1
|
Gao P, Zhang Y, Ma J, Zhang Y. Immunotherapy in chronic lymphocytic leukemia: advances and challenges. Exp Hematol Oncol 2025; 14:53. [PMID: 40211406 PMCID: PMC11984025 DOI: 10.1186/s40164-025-00644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized as a clonal proliferation of mature B lymphocytes with distinct immunophenotypic traits, predominantly affecting the middle-aged and elderly population. This condition is marked by an accumulation of lymphocytes within the peripheral blood, bone marrow, spleen, and lymph nodes. The associated immune dysregulation predisposes CLL patients to a higher risk of secondary malignancies and infections, which significantly contribute to morbidity and mortality rates. The advent of immunotherapy has revolutionized the prognosis of CLL, advancing treatment modalities and offering substantial benefits to patient outcomes. This review endeavors to synthesize and scrutinize the efficacy, merits, and limitations of the current immunotherapeutic strategies for CLL. The aim is to inform the selection of optimal treatment regimens tailored to individual patient needs. Furthermore, the review juxtaposes various therapeutic combinations to elucidate the comparative advantages of each approach, with the ultimate objective of enhancing patient prognosis and quality of life.
Collapse
Affiliation(s)
- Pan Gao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Yang Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Jun Ma
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Ibrahim A, Mohamady Farouk Abdalsalam N, Liang Z, Kashaf Tariq H, Li R, O Afolabi L, Rabiu L, Chen X, Xu S, Xu Z, Wan X, Yan D. MDSC checkpoint blockade therapy: a new breakthrough point overcoming immunosuppression in cancer immunotherapy. Cancer Gene Ther 2025; 32:371-392. [PMID: 40140724 PMCID: PMC11976280 DOI: 10.1038/s41417-025-00886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Despite the success of cancer immunotherapy in treating hematologic malignancies, their efficacy in solid tumors remains limited due to the immunosuppressive tumor microenvironment (TME), which is mainly formed by myeloid-derived suppressor cells (MDSCs). MDSCs not only exert potent immunosuppressive effects that hinder the success of immune checkpoint inhibitors (ICIs) and adaptive cellular therapies, but they also promote tumor advancement through non-immunological pathways, including promoting angiogenesis, driving epithelial-mesenchymal transition (EMT), and contributing to the establishment of pre-metastatic environments. While targeting MDSCs alone or in combination with conventional therapies has shown limited success, emerging evidence suggests that MDSC checkpoint blockade in combination with other immunotherapies holds great promise in overcoming both immunological and non-immunological barriers. In this review, we discussed the dual roles of MDSCs, with a particular emphasis on their underexplored checkpoints blockade strategies. We discussed the rationale behind combination strategies, their potential advantages in overcoming MDSC-mediated immunosuppression, and the challenges associated with their development. Additionally, we highlight future research directions aimed at optimizing combination immunotherapies to enhance cancer therapeutic effectiveness, particularly in solid tumor therapies where MDSCs are highly prevalent.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Nada Mohamady Farouk Abdalsalam
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Zihao Liang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Hafiza Kashaf Tariq
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Rong Li
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, South Bend, IN, 46617, USA
| | - Lawan Rabiu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100864, Beijing, China
| | - Xuechen Chen
- College of Pharmacy, Jinan University, 511436, Guangzhou, China.
| | - Shu Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China
| | - Zhiming Xu
- Cancer Center, Shenzhen Guangming District People's Hospital, 518106, Shenzhen, China.
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- University of Chinese Academy of Sciences, 100864, Beijing, China.
| |
Collapse
|
3
|
Song B, Hu J, Chen S, Zhang Y. The Mechanisms and Therapeutic Implications of PI3K Signaling in Airway Inflammation and Remodeling in Asthma. Biologics 2025; 19:73-86. [PMID: 40070559 PMCID: PMC11895685 DOI: 10.2147/btt.s497622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/15/2025] [Indexed: 03/14/2025]
Abstract
Bronchial asthma is a complex and heterogeneous disease with ongoing airway inflammation and increased airway responsiveness. Key characteristics of the disease include persistent airway inflammation, airway hyperresponsiveness, and airway remodeling. Asthma's chronic and recurrent characteristics contribute to airway remodeling and inflammation, which can exacerbate lung damage. Presently, inflammation is predominantly managed with corticosteroids, yet there is a notable absence of treatments specifically addressing airway remodeling. The phosphoinositide 3-kinase (PI3K) signaling pathway is integral to the processes of inflammation, airway remodeling, and immune responses. Pharmacological agents targeting this pathway are currently undergoing clinical evaluation. This review elucidates the role of PI3K in the immune responses, airway inflammation, and remodeling associated with asthma, examining its underlying mechanisms. Furthermore, we synthesize the existing literature on the therapeutic potential of PI3K inhibitors for asthma management, emphasizing immune modulation, airway inflammation, and remodeling, including drug development and ongoing clinical trials. Lastly, we explore how various PI3K-targeted therapies may enhance efficacy and improve tolerance.
Collapse
Affiliation(s)
- Bangguo Song
- School of Clinical Chinese Medicine, Gansu University of Traditional Chinese Medicine, Gansu, People’s Republic of China
| | - Jihong Hu
- Teaching Experimental Training Center, Gansu University of Traditional Chinese Medicine, Gansu, People’s Republic of China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, People’s Republic of China
| | - Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Jiangxi, People’s Republic of China
| | - Yang Zhang
- Key Laboratory of Dunhuang Medicine and Transformation, Ministry of Education, Gansu, People’s Republic of China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
4
|
Qiang M, Chen Z, Liu H, Dong J, Gong K, Zhang X, Huo P, Zhu J, Shao Y, Ma J, Zhang B, Liu W, Tang M. Targeting the PI3K/AKT/mTOR pathway in lung cancer: mechanisms and therapeutic targeting. Front Pharmacol 2025; 16:1516583. [PMID: 40041495 PMCID: PMC11877449 DOI: 10.3389/fphar.2025.1516583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Owing to its high mortality rate, lung cancer (LC) remains the most common cancer worldwide, with the highest malignancy diagnosis rate. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling (PAM) pathway is a critical intracellular pathway involved in various cellular functions and regulates numerous cellular processes, including growth, survival, proliferation, metabolism, apoptosis, invasion, and angiogenesis. This review aims to highlight preclinical and clinical studies focusing on the PAM signaling pathway in LC and underscore the potential of natural products targeting it. Additionally, this review synthesizes the existing literature and discusses combination therapy and future directions for LC treatment while acknowledging the ongoing challenges in the field. Continuous development of novel therapeutic agents, technologies, and precision medicine offers an increasingly optimistic outlook for the treatment of LC.
Collapse
Affiliation(s)
- Min Qiang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Zhe Chen
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Junxue Dong
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xinjun Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Peng Huo
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jingjun Zhu
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yifeng Shao
- Department of General Surgery, Capital Institute of Pediatrics’ Children’s Hospital, Beijing, China
| | - Jinazun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bowei Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Duell J, Westin J. The future of immunotherapy for diffuse large B-cell lymphoma. Int J Cancer 2025; 156:251-261. [PMID: 39319495 PMCID: PMC11578085 DOI: 10.1002/ijc.35156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 09/26/2024]
Abstract
With the introduction of anti-CD19 chimeric antigen receptor (CAR) T-cell (CAR T) therapies, bispecific CD3/CD20 antibodies and anti-CD19 antibodies, immunotherapy continues to transform the treatment of diffuse large B-cell lymphoma (DLBCL). A number of novel immunotherapeutic strategies are under investigation to build upon current clinical benefit and offer further options to those patients who cannot tolerate conventional intensive therapies due to their age and/or state of health. Alongside immunotherapies that leverage the adaptive immune response, natural killer (NK) cell and myeloid cell-engaging therapies can utilize the innate immune system. Monoclonal antibodies engineered for greater recognition by the patient's immune system can enhance antitumor cytotoxic mechanisms mediated by NK cells and macrophages. In addition, CAR technology is extending into NK cells and macrophages and investigational immune checkpoint inhibitors targeting macrophage/myeloid cell checkpoints via the CD47/SIRPα axis are in development. Regimens that engage both innate and adaptive immune responses may help to overcome resistance to current immunotherapies. Furthermore, combinations of immunotherapy and oncogenic pathway inhibitors to reprogram the immunosuppressive tumor microenvironment of DLBCL may also potentiate antitumor responses. As immunotherapy treatment options continue to expand, both in the first-line setting and further lines of therapy, understanding how to harness these immunotherapies and the potential for combination approaches will be important for the development of future DLBCL treatment approaches.
Collapse
Affiliation(s)
- Johannes Duell
- Department of Internal Medicine 2University Hospital of WürzburgWürzburgGermany
| | - Jason Westin
- Department of Lymphoma and MyelomaMD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
6
|
Dai Y, Liu Y, An L, Zhong F, Zhang X, Lou S. Afatinib boosts CAR-T cell antitumor therapeutic efficacy via metabolism and fate reprogramming. J Immunother Cancer 2024; 12:e009949. [PMID: 39551605 PMCID: PMC11574435 DOI: 10.1136/jitc-2024-009949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T (CAR-T) cell therapy has been shown remarkable efficacy in the treatment of hematological malignancies in recent years. However, a considerable proportion of patients would experience tumor recurrence and deterioration. Insufficient CAR-T cell persistence is the major reason for relapse. Multiple strategies to enhance the long-term antitumor effects of CAR-T cells have been explored and developed. In this study, we focused on tyrosine kinase inhibitors (TKIs), which have emerged immunomodulatory potential besides direct tumoricidal effects. METHODS Here, we screened 50 approved TKIs drugs and identified that afatinib (AFA) markedly enhanced the expressing of CD62L and inhibited reactive oxygen species level in T cells. And the underlying mechanisms of AFA medicating T cells were explored by detecting signal transduction, and metabolism pattern. Furthermore, we co-cultured AFA with CAR-T cells during the preparation stage and multianalyses of differentiation characteristics, metabolic profiling, and RNA sequencing revealed that AFA induce comprehensive metabolism remodeling and fate reprogramming. Based on it, we finally identified the antitumor efficacy of AFA-pretreatment CAR-T compared with negative-control CAR-T. RESULTS We identified that AFA blocked the T-cell receptor (TCR) and phosphoinositide 3-kinase-protein kinase B-mechanistic target of rapamycin signaling pathways, induced metabolic reprogramming and modulated T-cell differentiation. When combined with CAR-T cells, AFA inhibited the exhaustion and enhanced the persistence and cytotoxicity. Our results revealed that the pretreatment of AFA enables to boost CAR-T cells with strong antitumor cytotoxicity in leukemia mouse model. CONCLUSIONS Our study systematically demonstrated that AFA pretreatment effectively enhanced CAR-T cells antitumor performance, which presents a novel optimization strategy for potent and durable CAR-T cell therapy.
Collapse
Affiliation(s)
- Yueyu Dai
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, Chongqing, China
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Yue Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, Chongqing, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, Chongqing, China
| | - Fangyuan Zhong
- Department of Gynecology and Obstetrics, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, Chongqing, China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, Chongqing, China
| |
Collapse
|
7
|
Chen Q, Zheng X, Cheng W, Li J. Landscape of targeted therapies for lung squamous cell carcinoma. Front Oncol 2024; 14:1467898. [PMID: 39544292 PMCID: PMC11560903 DOI: 10.3389/fonc.2024.1467898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Lung cancer, a common type of malignant neoplasm, has seen significant advancements in the treatment of lung adenocarcinoma (LUAD). However, the management of lung squamous cell carcinoma (LSCC) continues to pose challenges. Traditional treatment methods for LSCC encompass surgical resection, chemotherapy, and radiotherapy. The introduction of targeted therapy and immunotherapy has greatly benefited LSCC patients, but issues such as limited immune response rates and adverse reactions persist. Therefore, gaining a deeper comprehension of the underlying mechanisms holds immense importance. This review provides an in-depth overview of classical signaling pathways and therapeutic targets, including the PI3K signaling pathway, CDK4/6 pathway, FGFR1 pathway and EGFR pathway. Additionally, we delve into alternative signaling pathways and potential targets that could offer new therapeutic avenues for LSCC. Lastly, we summarize the latest advancements in targeted therapy combined with immune checkpoint blockade (ICB) therapy for LSCC and discuss the prospects and challenges in this field.
Collapse
Affiliation(s)
- Qiuxuan Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoshuo Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiting Cheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian Li
- Institude of Experimental Immunology, University Clinic of Rheinische Friedrich-Wihelms-University, Bonn, Germany
| |
Collapse
|
8
|
Zhang SY, Guo SX, Chen LL, Zhu JY, Hou MS, Lu JK, Shen XX. Exploring the potential mechanism of WuFuYin against hypertrophic scar using network pharmacology and molecular docking. World J Clin Cases 2024; 12:3505-3514. [PMID: 38983404 PMCID: PMC11229930 DOI: 10.12998/wjcc.v12.i18.3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Hypertrophic scar (HTS) is dermal fibroproliferative disorder, which may cause physiological and psychological problems. Currently, the potential mechanism of WuFuYin (WFY) in the treatment of HTS remained to be elucidated. AIM To explore the potential mechanism of WFY in treating HTS. METHODS Active components and corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. HTS-related genes were obtained from the GeneCards, DisGeNET, and National Center for Biotechnology Information. The function of targets was analyzed by performing Gene Ontology and Kyoto Encyclopaedia of Genes and Genome (KEGG) enrichment analysis. A protein + IBM-protein interaction (PPI) network was developed using STRING database and Cytoscape. To confirm the high affinity between compounds and targets, molecular docking was performed. RESULTS A total of 65 core genes, which were both related to compounds and HTS, were selected from multiple databases. PPI analysis showed that CKD2, ABCC1, MMP2, MMP9, glycogen synthase kinase 3 beta (GSK3B), PRARG, MMP3, and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PIK3CG) were the hub targets and MOL004941, MOL004935, MOL004866, MOL004993, and MOL004989 were the key compounds of WFY against HTS. The results of KEGG enrichment analysis demonstrated that the function of most genes were enriched in the PI3K-Akt pathway. Moreover, by performing molecular docking, we confirmed that GSK3B and 8-prenylated eriodictyol shared the highest affinity. CONCLUSION The current findings showed that the GSK3B and cyclin dependent kinase 2 were the potential targets and MOL004941, MOL004989, and MOL004993 were the main compounds of WFY in HTS treatment.
Collapse
Affiliation(s)
- Shu-Yang Zhang
- Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| | - Song-Xue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Lei-Lei Chen
- Hand and Plastic Surgery, The first People’s Hospital of Linping District, Hangzhou 311013, Zhejiang Province, China
| | - Jia-Yan Zhu
- Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| | - Ming-Sheng Hou
- Department of Pathology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| | - Jia-Ke Lu
- Department of Traumatology, Yuyao Hospital of Traditional Chinese Medicine, Ningbo 315400, Zhejiang Province, China
| | - Xue-Xiang Shen
- Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| |
Collapse
|
9
|
Pridham KJ, Hutchings KR, Beck P, Liu M, Xu E, Saechin E, Bui V, Patel C, Solis J, Huang L, Tegge A, Kelly DF, Sheng Z. Selective regulation of chemosensitivity in glioblastoma by phosphatidylinositol 3-kinase beta. iScience 2024; 27:109921. [PMID: 38812542 PMCID: PMC11133927 DOI: 10.1016/j.isci.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Resistance to chemotherapies such as temozolomide is a major hurdle to effectively treat therapy-resistant glioblastoma. This challenge arises from the activation of phosphatidylinositol 3-kinase (PI3K), which makes it an appealing therapeutic target. However, non-selectively blocking PI3K kinases PI3Kα/β/δ/γ has yielded undesired clinical outcomes. It is, therefore, imperative to investigate individual kinases in glioblastoma's chemosensitivity. Here, we report that PI3K kinases were unequally expressed in glioblastoma, with levels of PI3Kβ being the highest. Patients deficient of O6-methylguanine-DNA-methyltransferase (MGMT) and expressing elevated levels of PI3Kβ, defined as MGMT-deficient/PI3Kβ-high, were less responsive to temozolomide and experienced poor prognosis. Consistently, MGMT-deficient/PI3Kβ-high glioblastoma cells were resistant to temozolomide. Perturbation of PI3Kβ, but not other kinases, sensitized MGMT-deficient/PI3Kβ-high glioblastoma cells or tumors to temozolomide. Moreover, PI3Kβ-selective inhibitors and temozolomide synergistically mitigated the growth of glioblastoma stem cells. Our results have demonstrated an essential role of PI3Kβ in chemoresistance, making PI3Kβ-selective blockade an effective chemosensitizer for glioblastoma.
Collapse
Affiliation(s)
- Kevin J. Pridham
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Kasen R. Hutchings
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Patrick Beck
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Min Liu
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Eileen Xu
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Erin Saechin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Vincent Bui
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Chinkal Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Jamie Solis
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Leah Huang
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Allison Tegge
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Faculty of Health Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Wang H, Feng J, Liu Y, Qian Z, Gao D, Ran X, Zhou H, Liu L, Wang B, Fang M, Zhou H, Huang Z, Tao S, Chen Z, Su L, Su H, Yang Y, Xie X, Wu H, Sun P, Hu G, Liang A, Li Z. Phase II study of novel orally PI3Kα/δ inhibitor TQ-B3525 in relapsed and/or refractory follicular lymphoma. Signal Transduct Target Ther 2024; 9:99. [PMID: 38627366 PMCID: PMC11021411 DOI: 10.1038/s41392-024-01798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/19/2024] Open
Abstract
This registration study assessed clinical outcomes of TQ-B3525, the dual phosphatidylinositol-3-kinase (PI3K) α/δ inhibitor, in relapsed and/or refractory follicular lymphoma (R/R FL). This phase II study (ClinicalTrials.gov NCT04324879. Registered March 27, 2020) comprised run-in stage and stage 2. R/R FL patients after ≥2 lines therapies received oral 20 mg TQ-B3525 once daily in a 28-day cycle until intolerable toxicity or disease progression. Primary endpoint was independent review committee (IRC)-assessed objective response rate (ORR). Based on results (ORR, 88.0%; duration of response [DOR], 11.8 months; progression-free survival [PFS], 12.0 months) in 25 patients at run-in stage, second stage study was initiated and included 82 patients for efficacy/safety analysis. Patients received prior-line (median, 3) therapies, with 56.1% refractory to previous last therapies; 73.2% experienced POD24 at baseline. At stage 2, ORR was 86.6% (71/82; 95% CI, 77.3-93.1%), with 28 (34.2%) complete responses. Disease control rate was 95.1% due to 7 (8.5%) stable diseases. Median time to response was 1.8 months. Among 71 responders, median DOR was not reached; 18-month DOR rate was 51.6%. with median follow-up of 13.3 months, median PFS was 18.5 (95% CI, 10.2-not estimable) months. Median overall survival (OS) was not reached by cutoff date; 24-month OS rate was estimated as 86.1%. Response rates and survival data were consistent across all subgroups. Grade 3 or higher treatment-related adverse events were observed in 63 (76.8%) cases, with neutropenia (22.0%), hyperglycemia (19.5%), and diarrhea (13.4%) being common. TQ-B3525 showed favorable efficacy and safety for R/R FL patients after ≥2 lines prior therapies.
Collapse
Affiliation(s)
- Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, PR China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, PR China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China
| | - Yanyan Liu
- Department of Medical Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, PR China
| | - Zhengzi Qian
- Department of Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Da Gao
- Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical College, 010050, Hohhot, PR China
| | - Xuehong Ran
- Department of Hematology, Weifang People's Hospital, The First Affiliated Hospital of Weifang Medical University, 261000, Weifang, PR China
| | - Hui Zhou
- Department of Lymphoma & Hematology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, PR China
| | - Lihong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University and Hebei Tumor Hospital, 050011, Shijiazhuang, PR China
| | - Binghua Wang
- Department of Lymphoma, Weihai Central Hospital, 264400, Weihai, PR China
| | - Meiyun Fang
- Department of Hematology and Rheumatology, The Affiliated Zhongshan Hospital of Dalian University, 116001, Dalian, PR China
| | - Hebing Zhou
- Department of Hematology, Beijing Luhe Hospital, 101199, Beijing, PR China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, PR China
| | - Shi Tao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical College, 570102, Haikou, PR China
| | - Zhuowen Chen
- Department of Hematology, The First People's Hospital of Foshan, 528000, Foshan, PR China
| | - Liping Su
- Department of Hematology, Shanxi Cancer Hospital, 030013, Taiyuan, PR China
| | - Hang Su
- Department of Lymphoma, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, 100039, Beijing, PR China
| | - Yu Yang
- Department of Lymphoma and Head and Neck Cancer, Fujian Cancer Hospital, 350014, Fuzhou, PR China
| | - Xiaobao Xie
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 213003, Changzhou, PR China
| | - Huijing Wu
- Department of Medical Oncology, Hubei Cancer Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 430079, Wuhan, PR China
| | - Ping Sun
- Department of Medical Oncology, Yantai Yuhuangding Hospital, 264000, Yantai, PR China
| | - Guoyu Hu
- Department of Hematology, Zhuzhou Central Hospital, 412007, Zhuzhou, PR China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200333, PR China.
| | - Zhiming Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, PR China.
| |
Collapse
|
11
|
Yu Y, Gu D, Cai L, Yang H, Sheng R. Development of small-molecule inhibitors that target PI3Kβ. Drug Discov Today 2024; 29:103854. [PMID: 38070704 DOI: 10.1016/j.drudis.2023.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Phosphatidylinositol-3 kinase (PI3K) β, a subtype of class I PI3Ks, has an essential role in PTEN-deficient tumors and links to thrombosis, male fertility, and Fragile X syndrome. PI3Kβ-specific targeting therapy could be an efficacious treatment for diseases highly dependent on PI3Kβ, while mitigating the severe toxicity of pan-PI3K inhibitors. Achieving selectivity can be accomplished through three primary strategies, namely, binding to the induced lipophilic pocket, targeting the unique amino acid residue of PI3Kβ, or using atropisomerism to lock conformation. In this review, we focus on advances in the development of these β-isoform-selective PI3K inhibitors, providing potential guidance for the further development of novel clinical candidates.
Collapse
Affiliation(s)
- Yanzhen Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Dongyan Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Lvtao Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, PR China
| | - Haodong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, PR China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, PR China.
| |
Collapse
|
12
|
Munster P, Iannotti N, Cho DC, Kirkwood JM, Villaruz LC, Gibney GT, Hodi FS, Mettu NB, Jones M, Bowman J, Smith M, Lakshminarayanan M, O'Day S. Combination of Itacitinib or Parsaclisib with Pembrolizumab in Patients with Advanced Solid Tumors: A Phase I Study. CANCER RESEARCH COMMUNICATIONS 2023; 3:2572-2584. [PMID: 38115208 PMCID: PMC10729644 DOI: 10.1158/2767-9764.crc-22-0461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/05/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE This phase Ib open-label, multicenter, platform study (NCT02646748) explored safety, tolerability, and preliminary activity of itacitinib (Janus kinase 1 inhibitor) or parsaclisib (phosphatidylinositol 3-kinase δ inhibitor) in combination with pembrolizumab [programmed death-1 (PD-1) inhibitor]. EXPERIMENTAL DESIGN Patients with advanced or metastatic solid tumors with disease progression following all available therapies were enrolled and received itacitinib (Part 1 initially 300 mg once daily) or parsaclisib (Part 1 initially 10 mg once daily; Part 2 all patients 0.3 mg once daily) plus pembrolizumab (200 mg every 3 weeks). RESULTS A total of 159 patients were enrolled in the study and treated with itacitinib (Part 1, n = 49) or parsaclisib (Part 1, n = 83; Part 2, n = 27) plus pembrolizumab. The maximum tolerated/pharmacologically active doses were itacitinib 300 mg once daily and parsaclisib 30 mg once daily. Most common itacitinib treatment-related adverse events (TRAE) were fatigue, nausea, and anemia. Most common parsaclisib TRAEs were fatigue, nausea, diarrhea, and pyrexia in Part 1, and fatigue, maculopapular rash, diarrhea, nausea, and pruritus in Part 2. In patients receiving itacitinib plus pembrolizumab, four (8.2%) achieved a partial response (PR) in Part 1. Among patients receiving parsaclisib plus pembrolizumab, 5 (6.0%) achieved a complete response and 9 (10.8%) a PR in Part 1; 5 of 27 (18.5%) patients in Part 2 achieved a PR. CONCLUSIONS Although combination of itacitinib or parsaclisib with pembrolizumab showed modest clinical activity in this study, the overall response rates observed did not support continued development in patients with solid tumors. SIGNIFICANCE PD-1 blockade combined with targeted therapies have demonstrated encouraging preclinical activity. In this phase I study, patients with advanced solid tumors treated with pembrolizumab (PD-1 inhibitor) and either itacitinib (JAK1 inhibitor) or parsaclisib (PI3Kδ inhibitor) experienced limited clinical activity beyond that expected with checkpoint inhibition alone and showed little effect on T-cell infiltration in the tumor. These results do not support continued development of these combinations.
Collapse
Affiliation(s)
- Pamela Munster
- Department of Medicine, Division of Hematology/Oncology, UCSF, San Francisco, California
| | - Nicholas Iannotti
- Hematology-Oncology Associates of Treasure Coast, Port St Lucie, Florida
| | - Daniel C. Cho
- NYU Laura & Isaac Perlmutter Cancer Center at NYU Langone, New York City, New York
| | - John M. Kirkwood
- UPMC Hillman Cancer Center Melanoma and Skin Cancer Program, Pittsburgh, Pennsylvania
| | | | - Geoffrey T. Gibney
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | | | | | - Mark Jones
- Incyte Corporation, Wilmington, Delaware
| | | | | | | | - Steven O'Day
- John Wayne Cancer Institute of Providence, Saint John's Health Center, Santa Monica, California
| |
Collapse
|
13
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 608] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
14
|
Foster JB, Alonso MM, Sayour E, Davidson TB, Persson ML, Dun MD, Kline C, Mueller S, Vitanza NA, van der Lugt J. Translational considerations for immunotherapy clinical trials in pediatric neuro-oncology. Neoplasia 2023; 42:100909. [PMID: 37244226 DOI: 10.1016/j.neo.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| | - Marta M Alonso
- Department of Pediatrics, Program of Solid Tumors, University Clinic of Navarra, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Elias Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
| | - Tom B Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Mark Hughes Foundation Centre for Brain Cancer Research, Paediatric Program, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Cassie Kline
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sabine Mueller
- Department of Neurology, Department of Neurosurgery and Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
15
|
Zhang H, Passang T, Ravindranathan S, Bommireddy R, Jajja MR, Yang L, Selvaraj P, Paulos CM, Waller EK. The magic of small-molecule drugs during ex vivo expansion in adoptive cell therapy. Front Immunol 2023; 14:1154566. [PMID: 37153607 PMCID: PMC10160370 DOI: 10.3389/fimmu.2023.1154566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
In the past decades, advances in the use of adoptive cellular therapy to treat cancer have led to unprecedented responses in patients with relapsed/refractory or late-stage malignancies. However, cellular exhaustion and senescence limit the efficacy of FDA-approved T-cell therapies in patients with hematologic malignancies and the widespread application of this approach in treating patients with solid tumors. Investigators are addressing the current obstacles by focusing on the manufacturing process of effector T cells, including engineering approaches and ex vivo expansion strategies to regulate T-cell differentiation. Here we reviewed the current small-molecule strategies to enhance T-cell expansion, persistence, and functionality during ex vivo manufacturing. We further discussed the synergistic benefits of the dual-targeting approaches and proposed novel vasoactive intestinal peptide receptor antagonists (VIPR-ANT) peptides as emerging candidates to enhance cell-based immunotherapy.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Tenzin Passang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sruthi Ravindranathan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Mohammad Raheel Jajja
- Departmert of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
| | - Lily Yang
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Chrystal M. Paulos
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory University of School of Medicine, Atlanta, GA, United States
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
16
|
Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment: Current progress and future directions. Cancer Lett 2023; 562:216182. [PMID: 37076040 DOI: 10.1016/j.canlet.2023.216182] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Cancer treatment has been advanced with the advent of immune checkpoint inhibitors (ICIs) exemplified by anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) drugs. Patients have reaped substantial benefit from ICIs in many cancer types. However, few patients benefit from ICIs whereas the vast majority undergoing these treatments do not obtain survival benefit. Even for patients with initial responses, they may encounter drug resistance in their subsequent treatments, which limits the efficacy of ICIs. Therefore, a deepening understanding of drug resistance is critically important for the explorations of approaches to reverse drug resistance and to boost ICI efficacy. In the present review, different mechanisms of ICI resistance have been summarized according to the tumor intrinsic, tumor microenvironment (TME) and host classifications. We further elaborated corresponding strategies to battle against such resistance accordingly, which include targeting defects in antigen presentation, dysregulated interferon-γ (IFN-γ) signaling, neoantigen depletion, upregulation of other T cell checkpoints as well as immunosuppression and exclusion mediated by TME. Moreover, regarding the host, several additional approaches that interfere with diet and gut microbiome have also been described in reversing ICI resistance. Additionally, we provide an overall glimpse into the ongoing clinical trials that utilize these mechanisms to overcome ICI resistance. Finally, we summarize the challenges and opportunities that needs to be addressed in the investigation of ICI resistance mechanisms, with the aim to benefit more patients with cancer.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
17
|
Cao X, Jin X, Zhang X, Utsav P, Zhang Y, Guo R, Lu W, Zhao M. Small-Molecule Compounds Boost CAR-T Cell Therapy in Hematological Malignancies. Curr Treat Options Oncol 2023; 24:184-211. [PMID: 36701037 PMCID: PMC9992085 DOI: 10.1007/s11864-023-01049-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
OPINION STATEMENT Although chimeric antigen receptor T cell immunotherapy has been successfully applied in patients with hematological malignancies, several obstacles still need to be overcome, such as high relapse rates and side effects. Overcoming the limitations of CAR-T cell therapy and boosting the efficacy of CAR-T cell therapy are urgent issues that must be addressed. The exploration of small-molecule compounds in combination with CAR-T cell therapies has achieved promising success in pre-clinical and clinical studies in recent years. Protein kinase inhibitors, demethylating drugs, HDAC inhibitors, PI3K inhibitors, immunomodulatory drugs, Akt inhibitors, mTOR inhibitors, and Bcl-2 inhibitors exhibited potential synergy in combination with CAR-T cell therapy. In this review, we will discuss the recent application of these combination therapies for improved outcomes of CAR-T cell therapy.
Collapse
Affiliation(s)
- Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xiaomei Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Paudel Utsav
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
18
|
Huang J, Huang X, Huang J. CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Front Immunol 2022; 13:1019115. [PMID: 36248810 PMCID: PMC9557333 DOI: 10.3389/fimmu.2022.1019115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023] Open
Abstract
In the past decade, the emergence of chimeric antigen receptor (CAR) T-cell therapy has led to a cellular immunotherapy revolution against various cancers. Although CAR-T cell therapies have demonstrated remarkable efficacy for patients with certain B cell driven hematological malignancies, further studies are required to broaden the use of CAR-T cell therapy against other hematological malignancies. Moreover, treatment failure still occurs for a significant proportion of patients. CAR antigen loss on cancer cells is one of the most common reasons for cancer relapse. Additionally, immune evasion can arise due to the hostile immunosuppressive tumor microenvironment and the impaired CAR-T cells in vivo persistence. Other than direct antitumor activity, the adverse effects associated with CAR-T cell therapy are another major concern during treatment. As a newly emerged treatment approach, numerous novel preclinical studies have proposed different strategies to enhance the efficacy and attenuate CAR-T cell associated toxicity in recent years. The major obstacles that impede promising outcomes for patients with hematological malignancies during CAR-T cell therapy have been reviewed herein, along with recent advancements being made to surmount them.
Collapse
|
19
|
Atkins MB, Abu-Sbeih H, Ascierto PA, Bishop MR, Chen DS, Dhodapkar M, Emens LA, Ernstoff MS, Ferris RL, Greten TF, Gulley JL, Herbst RS, Humphrey RW, Larkin J, Margolin KA, Mazzarella L, Ramalingam SS, Regan MM, Rini BI, Sznol M. Maximizing the value of phase III trials in immuno-oncology: A checklist from the Society for Immunotherapy of Cancer (SITC). J Immunother Cancer 2022; 10:jitc-2022-005413. [PMID: 36175037 PMCID: PMC9528604 DOI: 10.1136/jitc-2022-005413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2022] [Indexed: 11/03/2022] Open
Abstract
The broad activity of agents blocking the programmed cell death protein 1 and its ligand (the PD-(L)1 axis) revolutionized oncology, offering long-term benefit to patients and even curative responses for tumors that were once associated with dismal prognosis. However, only a minority of patients experience durable clinical benefit with immune checkpoint inhibitor monotherapy in most disease settings. Spurred by preclinical and correlative studies to understand mechanisms of non-response to the PD-(L)1 antagonists and by combination studies in animal tumor models, many drug development programs were designed to combine anti-PD-(L)1 with a variety of approved and investigational chemotherapies, tumor-targeted therapies, antiangiogenic therapies, and other immunotherapies. Several immunotherapy combinations improved survival outcomes in a variety of indications including melanoma, lung, kidney, and liver cancer, among others. This immunotherapy renaissance, however, has led to many combinations being advanced to late-stage development without definitive predictive biomarkers, limited phase I and phase II data, or clinical trial designs that are not optimized for demonstrating the unique attributes of immune-related antitumor activity-for example, landmark progression-free survival and overall survival. The decision to activate a study at an individual site is investigator-driven, and generalized frameworks to evaluate the potential for phase III trials in immuno-oncology to yield positive data, particularly to increase the number of curative responses or otherwise advance the field have thus far been lacking. To assist in evaluating the potential value to patients and the immunotherapy field of phase III trials, the Society for Immunotherapy of Cancer (SITC) has developed a checklist for investigators, described in this manuscript. Although the checklist focuses on anti-PD-(L)1-based combinations, it may be applied to any regimen in which immune modulation is an important component of the antitumor effect.
Collapse
Affiliation(s)
- Michael B Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | | | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione "G Pascale", Napoli, Italy
| | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, Illinois, USA
| | - Daniel S Chen
- Engenuity Life Sciences, Burlingame, California, USA
| | - Madhav Dhodapkar
- Center for Cancer Immunology, Winship Cancer Institute at Emory University, Atlanta, Georgia, USA
| | - Leisha A Emens
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Marc S Ernstoff
- DCTD/DTP-IOB, ImmunoOncology Branch, NCI, Bethesda, Maryland, USA
| | | | - Tim F Greten
- Gastrointestinal Malignancies Section, National Cancer Institue CCR Liver Program, Bethesda, Maryland, USA
| | - James L Gulley
- Center for Immuno-Oncology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Kim A Margolin
- St. John's Cancer Institute, Santa Monica, California, USA
| | - Luca Mazzarella
- Experimental Oncology, New Drug Development, European Instititue of Oncology IRCCS, Milan, Italy
| | | | - Meredith M Regan
- Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mario Sznol
- Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol 2022; 15:118. [PMID: 36031601 PMCID: PMC9420297 DOI: 10.1186/s13045-022-01335-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1, programmed death-ligand 1, and cytotoxic T-lymphocyte-associated protein 4 provide deep and durable treatment responses which have revolutionized oncology. However, despite over 40% of cancer patients being eligible to receive immunotherapy, only 12% of patients gain benefit. A key to understanding what differentiates treatment response from non-response is better defining the role of the innate immune system in anti-tumor immunity and immune tolerance. Teleologically, myeloid cells, including macrophages, dendritic cells, monocytes, and neutrophils, initiate a response to invading pathogens and tissue repair after pathogen clearance is successfully accomplished. However, in the tumor microenvironment (TME), these innate cells are hijacked by the tumor cells and are imprinted to furthering tumor propagation and dissemination. Major advancements have been made in the field, especially related to the heterogeneity of myeloid cells and their function in the TME at the single cell level, a topic that has been highlighted by several recent international meetings including the 2021 China Cancer Immunotherapy workshop in Beijing. Here, we provide an up-to-date summary of the mechanisms by which major myeloid cells in the TME facilitate immunosuppression, enable tumor growth, foster tumor plasticity, and confer therapeutic resistance. We discuss ongoing strategies targeting the myeloid compartment in the preclinical and clinical settings which include: (1) altering myeloid cell composition within the TME; (2) functional blockade of immune-suppressive myeloid cells; (3) reprogramming myeloid cells to acquire pro-inflammatory properties; (4) modulating myeloid cells via cytokines; (5) myeloid cell therapies; and (6) emerging targets such as Siglec-15, TREM2, MARCO, LILRB2, and CLEVER-1. There is a significant promise that myeloid cell-based immunotherapy will help advance immuno-oncology in years to come.
Collapse
Affiliation(s)
- Yi Wang
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Margaret E Gatti-Mays
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA.
| | - Zihai Li
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Exploring PI3Kγ binding preference with Eganelisib, Duvelisib, and Idelalisib via energetic, pharmacophore and dissociation pathway analyses. Comput Biol Med 2022; 147:105642. [DOI: 10.1016/j.compbiomed.2022.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
|
22
|
Borgovan T, Yanamandra N, Schmidt H. INNATE IMMUNITY AS A TARGET FOR NOVEL THERAPEUTICS IN TRIPLE NEGATIVE BREAST CANCER. Expert Opin Investig Drugs 2022; 31:781-794. [DOI: 10.1080/13543784.2022.2096005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Theo Borgovan
- Oncology Research and DevelopmentGlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426,
| | - Niranjan Yanamandra
- Immuno-Oncology & Combinations Research Unit.GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426,
| | - Hank Schmidt
- Oncology Research and DevelopmentGlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426,
| |
Collapse
|
23
|
Systematic Review of Available CAR-T Cell Trials around the World. Cancers (Basel) 2022; 14:cancers14112667. [PMID: 35681646 PMCID: PMC9179563 DOI: 10.3390/cancers14112667] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary CAR-T cells are genetically modified T cells that are reprogrammed to specifically eliminate cancer cells. Due to its clinical success to treat certain hematological malignancies, novel approaches to improve CAR-T cell-based therapies are being explored. This systematic review gives a worldwide overview of clinical trials evaluating new CAR-T cell therapies against different types of cancers, detailing the latest trends in CAR-T cell development. Abstract In this systematic review, we foresee what could be the approved scenario in the next few years for CAR-T cell therapies directed against hematological and solid tumor malignancies. China and the USA are the leading regions in numbers of clinical studies involving CAR-T. Hematological antigens CD19 and BCMA are the most targeted, followed by mesothelin, GPC3, CEA, MUC1, HER2, and EGFR for solid tumors. Most CAR constructs are second-generation, although third and fourth generations are being largely explored. Moreover, the benefit of combining CAR-T treatment with immune checkpoint inhibitors and other drugs is also being assessed. Data regarding product formulation and administration, such as cell phenotype, transfection technique, and cell dosage, are scarce and could not be retrieved. Better tracking of trials’ status and results on the ClinicalTrials.gov database should aid in a more concise and general view of the ongoing clinical trials involving CAR-T cell therapy.
Collapse
|
24
|
Margaria JP, Moretta L, Alves-Filho JC, Hirsch E. PI3K Signaling in Mechanisms and Treatments of Pulmonary Fibrosis Following Sepsis and Acute Lung Injury. Biomedicines 2022; 10:756. [PMID: 35453505 PMCID: PMC9028704 DOI: 10.3390/biomedicines10040756] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis is a pathological fibrotic process affecting the lungs of five million people worldwide. The incidence rate will increase even more in the next years due to the long-COVID-19 syndrome, but a resolving treatment is not available yet and usually prognosis is poor. The emerging role of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling in fibrotic processes has inspired the testing of drugs targeting the PI3K/Akt pathway that are currently under clinical evaluation. This review highlights the progress in understanding the role of PI3K/Akt in the development of lung fibrosis and its causative pathological context, including sepsis as well as acute lung injury (ALI) and its consequent acute respiratory distress syndrome (ARDS). We further summarize current knowledge about PI3K inhibitors for pulmonary fibrosis treatment, including drugs under development as well as in clinical trials. We finally discuss how the design of inhaled compounds targeting the PI3K pathways might potentiate efficacy and improve tolerability.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy; (J.P.M.); (L.M.)
| | - Lucia Moretta
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy; (J.P.M.); (L.M.)
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Ribeirao Preto 14049-900, Brazil;
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy; (J.P.M.); (L.M.)
| |
Collapse
|
25
|
Stock S, Kluever AK, Endres S, Kobold S. Enhanced Chimeric Antigen Receptor T Cell Therapy through Co-Application of Synergistic Combination Partners. Biomedicines 2022; 10:biomedicines10020307. [PMID: 35203517 PMCID: PMC8869718 DOI: 10.3390/biomedicines10020307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable response rates and revolutionized the treatment of patients suffering from defined hematological malignancies. However, many patients still do not respond to this therapy or relapse after an initial remission, underscoring the need for improved efficacy. Insufficient in vivo activity, persistence, trafficking, and tumor infiltration of CAR T cells, as well as antigen escape and treatment-associated adverse events, limit the therapeutic success. Multiple strategies and approaches have been investigated to further improve CAR T cell therapy. Besides genetic modification of the CAR itself, the combination with other treatment modalities has the potential to improve this approach. In particular, combining CAR T cells with clinically approved compounds such as monoclonal antibodies and small molecule inhibitors might be a promising strategy. Combination partners could already be applied during the production process to influence the cellular composition and immunophenotype of the final CAR T cell product. Alternatively, simultaneous administration of clinically approved compounds with CAR T cells would be another feasible avenue. In this review, we will discuss current strategies to combine CAR T cells with compounds to overcome recent limitations and further enhance this promising cancer therapy, potentially broadening its application beyond hematology.
Collapse
Affiliation(s)
- Sophia Stock
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, 80337 Munich, Germany; (A.-K.K.); (S.E.)
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, 81337 Munich, Germany
- Correspondence: (S.S.); (S.K.)
| | - Anna-Kristina Kluever
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, 80337 Munich, Germany; (A.-K.K.); (S.E.)
| | - Stefan Endres
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, 80337 Munich, Germany; (A.-K.K.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, 80337 Munich, Germany; (A.-K.K.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
- Correspondence: (S.S.); (S.K.)
| |
Collapse
|