37593764 PMCID: PMC10428011 DOI: 10.3389/fcimb.2023.1210161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
"Expanded quantitative urine culture (EQUC)" is an enhanced culture protocol for the detection of viable microbes in urine specimens. Using a large volume of urine and different sets of cultural conditions, EQUC is able to uncover a wide range of bacteria and fungi (yeasts) that were otherwise undetected by the standard urinary culture. In addition to common urinary pathogens, EQUC has been shown to detect emerging and new pathogens, and commensal microbiota. Although the usefulness of EQUC protocol in clinical set up has not yet been fully established, recent studies have demonstrated that EQUC can provide valuable information regarding symptom resolution, treatment responses and diagnosis of major urinary disorders including urinary tract infections, urinary incontinence and other lower urinary tract symptoms. EQUC may also help in evaluating the utility of beneficial microbiota as biotherapeutics. This narrative minireview describes the current research findings regarding the clinical utility of EQUC in characterizing the role of urinary microbiome and uropathogens in health and disease. The literature which are written in English, available on "PubMed" and contain any of the terms- "expanded quantitative urine culture", "enhanced quantitative urine culture" and "EQUC" in the abstracts were used as the source articles to prepare this minireview.
Collapse
Affiliation(s)
- Nadia S. Deen
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
21
|
Fan H, Shi Y, Wang H, Li Y, Mei J, Xu J, Liu C. GBP5 Identifies Immuno-Hot Tumors and Predicts the Therapeutic Response to Immunotherapy in NSCLC. Int J Gen Med 2023; 16:1757-1769. [PMID: 37193249 PMCID: PMC10183185 DOI: 10.2147/ijgm.s408900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Background Immunotherapy drugs, immune checkpoint inhibitors (ICIs), have been approved for first- and second-line treatment of non-small cell lung cancer (NSCLC), but only a portion of patients respond to ICIs. It is crucial to screen the beneficiaries of immunotherapy through biomarkers accurately. Methods Several datasets were used to explore the predictive value for immunotherapy and immune relevance of guanylate binding protein 5 (GBP5) in NSCLC, including the GSE126044 dataset, The Cancer Genome Atlas (TCGA) dataset, Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset, the Kaplan-Meier plotter dataset, the HLuA150CS02 cohort, and the HLugS120CS01 cohort. Results GBP5 was upregulated in tumor tissues but associated with a good prognosis in NSCLC. Moreover, our findings demonstrated that GBP5 was strongly correlated with the expression of many immune-related genes, TIIC levels, and PD-L1 expression based on RNA-seq data onto online databases and validation of the NSCLC tissue microarray using IHC staining. Moreover, pan-cancer analysis has shown that GBP5 was a factor in identifying immuno-hot tumors, except for a few tumor types. Conclusion In summary, our current research suggests that GBP5 expression is a potential biomarker for predicting the outcome of NSCLC patients treated with ICIs. More research with large-scale samples is needed to determine their value as biomarkers of ICIs benefit.
Collapse
Affiliation(s)
- Honghong Fan
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yuxin Shi
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Huiyu Wang
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yuting Li
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Chaoying Liu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| |
Collapse
|
22
|
Mei J, Fu Z, Cai Y, Song C, Zhou J, Zhu Y, Mao W, Xu J, Yin Y. SECTM1 is upregulated in immuno-hot tumors and predicts immunotherapeutic efficacy in multiple cancers. iScience 2023; 26:106027. [PMID: 36818292 PMCID: PMC9932126 DOI: 10.1016/j.isci.2023.106027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the management of advanced cancers. However, many patients could not benefit from ICIs therapy, and thus several biomarkers for therapeutic prediction have been uncovered. In this research, more than ten public and in-house cohorts were used to explore the predictive value and immunological correlations of secreted and transmembrane 1 (SECTM1) in cancers. SECTM1 expression was enhanced in tumors from patients with well immunotherapeutic responses in multiple cancers. In addition, SECTM1 was immuno-correlated in pan-cancer and enhanced in immuno-hot tumors. In vitro assays revealed that SECTM1 was upregulated by the IFN-γ/STAT1 signaling. Moreover, analysis of in-house immunotherapy cohorts suggested both tumor-expressed and circulating SECTM1 are promising biomarkers to predict therapeutic responses. Overall, this study reveals that SECTM1 is a biomarker of benefit to ICIs in cancer patients. Further studies including large-scale patients are needed to establish its utilization as a biomarker of benefit to ICIs.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
- Wuxi Clinical College of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Yun Cai
- Wuxi Clinical College of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Chenghu Song
- Department of Thoracic Surgery, Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Jiaofeng Zhou
- Department of Physiology, Nanjing Medical University, No. 818 Tianyuan East Road, Nanjing 211166, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, No. 818 Tianyuan East Road, Nanjing 211166, China
| | - Wenjun Mao
- Department of Thoracic Surgery, Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, No. 818 Tianyuan East Road, Nanjing 211166, China
| |
Collapse
|
23
|
He Z, Chen Q, He W, Cao J, Yao S, Huang Q, Zheng Y. Hepatocellular carcinoma subtypes based on metabolic pathways reveals potential therapeutic targets. Front Oncol 2023; 13:1086604. [PMID: 36937389 PMCID: PMC10017446 DOI: 10.3389/fonc.2023.1086604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is an aggressive malignancy with steadily increasing incidence rates worldwide and poor therapeutic outcomes. Studies show that metabolic reprogramming plays a key role in tumor genesis and progression. In this study, we analyzed the metabolic heterogeneity of epithelial cells in the HCC and screened for potential biomarkers. Methods The hepatic single-cell RNA sequencing (scRNA-seq) datasets of HCC patients and healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Based on data intergration and measurement of differences among groups, the metabolic epithelial cell subpopulations were identified. The single-cell metabolic pathway was analyzed and the myeloid subpopulations were identified. Cell-cell interaction analysis and single-cell proliferation analysis were performed. The gene expression profiles of HCC patients were obtained from the GSE14520 dataset of GEO and TCGA-LIHC cohort of the UCSC Xena website. Immune analysis was performed. The differentially expressed genes (DEGs) were identified and functionally annotated. Tumor tissues from HCC patients were probed with anti-ALDOA, anti-CD68, anti-CD163, anti-CD4 and anti-FOXP3 antibodies. Results We analyzed the scRNA-seq data from 48 HCC patients and 14 healthy controls. The epithelial cells were significantly enriched in HCC patients compared to the controls (p = 0.011). The epithelial cells from HCC patients were classified into two metabolism-related subpopulations (MRSs) - pertaining to amino acid metabolism (MRS1) and glycolysis (MRS2). Depending on the abundance of these metabolic subpopulations, the HCC patients were also classified into the MRS1 and MRS2 subtype distinct prognoses and immune infiltration. The MRS2 group had significantly worse clinical outcomes and more inflamed tumor microenvironment (TME), as well as a stronger crosstalk between MRS2 cells and immune subpopulations that resulted in an immunosuppressive TME. We also detected high expression levels of ALDOA in the MRS2 cells and HCC tissues. In the clinical cohort, HCC patients with higher ALDOA expression showed greater enrichment of immunosuppressive cells including M2 macrophages and T regulatory cells. Discussion The glycolytic subtype of HCC cells with high ALDOA expression is associated with an immunosuppressive TME and predicts worse clinical outcomes, providing new insights into the metabolism and prognosis of HCC.
Collapse
Affiliation(s)
- Zehua He
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, China
- *Correspondence: Qingfeng Chen,
| | - Wanrong He
- Department of Gastroenterology, People’s Hospital of Guangxi, Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Junyue Cao
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shunhan Yao
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Qingqiang Huang
- Guigang City Department of Radiology, People’s Hospital, Guigang, Guangxi, China
| | - Yu Zheng
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Mei J, Cai Y, Wang H, Xu R, Zhou J, Lu J, Yang X, Pan J, Liu C, Xu J, Zhu Y. Formin protein DIAPH1 positively regulates PD-L1 expression and predicts the therapeutic response to anti-PD-1/PD-L1 immunotherapy. Clin Immunol 2023; 246:109204. [PMID: 36503156 DOI: 10.1016/j.clim.2022.109204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Formins are evolutionarily conserved genes and profoundly affect cancer progression. This study aims to explore the expressions, prognostic values, and immunological correlations of Formins in cancer. Specific Formins were dysregulated and immuno-biologically correlated in breast cancer (BRCA). Formins showed different expression patterns, namely some were enriched in immune cells while some were enriched in tumor cells. Among all Formins, DIAPH1 was enriched in tumor cells and associated with an inflamed tumor microenvironment (TME). DIAPH1 functioned as an oncogene in BRCA and mediated TGF-β1-induced epithelial-mesenchymal transformation (EMT) and PD-L1 expression. Moreover, DIAPH1 was overexpressed in most cancers and functioned as a novel pan-cancer immuno-marker, which could predict the response to anti-PD-1/PD-L1 immunotherapy. Overall, DIAPH1 functions as an oncogene and is immunologically correlated, which could be utilized as an alternative biomarker for predicting the immunotherapeutic response.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China; Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| | - Yun Cai
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Huiyu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Rui Xu
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jiaofeng Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jiahui Lu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Xuejing Yang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Jiadong Pan
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Chaoying Liu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
25
|
Wu C, Zhong R, Sun X, Shi J. PSME2 identifies immune-hot tumors in breast cancer and associates with well therapeutic response to immunotherapy. Front Genet 2022; 13:1071270. [PMID: 36583022 PMCID: PMC9793949 DOI: 10.3389/fgene.2022.1071270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BrCa) is a heterogeneous disease, which leads to unsatisfactory prognosis in females worldwide. Previous studies have proved that tumor immune microenvironment (TIME) plays crucial roles in oncogenesis, progression, and therapeutic resistance in Breast cancer. However, biomarkers related to TIME features have not been fully discovered. Proteasome activator complex subunit 2 (PSME2) is a member of proteasome activator subunit gene family, which is critical to protein degradation mediated by the proteasome. In the current research, we comprehensively analyzed the expression and immuno-correlations of Proteasome activator complex subunit 2 in Breast cancer. Proteasome activator complex subunit 2 was significantly upregulated in tumor tissues but associated with well prognosis. In addition, Proteasome activator complex subunit 2 was overexpressed in HER2-positive Breast cancer but not related to other clinicopathological features. Interestingly, Proteasome activator complex subunit 2 was positively related to immune-related processes and identified immuno-hot TIME in Breast cancer. Specifically, Proteasome activator complex subunit 2 was positively correlated with immunomodulators, tumor-infiltrating immune cells (TIICs), immune checkpoints, and tumor mutation burden (TMB) levels. Moreover, the positive correlation between Proteasome activator complex subunit 2 and PD-L1 expression was confirmed in a tissue microarray (TMA) cohort. Furthermore, in an immunotherapy cohort of Breast cancer, patients with pathological complete response (pCR) expressed higher Proteasome activator complex subunit 2 compared with those with non-pathological complete response. In conclusion, Proteasome activator complex subunit 2 is upregulated in tumor tissues and correlated with the immuno-hot tumor immune microenvironment, which can be a novel biomarker for the recognition of tumor immune microenvironment features and immunotherapeutic response in Breast cancer.
Collapse
Affiliation(s)
- Cen Wu
- Department of General Surgery, Rudong County People’s Hospital, Nantong, China
| | - Ren Zhong
- Department of General Surgery, Rudong County People’s Hospital, Nantong, China
| | - Xiaofei Sun
- Department of General Surgery, Rudong County People’s Hospital, Nantong, China
| | - Jiajie Shi
- Departments of Breast Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
26
|
The Role of N 6-Methyladenosine in Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9744771. [PMID: 36578520 PMCID: PMC9792239 DOI: 10.1155/2022/9744771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
N6-Methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes, regulating RNA metabolism (export, stability, translation, and decay) in cells through changes in the activity of writers, erasers, and readers and ultimately affecting human life or disease processes. Inflammation is a response to infection and injury in various diseases and has therefore attracted significant attention. Currently, extensive evidence indicates that m6A plays an essential role in inflammation. In this review, we focus on the mechanisms of m6A in inflammatory autoimmune diseases, metabolic disorder, cardio-cerebrovascular diseases, cancer, and pathogen-induced inflammation, as well as its possible role as targets for clinical diagnosis and treatment.
Collapse
|
27
|
Jiang X, Qian Z, Chen Y, Zhou T, Zhao C, Yin Y. CMTM7 recognizes an immune-hot tumor microenvironment and predicts therapeutic response of immunotherapy in breast cancer well. Front Genet 2022; 13:1051269. [PMID: 36568362 PMCID: PMC9770089 DOI: 10.3389/fgene.2022.1051269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BRCA) is a complex disease that leads to major mortalities and unsatisfactory clinical outcomes among women worldwide. CKLF-like MARVEL transmembrane domain-containing 7 (CMTM7) is a potential tumor suppressor and regulator of PD-L1, which has been found as a functional signature in considerable oncogenesis, progression, and therapeutic resistance via deletion and downregulation. In this research, triple-negative breast cancer (BRCA), a molecular subtype having a lower response to endocrinotherapy but a higher response to chemotherapy and immunotherapy, showed higher transcriptional levels of CMTM7. Moreover, CMTM7 positively correlated with immunomodulators, tumor-infiltrating immune cells (TIICs), and immune checkpoints in many independent datasets. Furthermore, in an immunotherapy cohort of BRCA, patients with high CMTM7 expression were more sensitive to immunotherapy, and the therapeutic predictive value of CMTM7 is higher than that of PD-1 and PD-L1. To sum up, CMTM7 correlated with an inflamed tumor microenvironment and identified immune-hot tumors, which can be a novel biomarker for the recognition of immunological characteristics and an immunotherapeutic response in BRCA.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Pathology, Wuxi Maternity and Child Health Hospital, Wuxi, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, China
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Hospital, Wuxi, China
| | - Tao Zhou
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Hospital, Wuxi, China
| | - Can Zhao
- Department of Galactophore, Wuxi Maternity and Child Health Hospital, Wuxi, China,*Correspondence: Can Zhao, ; Yongxiang Yin,
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternity and Child Health Hospital, Wuxi, China,*Correspondence: Can Zhao, ; Yongxiang Yin,
| |
Collapse
|
28
|
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13:1042368. [PMID: 36466909 PMCID: PMC9716219 DOI: 10.3389/fimmu.2022.1042368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|
29
|
Zhang Q, Nie H, Pan J, Xu H, Zhan Q. FMNL3 is Overexpressed in Tumor Tissues and Predicts an Immuno-Hot Phenotype in Pancreatic Cancer. Int J Gen Med 2022; 15:8285-8298. [DOI: 10.2147/ijgm.s384195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
30
|
Mei J, Cai Y, Xu R, Yu X, Han X, Weng M, Chen L, Ma T, Gao T, Gao F, Xia T, Zhu Y, Zhang Y. Angiotensin-converting enzyme 2 identifies immuno-hot tumors suggesting angiotensin-(1-7) as a sensitizer for chemotherapy and immunotherapy in breast cancer. Biol Proced Online 2022; 24:15. [PMID: 36284262 PMCID: PMC9594906 DOI: 10.1186/s12575-022-00177-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) is known as a tumor suppressor and lowly expressed in most cancers. The expression pattern and role of ACE2 in breast cancer (BC) have not been deeply elucidated. Methods A systematic pan-cancer analysis was conducted to assess the expression pattern and immunological role of ACE2 based on RNA-sequencing (RNA-seq) data downloaded from The Cancer Genome Atlas (TCGA). The correlation of ACE2 expression and immunological characteristics in the BC tumor microenvironment (TME) was evaluated. The role of ACE2 in predicting the response to therapeutic options was estimated. Moreover, the pharmacodynamic effect of angiotensin-(1–7) (Ang-1–7), the product of ACE2, on chemotherapy and immunotherapy was evaluated on the BALB/c mouse BC model. In addition, the plasma samples from BC patients receiving neoadjuvant chemotherapy were collected and subjected to the correlation analysis of the expression level of Ang-1–7 and the response to neoadjuvant chemotherapy. Results ACE2 was lowly expressed in BC tissues compared with that in adjacent tissues. Interestingly, ACE2 was shown the highest correlation with immunomodulators, tumor-infiltrating immune cells (TIICs), cancer immunity cycles, immune checkpoints, and tumor mutation burden (TMB) in BC. In addition, a high level of ACE2 indicated a low response to endocrine therapy and a high response to chemotherapy, anti-ERBB therapy, antiangiogenic therapy and immunotherapy. In the mouse model, Ang-1–7 sensitized mouse BC to the chemotherapy and anti-PD-1 immunotherapy, which revealed its significant anti-tumor effect. Moreover, a high plasma level of Ang-1–7 was associated with a better response to neoadjuvant chemotherapy. Conclusions ACE2 identifies immuno-hot tumors in BC, and its enzymatic product Ang-1–7 sensitizes BC to the chemotherapy and immunotherapy by remodeling the TME. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00177-9.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Rd, Wuxi, 214000, China.,Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214000, China
| | - Yun Cai
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Rd, Wuxi, 214000, China.,Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214000, China
| | - Rui Xu
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xinqian Yu
- Department of Physiology, Nanjing Medical University, No. 101 Longmian Av, Nanjing, 211166, China
| | - Xu Han
- Jiangsu Breast Disease Center, the First Affiliated Hospital With Nanjing Medical University, No. 300 Guangzhou Rd, Nanjing, 210029, China
| | - Miaomiao Weng
- Jiangsu Breast Disease Center, the First Affiliated Hospital With Nanjing Medical University, No. 300 Guangzhou Rd, Nanjing, 210029, China
| | - Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Rd, Wuxi, 214000, China
| | - Tao Ma
- Department of Breast Surgery, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Tianshu Gao
- Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214000, China
| | - Fei Gao
- Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214000, China
| | - Tiansong Xia
- Jiangsu Breast Disease Center, the First Affiliated Hospital With Nanjing Medical University, No. 300 Guangzhou Rd, Nanjing, 210029, China.
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, No. 101 Longmian Av, Nanjing, 211166, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Rd, Wuxi, 214000, China.
| |
Collapse
|
31
|
Yu W, Lu J, Wu C. Construction of a novel prognostic signature based on the composition of tumor-infiltrating immune cells in clear cell renal cell carcinoma. Front Genet 2022; 13:1024096. [PMID: 36313434 PMCID: PMC9606472 DOI: 10.3389/fgene.2022.1024096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/03/2022] [Indexed: 09/07/2024] Open
Abstract
Emerging evidence has uncovered that tumor-infiltrating immune cells (TIICs) play significant roles in regulating the tumorigenesis and progression of clear cell renal cell carcinoma (ccRCC). However, the exact composition of TIICs and their prognostic values in ccRCC have not been well defined. A total of 534 ccRCC samples with survival information and TIIC data from The Cancer Genome Atlas (TCGA) dataset were included in our research. The ImmuCellAI tool was employed to estimate the abundance of 24 TIICs and further survival analysis explored the prognostic values of TIICs in ccRCC. In addition, the expression levels of immunosuppressive molecules (PDL1, PD1, LAG3, and CTLA4) in the high- and low-risk groups were explored. Various subtypes of TIICs had distinct infiltrating features and most TIICs exhibited dysregulated abundance between normal and tumor tissues. Moreover, specific kinds of TIICs had encouraging prognostic values in ccRCC. Further analysis constructed a 4-TIICs signature to evaluate the prognosis of ccRCC patients. Cox regression analyses confirmed the independent prognostic role of the signature in ccRCC. Moreover, immunosuppressive molecules, including PD1, LAG3, and CTLA4, were significantly upregulated in the high-risk group and predicted poor prognosis. However, PDL1 was not changed between high- and low-risk groups and could not predict poor prognosis. To sum up, our research explored the landscape of TIICs in ccRCC and established a novel 4-TIIC prognostic signature, which could effectively predict the prognosis for patients with ccRCC. Based on this signature, we also concluded that PDL1 may not predict prognosis in ccRCC.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jiahui Lu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Cen Wu
- Department of General Surgery, Rudong People’s Hospital, Nantong, Jiangsu, China
| |
Collapse
|
32
|
Jiang Z, Pan J, Lu J, Mei J, Xu R, Xia D, Yang X, Wang H, Liu C, Xu J, Ding J. NEUROD1 predicts better prognosis in pancreatic cancer revealed by a TILs-based prognostic signature. Front Pharmacol 2022; 13:1025921. [PMID: 36313290 PMCID: PMC9612957 DOI: 10.3389/fphar.2022.1025921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
It has been well-defined that tumor-infiltrating lymphocytes (TILs) play critical roles in pancreatic cancer (PaCa) progression. This research aimed to comprehensively explore the composition of TILs in PaCa and their potential clinical significance. A total of 178 samples from the TCGA and 63 samples from the GSE57495 dataset were enrolled in our study. ImmuCellAI was applied to calculate the infiltrating abundance of 24 immune cell types in PaCa and further survival analysis revealed the prognostic values of TILs in PaCa. Moreover, the Hallmark enticement analysis of differentially expressed genes (DEGs) between low- and high-risk groups was performed as well. Immunohistochemistry staining was used to evaluate NEUROD1 expression. As result, different kinds of TILs had distinct infiltrating features. In addition, Specific TILs subsets had notable prognostic values in PaCa. We further established a 6-TILs signature to assess the prognosis of PaCa patients. Kaplan-Meier and Cox regression analyses both suggested the significant prognostic value of the signature in PaCa. Based on the prognostic signature, we screened a great deal of potential prognostic biomarkers and successfully validated NEUROD1 as a novel prognostic biomarker in PaCa. Overall, the current study illuminated the immune cells infiltrating the landscape in PaCa and identified a TILs-dependent signature and NEUROD1 for prognostic prediction in PaCa patients.
Collapse
Affiliation(s)
- Zhiyang Jiang
- Department of General Surgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jiadong Pan
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jiahui Lu
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jie Mei
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Rui Xu
- The First College of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Dandan Xia
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xuejing Yang
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Huiyu Wang
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Chaoying Liu
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Junying Xu
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Junli Ding
- Department of Oncology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
33
|
Zhai WY, Duan FF, Wang YZ, Wang JY, Zhao ZR, Lin YB, Rao BY, Chen S, Zheng L, Long H. Integrative Analysis of Bioinformatics and Machine Learning Algorithms Identifies a Novel Diagnostic Model Based on Costimulatory Molecule for Predicting Immune Microenvironment Status in Lung Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1433-1447. [PMID: 35948079 DOI: 10.1016/j.ajpath.2022.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Costimulatory molecules are an indispensable signal for activating immune cells. However, the features of many costimulatory molecule genes (CMGs) in lung adenocarcinoma (LUAD) are poorly understood. This study systematically explored expression patterns of CMGs in the tumor immune microenvironment (TIME) status of patients with LUAD. Their expression profiles were downloaded from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Two robust TIME subtypes ("hot" and "cold") were classified by K-means clustering and estimation of stromal and immune cells in malignant tumor tissues using expression data. The "hot" subtype presented higher infiltration in activated immune cells and enrichments in the immune cell receptor signaling pathway and adaptive immune response. Three CMGs (CD80, LTB, and TNFSF8) were screened as final diagnostic markers by means of Least Absolute Shrinkage Selection Operator and Support Vector Machine-Recursive Feature Elimination algorithms. Accordingly, the diagnostic nomogram for predicting individualized TIME status showed satisfactory diagnostic accuracy in The Cancer Genome Atlas training cohort as well as GSE31210 and GSE180347 validation cohorts. Immunohistochemistry staining of 16 specimens revealed an apparently positive correlation between the expression of CMG biomarkers and pathologic response to immunotherapy. Thus, this diagnostic nomogram provided individualized predictions in TIME status of LUAD patients with good predictive accuracy, which could serve as a potential tool for identifying ideal candidates for immunotherapy.
Collapse
Affiliation(s)
- Wen-Yu Zhai
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Fang Duan
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yi-Zhi Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ye Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Ze-Rui Zhao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Bin Lin
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Yu Rao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Si Chen
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Lie Zheng
- Medical Imaging Division, Department of Medical Imaging and Interventional Radiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hao Long
- Department of Thoracic Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China; Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
34
|
Wang F, Wang X, Liu L, Deng S, Ji W, Liu Y, Wang X, Wang R, Zhao X, Gao E. Comprehensive analysis of PTPN gene family revealing PTPN7 as a novel biomarker for immuno-hot tumors in breast cancer. Front Genet 2022; 13:981603. [PMID: 36226189 PMCID: PMC9548886 DOI: 10.3389/fgene.2022.981603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: The non-receptor protein tyrosine phosphatase (PTPN) gene family has been considered to be involved in the oncogenesis and development of multiple cancers. However, its prognostic utility and immunological relevance in breast cancer (BrCa) have not been clarified. Methods: A transcriptional level interpretation of the expressions and prognostic values was analyzed using the data from The Cancer Genome Atlas (TCGA) cohort. In addition, GO and DAVID pinpoint the functional enrichment of PTPNs. Moreover, the immune correlations of PTPN7 in BrCa and pan-cancer were further investigated based on the TCGA cohort and were testified using the in-house and the Gene Expression Omnibus (GEO) cohorts. Results: For systematic analysis of the PTPN family, we found that the expression levels of PTPN1, PTPN6, PTPN7, PTPN18, PTPN20, and PTPN22 was promoted in tumor tissues while comparing with paraneoplastic tissues during our study. We further investigated their functions and protein-protein interactions (PPI), and these results strongly suggested that PTPN family was associated with protein dephosphorylation. Next, we performed an immunological relevance analysis and found that PTPN7 was correlated with immune infiltration, suggesting a stronger association of PTPN7 with immuno-hot tumors in BrCa. In addition, results from the in-house cohort confirmed the positive correlation between PTPN7 and PD-L1. The pan-cancer analysis revealed that PTPN7 was related to PD-L1 and CTLA-4 expression in almost all cancer types. Finally, the predictive value of PTPN7 for immunotherapy was significant in two independent GEO cohorts. Conclusion: In conclusion, this is the first extensive research on the correlation between PTPN family expression and immune characterization in BrCa. As results, PTPN7 expression is associated with immuno-hot tumors and could be a promising predictive biomarker for immunotherapy in not only BrCa but multiple cancers.
Collapse
Affiliation(s)
- Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Siyuan Deng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenqian Ji
- College of International Studies, Southwest University, Chongqing, China
| | - Yang Liu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Erli Gao,
| | - Erli Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Xinyuan Zhao, ; Erli Gao,
| |
Collapse
|
35
|
Mao W, Cai Y, Chen D, Jiang G, Xu Y, Chen R, Wang F, Wang X, Zheng M, Zhao X, Mei J. Statin shapes inflamed tumor microenvironment and enhances immune checkpoint blockade in non-small cell lung cancer. JCI Insight 2022; 7:e161940. [PMID: 35943796 PMCID: PMC9675559 DOI: 10.1172/jci.insight.161940] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has achieved breakthroughs in the treatment of advanced non-small cell lung cancer (NSCLC). Nevertheless, the low response due to immuno-cold (i.e., tumors with limited tumor-infiltrating lymphocytes) tumor microenvironment (TME) largely limits the application of ICB therapy. Based on the glycolytic/cholesterol synthesis axis, a stratification framework for EGFR-WT NSCLC was developed to summarize the metabolic features of immuno-cold and immuno-hot tumors. The cholesterol subgroup displays the worst prognosis in immuno-cold NSCLC, with significant enrichment of the cholesterol gene signature, indicating that targeting cholesterol synthesis is essential for the therapy for immuno-cold NSCLC. Statin, the inhibitor for cholesterol synthesis, can suppress the aggressiveness of NSCLC in vitro and in vivo and can also drastically reverse the phenotype of immuno-cold to an inflamed phenotype in vivo. This change led to a higher response to ICB therapy. Moreover, both our in-house data and meta-analysis further support that statin can significantly enhance ICB efficacy. In terms of preliminary mechanisms, statin could transcriptionally inhibit PD-L1 expression and induce ferroptosis in NSCLC cells. Overall, we reveal the significance of cholesterol synthesis in NSCLC and demonstrate the improved therapeutic efficacy of ICB in combination with statin. These findings could provide a clinical insight to treat NSCLC patients with immuno-cold tumors.
Collapse
Affiliation(s)
- Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yun Cai
- Wuxi College of Clinical Medicine
| | - Danrong Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, and
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guanyu Jiang
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yongrui Xu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ruo Chen
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Jie Mei
- Wuxi College of Clinical Medicine
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
36
|
Overexpression of CDCP1 is Associated with Poor Prognosis and Enhanced Immune Checkpoints Expressions in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1469354. [PMID: 36090897 PMCID: PMC9452972 DOI: 10.1155/2022/1469354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
CUB-domain containing protein 1 (CDCP1) is a transmembrane protein acting as an effector of SRC family kinases, which play an oncogenic role in multiple human cancers. However, its clinical and immune correlations in breast cancer (BrCa) have not been explored. To define the expression, prognostic value, and potential molecular role of CDCP1 in BrCa, multiple public datasets, and an in-house cohort were used. Compared with paratumor tissue, CDCP1 was remarkably upregulated in the tumor tissues at both mRNA and protein levels. In the in-house cohort, CDCP1 protein expression was related to several clinicopathological parameters, including age, ER status, PR status, molecular type, and survival status. Kaplan–Meier analysis and Cox regression analysis exhibited that CDCP1 was an important prognostic biomarker in BrCa. In addition, enrichment analysis uncovered that CDCP1 was not only involved in multiple oncogenic pathways, but correlated with overexpression of immune checkpoints. Overall, we reported that increased expression of CDCP1 is a favorable prognostic factor in patients with BrCa. In addition, the correlations between CDCP1 and immune checkpoints provide a novel insight into the adjuvant treatment for immune checkpoint blockade via targeting CDCP1.
Collapse
|
37
|
Mei J, Jiang G, Chen Y, Xu Y, Wan Y, Chen R, Liu F, Mao W, Zheng M, Xu J. HLA class II molecule HLA-DRA identifies immuno-hot tumors and predicts the therapeutic response to anti-PD-1 immunotherapy in NSCLC. BMC Cancer 2022; 22:738. [PMID: 35794593 PMCID: PMC9258174 DOI: 10.1186/s12885-022-09840-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) only works well for a certain subset of patients with non-small cell lung cancer (NSCLC). Therefore, biomarkers for patient stratification are desired, which can suggest the most beneficial treatment. METHODS In this study, three datasets (GSE126044, GSE135222, and GSE136961) of immunotherapy from the Gene Expression Omnibus (GEO) database were analyzed, and seven intersected candidates were extracted as potential biomarkers for ICB followed by validation with The Cancer Genome Atlas (TCGA) dataset and the in-house cohort data. RESULTS Among these candidates, we found that human leukocyte antigen-DR alpha (HLA-DRA) was downregulated in NSCLC tissues and both tumor and immune cells expressed HLA-DRA. In addition, HLA-DRA was associated with an inflamed tumor microenvironment (TME) and could predict the response to ICB in NSCLC. Moreover, we validated the predictive value of HLA-DRA in immunotherapy using an in-house cohort. Furthermore, HLA-DRA was related to the features of inflamed TME in not only NSCLC but also in most cancer types. CONCLUSION Overall, HLA-DRA could be a promising biomarker for guiding ICB in NSCLC.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023 China
| | - Guanyu Jiang
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023 China
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902 USA
| | - Yongrui Xu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023 China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902 USA
| | - Ruo Chen
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023 China
| | - Feng Liu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023 China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023 China
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023 China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023 China
| |
Collapse
|
38
|
Tang Y, Guo C, Yang Z, Wang Y, Zhang Y, Wang D. Identification of a Tumor Immunological Phenotype-Related Gene Signature for Predicting Prognosis, Immunotherapy Efficacy, and Drug Candidates in Hepatocellular Carcinoma. Front Immunol 2022; 13:862527. [PMID: 35493471 PMCID: PMC9039265 DOI: 10.3389/fimmu.2022.862527] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant subtype of primary liver cancer and represents a highly heterogeneous disease, making it hard to predict the prognosis and therapy efficacy. Here, we established a novel tumor immunological phenotype-related gene index (TIPRGPI) consisting of 11 genes by Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) algorithm to predict HCC prognosis and immunotherapy response. TIPRGPI was validated in multiple datasets and exhibited outstanding performance in predicting the overall survival of HCC. Multivariate analysis verified it as an independent predictor and a TIPRGPI-integrated nomogram was constructed to provide a quantitative tool for clinical practice. Distinct mutation profiles, hallmark pathways, and infiltration of immune cells in tumor microenvironment were shown between the TIPRGPI high and low-risk groups. Notably, significant differences in tumor immunogenicity and tumor immune dysfunction and exclusion (TIDE) were observed between the two risk groups, suggesting a better response to immune checkpoint blockade (ICB) therapy of the low-risk group. Besides, six potential drugs binding to the core target of the TIPRGPI signature were predicted via molecular docking. Taken together, our study shows that the proposed TIPRGPI was a reliable signature to predict the risk classification, immunotherapy response, and drugs candidate with potential application in the clinical decision and treatment of HCC. The novel "TIP genes"-guided strategy for predicting the survival and immunotherapy efficacy, we reported here, might be also applied to more cancers other than HCC.
Collapse
Affiliation(s)
- Yuqin Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengbin Guo
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zhao Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yumei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongqiang Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Si S, Wang L, Cao H, Xu Y, Zhan Q. Co-deficiency of B7-H3 and B7-H4 identifies high CD8 + T cell infiltration and better prognosis in pancreatic cancer. BMC Cancer 2022; 22:211. [PMID: 35219310 PMCID: PMC8881843 DOI: 10.1186/s12885-022-09294-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Background Immunotherapy is a novel hotspot for the treatment of pancreatic adenocarcinoma (PAAD). However, potential biomarkers which could identify the inflamed tumor microenvironment (TME) are urgently required. Methods In the present study, we measured the levels of B7-H3, B7-H4, and major tumor-infiltrating immune cells (TIICs) using bioinformatics analyses and immunohistochemistry (IHC) staining on PAAD samples represented in the tissue microarray (TMA) format. Statistical analysis and figures exhibition were performed using R 4.1.0, SPSS 26.0, and GraphPad Prism 6.0. Results B7-H3 and B7-H4 were up-regulated in PAAD compared with para-tumor tissues, and their expression exhibited no tight correlation in PAAD tissues. B7-H3 and B7-H4 were lowly expressed in well-differentiated PAAD tissues and correlated with poorly differentiated grades. Besides, single B7-H3 or B7-H4 expression exhibited limited prognostic value, but co-deficiency of B7-H3 and B7-H4 predicted a better prognosis in PAAD. Moreover, co-deficiency of B7-H3 and B7-H4 indicated immuno-hot tumors with high CD8 + T cell infiltration. Conclusions Overall, combined B7-H3 and B7-H4 expression is a promising stratification strategy to assess prognosis and immunogenicity in PAAD, which could be used as a novel classifier in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09294-w.
Collapse
|
40
|
Zhang Q, Pan J, Nie H, Wang H, An F, Zhan Q. Dishevelled-Associated Activator of Morphogenesis 2 (DAAM2) Predicts the Immuno-Hot Phenotype in Pancreatic Adenocarcinoma. Front Mol Biosci 2022; 9:750083. [PMID: 35281277 PMCID: PMC8907973 DOI: 10.3389/fmolb.2022.750083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: DAAM2 participates in the oncogenesis and progression of human cancers. Although the role of DAAM2 in cancers has been preliminarily investigated, its correlations with antitumor immunity are unclear.Methods: A pancancer analysis was conducted to explore the immunological role of DAAM2 based on RNA sequencing (RNA-seq) data downloaded from The Cancer Genome Atlas (TCGA). Next, correlations between DAAM2 and immunological characteristics in the tumor microenvironment (TME) of pancreatic adenocarcinoma (PAAD) were evaluated. In addition, the role of DAAM2 in predicting the clinical characteristics and the response to various therapies in PAAD were also assessed. In addition, the correlations between DAAM2 and the emerging immunobiomarker N6-methyladenosine (m6A) genes were also evaluated.Results: Pancancer analysis revealed that DAAM2 exhibited positive correlations with a majority of immunomodulators, tumor-infiltrating immune cells (TIICs) and inhibitory immune checkpoints in several cancer types, including PAAD. In addition, DAAM2 was associated with an inflamed phenotype in the tumor microenvironment (TME). DAAM2 also predicted significantly higher responses to chemotherapy, anti-EGFR therapy and immunotherapy but lower responses to anti-ERBB2 and antiangiogenic therapy. In addition, DAAM2 was correlated with immune-related microbiota.Conclusion: In PAAD, DAAM2 is associated with an immuno-hot phenotype and can help predict the outcome of various therapeutic options. Overall, DAAM2 is a promising indicator for assessing high immunogenicity in PAAD.
Collapse
Affiliation(s)
| | | | | | | | - Fangmei An
- *Correspondence: Qiang Zhang, ; Fangmei An,
| | - Qiang Zhan
- *Correspondence: Qiang Zhang, ; Fangmei An,
| |
Collapse
|
41
|
Chen L, Dong J, Li Z, Chen Y, Zhang Y. The B7H4-PDL1 classifier stratifies immuno-phenotype in cervical cancer. Cancer Cell Int 2022; 22:3. [PMID: 34983532 PMCID: PMC8728907 DOI: 10.1186/s12935-021-02423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been revealed that B7H4 is negatively correlated with PDL1 and identifies immuno-cold tumors in glioma. However, the application of the B7H4-PDL1 classifier in cancers has not been well testified. METHODS A pan-cancer analysis was conducted to evaluate the immunological role of B7H4 using the RNA-sequencing data downloaded from the Cancer Genome Atlas (TCGA). Immunohistochemistry (IHC) and multiplexed quantitative immunofluorescence (QIF) were performed to validate the primary results revealed by bioinformatics analysis. RESULTS The pan-cancer analysis revealed that B7H4 was negatively correlated with PDL1 expression and immune cell infiltration in CeCa. In addition, patients with high B7H4 exhibited the shortest overall survival (OS) and relapse-free survival (RFS) while those with high PDL1 exhibited a better prognosis. Multiplexed QIF showed that B7H4 was mutually exclusive with PDL1 expression and the B7H4-high group exhibited the lowest CD8 + T cell infiltration. Besides, B7H4-high predicted highly proliferative subtypes, which expressed the highest Ki67 antigen. Moreover, B7H4-high also indicated a lower response to multiple therapies. CONCLUSIONS Totally, the B7H4-PDL1 classifier identifies the immunogenicity and predicts proliferative subtypes and limited therapeutic options in CeCa, which may be a convenient and feasible biomarker in clinical practice.
Collapse
Affiliation(s)
- Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Road, Wuxi, 214000, China
| | - Jianfeng Dong
- Department of Pathology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Zeying Li
- Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214000, China
| | - Yu Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Road, Wuxi, 214000, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, No. 48 Huaishu Road, Wuxi, 214000, China.
| |
Collapse
|