1
|
Kim J, Zieneldien T, Ma S, Cohen BA. Cutaneous Leishmaniasis in the Context of Global Travel, Migration, Refugee Populations, and Humanitarian Crises. Clin Pract 2025; 15:77. [PMID: 40310302 PMCID: PMC12025697 DOI: 10.3390/clinpract15040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Cutaneous leishmaniasis (CL) is a vector-borne infection caused by protozoan parasites belonging to the genus Leishmania. CL is an emerging global health concern due to increasing migration, travel, and climate change. Traditionally, it was confined to endemic regions such as the Americas, the Middle East, and Central Asia; however, it is now spreading to non-endemic areas. Climate change has further contributed to the expansion of sandfly habitats, increasing CL transmission risk in previously unaffected areas. Healthcare providers in non-endemic regions often misdiagnose CL, delaying treatment and morbidity. Diagnosis remains challenging due to the need for species-specific identification, while treatment is limited by cost, availability, and personnel expertise. This review explores the epidemiology, clinical presentation, diagnostic challenges, and management of CL in the context of global mobility. It highlights rising CL cases in refugee settlements, particularly in Lebanon and Jordan, due to poor living conditions, inadequate vector control, and healthcare barriers. While there have been advances in systemic and topical therapies, access in refugee and resource-poor settings remains a barrier. Addressing the global burden of CL requires improved surveillance, healthcare provider training, and increased awareness. By enhancing global collaboration and policy changes, public health efforts can mitigate the expanding impact of CL.
Collapse
Affiliation(s)
- Janice Kim
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Tarek Zieneldien
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sophia Ma
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bernard A. Cohen
- Department of Dermatology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Souza ARD, Antinarelli LMR, Lemos ASDO, Glanzmann N, Vicente B, Midlej VDV, Silva Neto AFD, Machado RRP, da Silva AD, Coimbra ES. Multiple mechanisms of action of a triazole-derived salt against Leishmania amazonensis: Apoptosis-like death and autophagy. Chem Biol Interact 2025; 409:111409. [PMID: 39922522 DOI: 10.1016/j.cbi.2025.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Current chemotherapy for leishmaniasis faces significant limitations due to high toxicity, prolonged treatment regimens, and increasing parasite resistance, highlighting the urgent need for innovative treatment strategies. This study aimed to evaluate the in vitro activity of 1,2,3-triazole derivatives against promastigotes and amastigotes of Leishmania amazonensis, as well as their cytotoxicity in murine macrophages. Additionally, we investigated the mechanism of parasite death through different biochemical and cellular indicators of cell death parameters. Our results underscored the importance of the salt form, as the neutral form showed no inhibition of parasite growth. In contrast, the triazole-derived salt demonstrated promising selective index (SI = 34.28) and antileishmanial activity (IC50 = 0.13 μM and IC50 = 2.06 μM against promastigote and amastigote forms, respectively), proving more active than miltefosine, the standard drug. Regarding the mode of action of the triazole-derived salt, this compound induced significant mitochondrial alterations in the parasite, characterized by an increase in mitochondrial membrane potential (ΔΨm), elevated levels of total and mitochondrial Reactive Oxygen Species (ROS), and lipid body accumulation in the cytoplasm. Treatment with triazole-derived salt also produced several ultrastructural, biochemical, and cellular changes in the promastigote forms, such as the occurrence of apoptosis-like death, including cell shrinkage and reduction in length, as well as exposure of phosphatidylserine in the outer leaflet of the plasma membrane and marked cell cycle interruption, in addition to DNA fragmentation. Despite MDC positive and the presence of membrane-bound vacuoles resembling autophagosomal structures observed by TEM analysis, autophagy is not a predominant process, with severe mitochondrial damage emerging as the primary event leading to parasite death. These findings demonstrate the promising antileishmanial potential of the triazole-derived salt, with its effect on multiple targets in parasite cells. Moreover, the association of the active compound with miltefosine showed an additive effect in treating L. amazonensis-infected macrophages. Altogether, these results highlight the therapeutic potential of the evaluated salt and support further studies to assess its in vivo efficacy in a murine model of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Andrezza Rodrigues de Souza
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Ari Sergio de Oliveira Lemos
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Nicolas Glanzmann
- Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Bruno Vicente
- Structural Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Victor do Valle Midlej
- Structural Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Adolfo Firmino da Silva Neto
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Adilson David da Silva
- Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
3
|
Elmorsy EA. Molecular host-parasite interaction at the site of vector bite. Exp Parasitol 2025; 270:108902. [PMID: 39826601 DOI: 10.1016/j.exppara.2025.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Eman Attia Elmorsy
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
4
|
Lopes DMS, Lima JMS, Ribeiro KSM, Gomes CF, Rocha RM, Gonçalves TS, Vieira TM, de Carvalho SF, Finn MG, Venuto AP, Marques AF. Understanding American tegumentary leishmaniasis in urban Montes Claros, Brazil: insights from clinical, immunological and therapeutic investigations. Parasitology 2024; 151:1260-1268. [PMID: 39523648 PMCID: PMC11894006 DOI: 10.1017/s0031182024001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 11/16/2024]
Abstract
The challenge of American tegumentary leishmaniasis (ATL) continues in Brazil, presenting a persistent public health issue despite initiatives aimed at public outreach, vector control and health education. To gain a deeper understanding of this disease, a study was conducted in an endemic region located in the northern region of the state of Minas Gerais, Brazil. The study monitored 30 resident patients diagnosed with ATL, using serum samples from 6 healthy individuals as controls. The localized cutaneous form of the disease was found to be predominant, with lesions appearing on various parts of the body and the majority of the affected individuals being male. The study found significantly higher levels of IgG anti-α-Gal antibodies in ATL-infected patients compared to healthy individuals. Treatment of 19 patients with meglumine antimoniate resulted in limited improvement in symptoms for most. Nonetheless, the study found that 12 patients who completed treatment with epithelialization of the lesions showed a significant decrease in IgG anti-α-Gal antibodies, indicating potential applications of this antibody in the diagnosis and monitoring of the disease. The study also identified Leishmania species in 7 analysed patients, revealing 6 cases infected by Leishmania braziliensis and 1 by L. infantum, with a significant difference in the anti-α-Gal responses. The findings of the study emphasize the urgent need for the development of human vaccines and innovative treatment strategies adapted to the diversity of Leishmania species causing cutaneous leishmaniasis and individual patient responses to improve the clinical management of ATL in Brazil and similar endemic regions.
Collapse
Affiliation(s)
- Dayse M. S. Lopes
- Universidade Estadual de Montes Claros – Unimontes, Montes Claros, MG, Brazil
| | | | | | - Clarissa F. Gomes
- Universidade Estadual de Montes Claros – Unimontes, Montes Claros, MG, Brazil
| | - Rebeca M. Rocha
- Universidade Estadual de Montes Claros – Unimontes, Montes Claros, MG, Brazil
| | | | - Thallyta M. Vieira
- Universidade Estadual de Montes Claros – Unimontes, Montes Claros, MG, Brazil
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ana Paula Venuto
- Universidade Estadual de Montes Claros – Unimontes, Montes Claros, MG, Brazil
| | - Alexandre F. Marques
- Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
5
|
Verga JBM, Graminha MAS, Jacobs-Lorena M, Cha SJ. Peptide selection via phage display to inhibit Leishmania-macrophage interactions. Front Microbiol 2024; 15:1362252. [PMID: 38476939 PMCID: PMC10927855 DOI: 10.3389/fmicb.2024.1362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Leishmaniasis comprises a complex group of diseases caused by protozoan parasites from the Leishmania genus, presenting a significant threat to human health. Infection starts by the release into the skin of metacyclic promastigote (MP) form of the parasite by an infected sand fly. Soon after their release, the MPs enter a phagocytic host cell. This study focuses on finding peptides that can inhibit MP-phagocytic host cell interaction. Methods We used a phage display library to screen for peptides that bind to the surface of L. amazonensis (causative agent for cutaneous leishmaniasis) and L. infantum (causative agent for cutaneous and visceral leishmaniasis) MPs. Candidate peptide binding to the MP surface and inhibition of parasite-host cell interaction were tested in vitro. Peptide Inhibition of visceral leishmaniasis development was assessed in BALB/c mice. Results The selected L. amazonensis binding peptide (La1) and the L. infantum binding peptide (Li1) inhibited 44% of parasite internalization into THP-1 macrophage-like cells in vitro. While inhibition of internalization by La1 was specific to L. amazonensis, Li1 was effective in inhibiting internalization of both parasite species. Importantly, Li1 inhibited L. infantum spleen and liver infection of BALB/c mice by 84%. Conclusion We identified one peptide that specifically inhibits L. amazonensis MP infection of host cells and another that inhibits both, L. amazonensis and L. infantum, MP infection. Our findings suggest a promising path for the development of new treatments and prevention of leishmaniasis.
Collapse
Affiliation(s)
| | - Márcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcelo Jacobs-Lorena
- Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, Macon, GA, United States
| |
Collapse
|
6
|
Gonçalves MN, Lopes DS, Teixeira SC, Teixeira TL, de Freitas V, Costa TR, Gimenes SNC, de Camargo IM, de Souza G, da Silva MS, Azevedo FVPDV, Grego KF, Santos LC, Oliveira VQ, da Silva CV, Rodrigues RS, Yoneyama KAG, Clissa PB, Rodrigues VDM. Antileishmanial effects of γCdcPLI, a phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum, on Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 2023; 118:e220225. [PMID: 38018570 PMCID: PMC10690931 DOI: 10.1590/0074-02760220225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Leishmaniasis, a neglected disease caused by the parasite Leishmania, is treated with drugs associated with high toxicity and limited efficacy, in addition to constant reports of the emergence of resistant parasites. In this context, snake serums emerge as good candidates since they are natural sources with the potential to yield novel drugs. OBJECTIVES We aimed to show the antileishmanial effects of γCdcPLI, a phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum, against Leishmania (Leishmania) amazonensis. METHODS Promastigotes forms were exposed to γCdcPLI, and we assessed the parasite viability and cell cycle, as well as invasion and proliferation assays. FINDINGS Despite the low cytotoxicity effect on macrophages, our data indicate that γCdcPLI has a direct effect on parasites promoting an arrest in the G1 phase and reduction in the G2/M phase at the highest dose tested. Moreover, this PLA2 inhibitor reduced the parasite infectivity when promastigotes were pre-treated. Also, we demonstrated that the γCdcPLI treatment modulated the host cell environment impairing early and late steps of the parasitism. MAIN CONCLUSIONS γCdcPLI is an interesting tool for the discovery of new essential targets on the parasite, as well as an alternative compound to improve the effectiveness of the leishmaniasis treatment.
Collapse
Affiliation(s)
- Marina Neves Gonçalves
- Universidade Federal de Uberlândia, Instituto de Biotecnologia,
Laboratório de Bioquímica e Toxinas Animais, Uberlândia, MG, Brasil
| | - Daiana Silva Lopes
- Universidade Federal de Uberlândia, Instituto de Biotecnologia,
Laboratório de Bioquímica e Toxinas Animais, Uberlândia, MG, Brasil
- Universidade Federal da Bahia, Instituto de Biociências, Vitória da
Conquista, BA, Brasil
| | - Samuel Cota Teixeira
- Universidade Federal de Uberlândia, Instituto de Ciências
Biomédicas, Departamento de Imunologia, Uberlândia, MG, Brasil
| | - Thaise Lara Teixeira
- Universidade Federal de São Paulo, Escola Paulista de Medicina,
Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP,
Brasil
| | - Vitor de Freitas
- Universidade Federal de Uberlândia, Instituto de Biotecnologia,
Laboratório de Bioquímica e Toxinas Animais, Uberlândia, MG, Brasil
| | - Tássia Rafaella Costa
- Universidade Federal de Uberlândia, Instituto de Biotecnologia,
Laboratório de Bioquímica e Toxinas Animais, Uberlândia, MG, Brasil
| | | | | | - Guilherme de Souza
- Universidade Federal de Uberlândia, Instituto de Ciências
Biomédicas, Departamento de Imunologia, Uberlândia, MG, Brasil
| | - Marcelo Santos da Silva
- Universidade de São Paulo, Instituto de Química, Departamento de
Bioquímica, São Paulo, SP, Brasil
| | | | | | - Luísa Carregosa Santos
- Universidade Federal da Bahia, Instituto de Biociências, Vitória da
Conquista, BA, Brasil
| | | | - Claudio Vieira da Silva
- Universidade Federal de Uberlândia, Instituto de Ciências
Biomédicas, Departamento de Imunologia, Uberlândia, MG, Brasil
| | - Renata Santos Rodrigues
- Universidade Federal de Uberlândia, Instituto de Biotecnologia,
Laboratório de Bioquímica e Toxinas Animais, Uberlândia, MG, Brasil
| | - Kelly Aparecida Geraldo Yoneyama
- Universidade Federal de Uberlândia, Instituto de Biotecnologia,
Laboratório de Bioquímica e Toxinas Animais, Uberlândia, MG, Brasil
| | | | - Veridiana de Melo Rodrigues
- Universidade Federal de Uberlândia, Instituto de Biotecnologia,
Laboratório de Bioquímica e Toxinas Animais, Uberlândia, MG, Brasil
| |
Collapse
|
7
|
Blaizot R, Fontaine A, Demar M, Delon F, d'Oleon ADB, Mayet A, de Laval F, de Santi VP, Briolant S. Updated estimation of cutaneous leishmaniasis incubation period in French Guiana. PLoS Negl Trop Dis 2023; 17:e0011415. [PMID: 37315094 DOI: 10.1371/journal.pntd.0011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/24/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The cutaneous leishmaniasis (CL) incubation period (IP) is defined as the time between parasite inoculation by sandfly bite and the onset of the first CL lesion. IP distribution is difficult to assess for CL because the date of exposure to an infectious bite cannot be accurately determined in endemic areas. IP current estimates for CL range from 14 days to several months with a median around 30-60 days, as established by a few previous studies in both New and Old Worlds. METHODOLOGY We estimated CL incubation period distribution using time-to-event models adapted to interval-censored data based on declared date of travels from symptomatic military personnel living in non-endemic areas that were exposed during their short stays in French Guiana (FG) between January 2001 and December 2021. PRINCIPAL FINDINGS A total of 180 patients were included, of which 176 were men (97.8%), with a median age of 26 years. When recorded, the parasite species was always Leishmania guyanensis (31/180, 17.2%). The main periods of CL diagnosis spread from November to January (84/180, 46.7%) and over March-April (54/180, 30.0%). The median IP was estimated at 26.2 days (95% Credible Level, 23.8-28.7 days) using a Bayesian accelerated failure-time regression model. Estimated IP did not exceed 62.1 days (95% CI, 56-69.8 days) in 95% of cases (95th percentile). Age, gender, lesion number, lesion evolution and infection date did not significantly modify the IP. However, disseminated CL was significantly associated with a 2.8-fold shortening of IP. CONCLUSIONS This work suggests that the CL IP distribution in French Guiana is shorter and more restricted than anticipated. As the incidence of CL in FG usually peaks in January and March, these findings suggest that patients are contaminated at the start of the rainy season.
Collapse
Affiliation(s)
- Romain Blaizot
- Cayenne Hospital Center, Dermatology Department, Cayenne, French Guiana
- UMR TBIP 1019 Tropical Biomes and Immunophysiopathology, University of French Guiana, Cayenne, French Guiana
- National Reference Center for Leishmania, Cayenne, French Guiana
| | - Albin Fontaine
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Magalie Demar
- National Reference Center for Leishmania, Cayenne, French Guiana
- Cayenne Hospital Center, Parasitology Laboratory, Cayenne, French Guiana
| | - François Delon
- Direction Interarmées du Service de Santé en Guyane, Cayenne, Guyane
- Aix-Marseille University, INSERM, IRD, SESSTIM (Economic and Social Sciences, Health Systems, and Medical Informatics), Marseille, France
| | - Albane de Bonet d'Oleon
- SSA (French Military Health Service), CESPA (French Armed Forces Center for Epidemiology and Public Health), Marseille, France
| | - Aurélie Mayet
- Aix-Marseille University, INSERM, IRD, SESSTIM (Economic and Social Sciences, Health Systems, and Medical Informatics), Marseille, France
- SSA (French Military Health Service), CESPA (French Armed Forces Center for Epidemiology and Public Health), Marseille, France
| | - Franck de Laval
- Aix-Marseille University, INSERM, IRD, SESSTIM (Economic and Social Sciences, Health Systems, and Medical Informatics), Marseille, France
- SSA (French Military Health Service), CESPA (French Armed Forces Center for Epidemiology and Public Health), Marseille, France
| | - Vincent Pommier de Santi
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- SSA (French Military Health Service), CESPA (French Armed Forces Center for Epidemiology and Public Health), Marseille, France
| | - Sébastien Briolant
- Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| |
Collapse
|
8
|
Ferreira-Sena EP, Hardoim DDJ, Cardoso FDO, d'Escoffier LN, Soares IF, Carvalho JPRDS, Angnes RA, Fragoso SP, Alves CR, De-Simone SG, Lima-Junior JDC, Bertho AL, Zaverucha-do-Valle T, da Silva FS, Calabrese KDS. A New Strategy for Mapping Epitopes of LACK and PEPCK Proteins of Leishmania amazonensis Specific for Major Histocompatibility Complex Class I. Int J Mol Sci 2023; 24:ijms24065972. [PMID: 36983046 PMCID: PMC10054446 DOI: 10.3390/ijms24065972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 03/30/2023] Open
Abstract
Leishmaniasis represents a complex of diseases with a broad clinical spectrum and epidemiological diversity, considered a major public health problem. Although there is treatment, there are still no vaccines for cutaneous leishmaniasis. Because Leishmania spp. is an intracellular protozoan with several escape mechanisms, a vaccine must provoke cellular and humoral immune responses. Previously, we identified the Leishmania homolog of receptors for activated C kinase (LACK) and phosphoenolpyruvate carboxykinase (PEPCK) proteins as strong immunogens and candidates for the development of a vaccine strategy. The present work focuses on the in silico prediction and characterization of antigenic epitopes that might interact with mice or human major histocompatibility complex class I. After immunogenicity prediction on the Immune Epitope Database (IEDB) and the Database of MHC Ligands and Peptide Motifs (SYFPEITHI), 26 peptides were selected for interaction assays with infected mouse lymphocytes by flow cytometry and ELISpot. This strategy identified nine antigenic peptides (pL1-H2, pPL3-H2, pL10-HLA, pP13-H2, pP14-H2, pP15-H2, pP16-H2, pP17-H2, pP18-H2, pP26-HLA), which are strong candidates for developing a peptide vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Edlainne Pinheiro Ferreira-Sena
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Daiana de Jesus Hardoim
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Flavia de Oliveira Cardoso
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Luiz Ney d'Escoffier
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Isabela Ferreira Soares
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - João Pedro Rangel da Silva Carvalho
- Laboratório de Bioquímica de Proteínas e Peptídeos, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Ricardo Almir Angnes
- Laboratório de Síntese Química, Instituto de Biologia Molecular do Paraná, Curitiba 81350-010, PR, Brazil
| | - Stenio Perdigão Fragoso
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba 81350-010, PR, Brazil
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Diseases of Neglected Populations (INCT-IDPN), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Alvaro Luiz Bertho
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
- Plataforma de Citometria, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Tânia Zaverucha-do-Valle
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Franklin Souza da Silva
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
- Faculdade de Biologia e Ciências da Saúde, Universidade Iguaçu, Dom Rodrigo, Nova Iguaçu, Rio de Janeiro 26275-580, RJ, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
9
|
Valigurová A, Kolářová I. Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania? Pathogens 2023; 12:pathogens12020246. [PMID: 36839518 PMCID: PMC9967396 DOI: 10.3390/pathogens12020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Leishmania spp. (Kinetoplastida) are unicellular parasites causing leishmaniases, neglected tropical diseases of medical and veterinary importance. In the vertebrate host, Leishmania parasites multiply intracellularly in professional phagocytes, such as monocytes and macrophages. However, their close relative with intracellular development-Trypanosoma cruzi-can unlock even non-professional phagocytes. Since Leishmania and T. cruzi have similar organelle equipment, is it possible that Leishmania can invade and even proliferate in cells other than the professional phagocytes? Additionally, could these cells play a role in the long-term persistence of Leishmania in the host, even in cured individuals? In this review, we provide (i) an overview of non-canonical Leishmania host cells and (ii) an insight into the strategies that Leishmania may use to enter them. Many studies point to fibroblasts as already established host cells that are important in latent leishmaniasis and disease epidemiology, as they support Leishmania transformation into amastigotes and even their multiplication. To invade them, Leishmania causes damage to their plasma membrane and exploits the subsequent repair mechanism via lysosome-triggered endocytosis. Unrevealing the interactions between Leishmania and its non-canonical host cells may shed light on the persistence of these parasites in vertebrate hosts, a way to control latent leishmaniasis.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Correspondence: (A.V.); (I.K.)
| | - Iva Kolářová
- Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
- Correspondence: (A.V.); (I.K.)
| |
Collapse
|
10
|
Kolářová I, Valigurová A. Hide-and-Seek: A Game Played between Parasitic Protists and Their Hosts. Microorganisms 2021; 9:2434. [PMID: 34946036 PMCID: PMC8707157 DOI: 10.3390/microorganisms9122434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
After invading the host organism, a battle occurs between the parasitic protists and the host's immune system, the result of which determines not only whether and how well the host survives and recovers, but also the fate of the parasite itself. The exact weaponry of this battle depends, among others, on the parasite localisation. While some parasitic protists do not invade the host cell at all (extracellular parasites), others have developed successful intracellular lifestyles (intracellular parasites) or attack only the surface of the host cell (epicellular parasites). Epicellular and intracellular protist parasites have developed various mechanisms to hijack host cell functions to escape cellular defences and immune responses, and, finally, to gain access to host nutrients. They use various evasion tactics to secure the tight contact with the host cell and the direct nutrient supply. This review focuses on the adaptations and evasion strategies of parasitic protists on the example of two very successful parasites of medical significance, Cryptosporidium and Leishmania, while discussing different localisation (epicellular vs. intracellular) with respect to the host cell.
Collapse
Affiliation(s)
- Iva Kolářová
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|