1
|
Li J, Xie Z, Yang L, Guo K, Zhou Z. The impact of gut microbiome on immune and metabolic homeostasis in type 1 diabetes: Clinical insights for prevention and treatment strategies. J Autoimmun 2025; 151:103371. [PMID: 39883994 DOI: 10.1016/j.jaut.2025.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Type 1 diabetes (T1D) is a complex disease triggered by a combination of genetic and environmental factors, where abnormal autoimmune responses lead to progressive damage of the pancreatic β cells and severe glucose metabolism disorder. Recent studies have increasingly highlighted the close link between gut microbiota dysbiosis and the development of T1D. This review delves into existing population studies to explore the intricate interactions between the gut microbiota and the immune and metabolic homeostasis in T1D. It summarizes how changes in the structure and function of the gut microbiota are closely associated with the onset and progression of T1D across its natural course and clinical stages. More importantly, based on evidence accumulated from clinical observations and trials, we pioneer the discussion on gut microbiota-based T1D prevention and treatment strategies, this not only enriches our understanding of the complex pathological mechanisms of T1D but also provides potential directions for developing novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Elizondo DM, de Oliveira Rekowsky LL, de Sa Resende A, Seenarine J, da Silva RLL, Ali J, Yang D, de Moura T, Lipscomb MW. Implantation of Islets Co-Seeded with Tregs in a Novel Biomaterial Reverses Diabetes in the NOD Mouse Model. Tissue Eng Regen Med 2025; 22:43-55. [PMID: 39738937 PMCID: PMC11711422 DOI: 10.1007/s13770-024-00685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/26/2024] [Accepted: 11/10/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required. METHODS Non-obese diabetic mice received a single intraperitoneal implantation of a novel biomaterial co-seeded with insulin-producing islets and T regulatory cells (Tregs). Controls included biomaterial seeded solely with islets, or biomaterial only groups. Mice were interrogated for changes in inflammation and diabetes progression via blood glucose monitoring, multiplex serum cytokine profiling, flow cytometry and immunohistochemistry assessments. RESULTS Islet and Tregs co-seeded biomaterial recipients had increased longevity, insulin secretion, and normoglycemia through 180 days post-implantation compared to controls. Serum profile revealed reduced TNFα, IFNγ, IL-1β and increased IL-10, insulin, C-Peptide, PP and PPY in recipients receiving co-seeded biomaterial. Evaluation of the resected co-seeded biomaterial revealed reduced infiltrating autoreactive CD8 + and CD4 + T cells concomitant with sustained presence of Foxp3 + Tregs; further analysis revealed that the few infiltrated resident effector CD4+ or CD8+ T cells were anergic, as measured by low levels of IFNγ and Granzyme-B upon stimulation when compared to controls. Interestingly, studies also revealed increased Tregs in the pancreas. However, there was no restoration of the pancreas beta cell compartment, suggesting normoglycemia and production of insulin levels were largely supported by the implanted co-seeded biomaterial. CONCLUSION These studies show the efficacy of a combinatorial approach seeding Tregs with pancreatic islets in a novel self-assembling organoid for reversing T1D.
Collapse
Affiliation(s)
- Diana M Elizondo
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | | | - Ayane de Sa Resende
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Jonathan Seenarine
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA
| | - Dazhi Yang
- Acrogenic Technologies Inc., Rockville, MD, 20850, USA
| | - Tatiana de Moura
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Michael W Lipscomb
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Huang S, Li F, Quan C, Jin D. Intestinal flora: a potential pathogenesis mechanism and treatment strategy for type 1 diabetes mellitus. Gut Microbes 2024; 16:2423024. [PMID: 39520706 PMCID: PMC11552262 DOI: 10.1080/19490976.2024.2423024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by destruction of pancreatic β-cells, leading to insulin deficiency and hyperglycemia, and its incidence is increasing year by year. The pathogenesis of T1DM is complex, mainly including genetic and environmental factors. Intestinal flora is the largest microbial community in the human body and plays a very important role in human health and disease. In recent years, more and more studies have shown that intestinal flora and its metabolites, as an environmental factor, regulate the development of T1DM through various mechanisms such as altering the intestinal mucosal barrier, influencing insulin secretion and body immune regulation. Intestinal flora transplantation, probiotic supplementation, and other approaches to modulate the intestinal flora appear to be potential therapeutic approaches for T1DM. This article reviews the dysbiosis of the intestinal flora in T1DM, the potential mechanisms by which the intestinal flora affects T1DM, as well as discusses potential approaches to treating T1DM by intervening in the intestinal flora.
Collapse
Affiliation(s)
- Shengnan Huang
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, China
| | - Fangfang Li
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, China
| | - Chunhua Quan
- Central Laboratory, The Affiliated Hospital of Yanbian University, Yanji, China
| | - Dan Jin
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, China
| |
Collapse
|
4
|
Yilmazer A, Zevla DM, Malmkvist R, Rodríguez CAB, Undurraga P, Kirgin E, Boernert M, Voehringer D, Kershaw O, Schlenner S, Kretschmer K. Selective ablation of thymic and peripheral Foxp3 + regulatory T cell development. Front Immunol 2023; 14:1298938. [PMID: 38164128 PMCID: PMC10757929 DOI: 10.3389/fimmu.2023.1298938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Foxp3+ regulatory T (Treg) cells of thymic (tTreg) and peripheral (pTreg) developmental origin are thought to synergistically act to ensure immune homeostasis, with self-reactive tTreg cells primarily constraining autoimmune responses. Here we exploited a Foxp3-dependent reporter with thymus-specific GFP/Cre activity to selectively ablate either tTreg (ΔtTreg) or pTreg (ΔpTreg) cell development, while sparing the respective sister populations. We found that, in contrast to the tTreg cell behavior in ΔpTreg mice, pTreg cells acquired a highly activated suppressor phenotype and replenished the Treg cell pool of ΔtTreg mice on a non-autoimmune C57BL/6 background. Despite the absence of tTreg cells, pTreg cells prevented early mortality and fatal autoimmunity commonly observed in Foxp3-deficient models of complete Treg cell deficiency, and largely maintained immune tolerance even as the ΔtTreg mice aged. However, only two generations of backcrossing to the autoimmune-prone non-obese diabetic (NOD) background were sufficient to cause severe disease lethality associated with different, partially overlapping patterns of organ-specific autoimmunity. This included a particularly severe form of autoimmune diabetes characterized by an early onset and abrogation of the sex bias usually observed in the NOD mouse model of human type 1 diabetes. Genetic association studies further allowed us to define a small set of autoimmune risk loci sufficient to promote β cell autoimmunity, including genes known to impinge on Treg cell biology. Overall, these studies show an unexpectedly high functional adaptability of pTreg cells, emphasizing their important role as mediators of bystander effects to ensure self-tolerance.
Collapse
Affiliation(s)
- Acelya Yilmazer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Dimitra Maria Zevla
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Rikke Malmkvist
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carlos Alejandro Bello Rodríguez
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Pablo Undurraga
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Emre Kirgin
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Marie Boernert
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Susan Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
5
|
Raugh A, Jing Y, Bettini ML, Bettini M. The amphiregulin/EGFR axis has limited contribution in controlling autoimmune diabetes. Sci Rep 2023; 13:18653. [PMID: 37903947 PMCID: PMC10616065 DOI: 10.1038/s41598-023-45738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury. However, whether such pathways are engaged during autoimmune diabetes and promote tissue repair is undetermined. Previously, we observed that upregulation of amphiregulin at the transcriptional level was associated with functional Treg populations in the non-obese diabetic (NOD) mouse model of T1D. From this we postulated that amphiregulin promoted islet tissue repair and slowed the progression of diabetes in NOD mice. Here, we report that islet-infiltrating Tregs have increased capacity to produce amphiregulin, and that both Tregs and beta cells express EGFR. Moreover, we show that amphiregulin can directly modulate mediators of endoplasmic reticulum stress in beta cells. Despite this, NOD amphiregulin deficient mice showed no acceleration of spontaneous autoimmune diabetes. Taken together, the data suggest that the ability for amphiregulin to affect the progression of autoimmune diabetes is limited.
Collapse
Affiliation(s)
- Arielle Raugh
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yi Jing
- Microbiology and Immunology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthew L Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
6
|
Barrachina F, Ottino K, Elizagaray ML, Gervasi MG, Tu LJ, Markoulaki S, Spallanzani RG, Capen D, Brown D, Battistone MA. Regulatory T cells play a crucial role in maintaining sperm tolerance and male fertility. Proc Natl Acad Sci U S A 2023; 120:e2306797120. [PMID: 37676910 PMCID: PMC10500189 DOI: 10.1073/pnas.2306797120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Regulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.
Collapse
Affiliation(s)
- Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maia Lina Elizagaray
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Leona J. Tu
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Styliani Markoulaki
- Genetically Engineered Models Center, Whitehead Institute of Biomedical Research, Cambridge, MA02142
| | - Raul G. Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA02115
| | - Diane Capen
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Dennis Brown
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| |
Collapse
|
7
|
Raugh A, Jing Y, Bettini ML, Bettini M. The Amphiregulin/EGFR axis has limited contribution in controlling autoimmune diabetes. RESEARCH SQUARE 2023:rs.3.rs-3204139. [PMID: 37577652 PMCID: PMC10418547 DOI: 10.21203/rs.3.rs-3204139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Conventional immunosuppressive functions of CD4+Foxp3+ regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury. Whether such pathways are engaged during autoimmune diabetes and promote tissue repair is undetermined. Previously, we observed upregulation of amphiregulin at the transcriptional level was associated with functional Treg populations in the non-obese diabetic (NOD) mouse model of T1D. We postulated that amphiregulin promoted islet tissue repair and slowed the progression of diabetes in NOD mice. Here, we report that islet-infiltrating Tregs have increased capacity to produce amphiregulin and both Tregs and beta cells express EGFR. Moreover, we show that amphiregulin can directly modulate mediators of endoplasmic reticulum (ER) stress in beta cells. Despite this, NOD amphiregulin deficient mice showed no acceleration of spontaneous autoimmune diabetes. Taken together, the data suggest that the ability for amphiregulin to affect the progression of autoimmune diabetes is limited.
Collapse
Affiliation(s)
- Arielle Raugh
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Yi Jing
- Department of Pediatric Endocrinology, Texas Children’s Hospital, Houston, Texas, 77030, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| | - Maria Bettini
- Department of Pathology, University of Utah, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
8
|
Kiaf B, Bode K, Schuster C, Kissler S. Gata3 is detrimental to regulatory T cell function in autoimmune diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533297. [PMID: 36993342 PMCID: PMC10055278 DOI: 10.1101/2023.03.18.533297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Regulatory T cells (Tregs) protect against autoimmunity. In type 1 diabetes (T1D), Tregs slow the progression of beta cell autoimmunity within pancreatic islets. Increasing the potency or frequency of Tregs can prevent diabetes, as evidenced by studies in the nonobese diabetic (NOD) mouse model for T1D. We report herein that a significant proportion of islets Tregs in NOD mice express Gata3. The expression of Gata3 was correlated with the presence of IL-33, a cytokine known to induce and expand Gata3+ Tregs. Despite significantly increasing the frequency of Tregs in the pancreas, exogenous IL-33 was not protective. Based on these data, we hypothesized that Gata3 is deleterious to Treg function in autoimmune diabetes. To test this notion, we generated NOD mice with a Treg-specific deletion of Gata3. We found that deleting Gata3 in Tregs strongly protected against diabetes. Disease protection was associated with a shift of islet Tregs toward a suppressive CXCR3+Foxp3+ population. Our results suggest that islet Gata3+ Tregs are maladaptive and that this Treg subpopulation compromises the regulation of islet autoimmunity, contributing to diabetes onset.
Collapse
Affiliation(s)
- Badr Kiaf
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
| | - Kevin Bode
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
| | - Cornelia Schuster
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
| | - Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston, MA 02215
- Department of Medicine, Harvard Medical School, Boston MA 02115
- Diabetes Program, Harvard Stem Cell Institute, Cambridge MA 02138
| |
Collapse
|
9
|
Xu Q, Zhang X, Li T, Shao S. Exenatide regulates Th17/Treg balance via PI3K/Akt/FoxO1 pathway in db/db mice. Mol Med 2022; 28:144. [PMID: 36463128 PMCID: PMC9719171 DOI: 10.1186/s10020-022-00574-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The T helper 17 (Th17)/T regulatory (Treg) cell imbalance is involved in the course of obesity and type 2 diabetes mellitus (T2DM). In the current study, the exact role of glucagon-like peptide-1 receptor agonist (GLP-1RA) exenatide on regulating the Th17/Treg balance and the underlying molecular mechanisms are investigated in obese diabetic mice model. METHODS Metabolic parameters were monitored in db/db mice treated with/without exenatide during 8-week study period. The frequencies of Th17 and Treg cells from peripheral blood and pancreas in db/db mice were assessed. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/Forkhead box O1 (FoxO1) pathway in Th17 and Treg cells from the spleens of male C57BL/6J mice was detected by western blotting. In addition, the expression of glucagon-like peptide-1 receptor (GLP-1R) in peripheral blood mononuclear cells (PBMCs) of male C57BL/6J mice was analyzed. RESULTS Exenatide treatment improved β-cell function and insulitis in addition to glucose, insulin sensitivity and weight. Increased Th17 and decreased Treg cells in peripheral blood were present as diabetes progressed while exenatide corrected this imbalance. Progressive IL-17 + T cell infiltration of pancreatic islets was alleviated by exenatide intervention. In vitro study showed no significant difference in the level of GLP-1R expression in PBMCs between control and palmitate (PA) groups. In addition, PA could promote Th17 but suppress Treg differentiation along with down-regulating the phosphorylation of PI3K/Akt/FoxO1, which was reversed by exenatide intervention. FoxO1 inhibitor AS1842856 could abrogate all these effects of exenatide against lipid stress. CONCLUSIONS Exenatide could restore systemic Th17/Treg balance via regulating FoxO1 pathway with the progression of diabetes in db/db mice. The protection of pancreatic β-cell function may be partially mediated by inhibiting Th17 cell infiltration into pancreatic islets, and the resultant alleviation of islet inflammation.
Collapse
Affiliation(s)
- Qinqin Xu
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| | - Xiaoling Zhang
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| | - Tao Li
- grid.33199.310000 0004 0368 7223Division of Ophthalmology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China
| | - Shiying Shao
- grid.33199.310000 0004 0368 7223Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030 Hubei Province People’s Republic of China ,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, People’s Republic of China
| |
Collapse
|
10
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|