1
|
Plummer R, Sodergren MH, Hodgson R, Ryan BM, Raulf N, Nicholls JP, Reebye V, Voutila J, Sinigaglia L, Meyer T, Pinato DJ, Sarker D, Basu B, Blagden S, Cook N, Jeffrey Evans TR, Yachnin J, Chee CE, Li D, El-Khoueiry A, Diab M, Huang KW, Pai M, Spalding D, Talbot T, Noel MS, Keenan B, Mahalingam D, Song MS, Grosso M, Arnaud D, Auguste A, Zacharoulis D, Storkholm J, McNeish I, Habib R, Rossi JJ, Habib NA. TIMEPOINT, a phase 1 study combining MTL-CEBPA with pembrolizumab, supports the immunomodulatory effect of MTL-CEBPA in solid tumors. Cell Rep Med 2025; 6:102041. [PMID: 40168999 DOI: 10.1016/j.xcrm.2025.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
Many patients with cancer do not benefit from currently approved immune checkpoint inhibitors (ICIs), suggesting that additional immunomodulation of the immunosuppressive tumor microenvironment (TME) is required. MTL-CCAAT enhancer-binding protein alpha (CEBPA) specifically upregulates the expression of the master myeloid transcription factor, CEBPA, relieving myeloid-driven immunosuppression. Here, we report the safety, tolerability, pharmacokinetics, and efficacy of MTL-CEBPA in combination with pembrolizumab in patients with advanced solid tumors that typically show ICI resistance. Multimodal exploratory analyses of paired patient biopsies demonstrate biological changes associated with the combination treatment of MTL-CEBPA and pembrolizumab, including increased infiltration of T cell and antigen-presenting cells supporting conversion from an immune-desert toward a more immune-inflamed TME. Patients with disease stabilization demonstrate reductions in immunosuppressive myeloid cells post treatment. Collectively, these data support a role for MTL-CEBPA in reducing immunosuppression in the TME. This study was registered at ClinicalTrials.gov (NCT04105335).
Collapse
Affiliation(s)
- Ruth Plummer
- The Northern Centre for Cancer Care, Freeman Hospital, NE7 7DN Newcastle, UK
| | - Mikael H Sodergren
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | | | | | - Nina Raulf
- MiNA Therapeutics Ltd, W12 0BZ London, UK
| | - Joanna P Nicholls
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK; MiNA Therapeutics Ltd, W12 0BZ London, UK
| | - Vikash Reebye
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK; MiNA Therapeutics Ltd, W12 0BZ London, UK
| | | | | | - Tim Meyer
- Research Department of Oncology, UCL Cancer Institute, University College London, WC1E 6DD London, UK
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK; Department of Translational Medicine (DIMET), Università Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Debashis Sarker
- Department of Research Oncology, Guys Hospital, Kings College London, SE1 9RT London, UK
| | - Bristi Basu
- University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, CB2 0QQ Cambridge, UK
| | - Sarah Blagden
- Department of Oncology, Oxford University, Churchill Hospital, OX3 7LE Oxford, UK
| | - Natalie Cook
- University of Manchester and The Christie NHS Foundation Trust, M20 4BX Manchester, UK
| | | | - Jeffrey Yachnin
- Centrum Kliniska Cancerstudier, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Cheng E Chee
- National University Hospital, National University Cancer Institute Singapore, Singapore 11928, Singapore
| | - Daneng Li
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Anthony El-Khoueiry
- Norris Comprehensive Cancer Centre, Keck Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Maria Diab
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | - Madhava Pai
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | - Duncan Spalding
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | - Thomas Talbot
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | - Marcus S Noel
- Medstar Georgetown University Hospital, Washington, DC 20007, USA
| | - Bridget Keenan
- University of California San Francisco, San Francisco, CA 94143, USA
| | - Devalingam Mahalingam
- Robert H Lurie Comprehensive Cancer Centre, Northwestern University, Chicago, IL 60611, USA
| | - Min-Sun Song
- Beckman Research Institute, City of Hope, CA, USA
| | | | | | | | | | - Jan Storkholm
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | - Iain McNeish
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK
| | | | - John J Rossi
- Beckman Research Institute, City of Hope, CA, USA
| | - Nagy A Habib
- Department of Surgery & Cancer, Imperial College London, W12 0NN London, UK; MiNA Therapeutics Ltd, W12 0BZ London, UK.
| |
Collapse
|
2
|
Angell CD, Sun SH, Lapurga G, Benner B, Quiroga D, Savardekar H, DiVincenzo MJ, Abood D, Stiff A, Duggan M, Handley D, Nagle E, Howard JH, Shah H, Kendra KL, Carson WE. A comparison of myeloid-derived suppressor cell populations in patients with ulcerated vs non-ulcerated melanoma receiving immune checkpoint blockade. Melanoma Res 2025; 35:102-108. [PMID: 39883562 DOI: 10.1097/cmr.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are expanded in cancer patients, have an intrinsic immunosuppressive function, and thus may play a role in resistance to immunotherapy. Ulceration of the melanoma primary is associated with more aggressive disease and is an independent prognostic factor for melanoma-specific survival. However, the underlying factors contributing to this more aggressive phenotype are not completely understood. The current study aims to correlate changes in circulating MDSC during immunotherapy in patients with ulcerated vs non-ulcerated melanoma primary tumors. Longitudinal changes in levels of circulating MDSCs were analyzed via flow cytometry in melanoma patients receiving immune checkpoint inhibitors (ICIs) and stratified by ulceration status. Following the initiation of therapy, the percentage of total MDSCs increased significantly in patients with both ulcerated ( P = 0.003) and non-ulcerated ( P < 0.001) tumors. When MDSCs were stratified by subset, the proportion of granulocytic MDSC (PMN-MDSC) decreased in patients with non-ulcerated tumors ( P = 0.023), while the proportion remained stable in patients with ulcerated tumors ( P = 0.121). The reduction in the proportion PMN-MDSC in non-ulcerated patients coincided with a statistically significant increase in the proportion of CD14 + /CD15 + MDSC ( P = 0.008), resulting in a greater proportion of CD14 + /CD15 + MDSC in non-ulcerated patients as compared to ulcerated melanoma patients following two infusions of ICIs (27.3 ± 19.2% vs 16.1 ± 19.2%; P = 0.008). The trajectories of the MDSC populations described here provide insight into the altered tumor microenvironment in ulcerated melanoma and highlight key changes in a cell population that could contribute to immunotherapy resistance.
Collapse
Affiliation(s)
| | - Steven H Sun
- Department of Surgery, Division of Surgical Oncology
| | | | | | | | | | | | | | | | | | - Demond Handley
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | - William E Carson
- Comprehensive Cancer Center
- Department of Surgery, Division of Surgical Oncology
| |
Collapse
|
3
|
Rouatbi N, Walters AA, Zam A, Lim YM, Marrocu A, Liam‐Or R, Anstee JE, Arnold JN, Wang JT, Pollard SM, Al‐Jamal KT. CD47 Knock-Out Using CRISPR-Cas9 RNA Lipid Nanocarriers Results in Reduced Mesenchymal Glioblastoma Growth In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407262. [PMID: 39888280 PMCID: PMC11948039 DOI: 10.1002/advs.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Immune checkpoint (ICP) blockade has shown limited effectiveness in glioblastoma (GBM), particularly in the mesenchymal subtype, where interactions between immune cells and glioblastoma cancer stem cells (GSCs) drive immunosuppression and therapy resistance. Tailoring ICPs specific to GSCs can enhance the antitumor immune response. This study proposes the use of lipid nanoparticles (LNPs) encapsulating CRISPR RNAs as an in vivo screening tool for ICPs in a syngeneic model of mesenchymal GSCs. Using PD-L1 and CD47 to validate the proof of concept, intratumoral administration of LNPs in orthotopic tumors achieved efficient editing of ICPs, leading to enhanced immune cell infiltration within the tumor microenvironment. Targeting CD47 reduced tumor growth, suggesting improved cancer cell sensitization to the immune system post-ICP editing. The study positions LNPs as a robust tool for in vivo validation of ICPs as therapeutic targets in clinically relevant GBM models. LNPs could serve as a screening tool in patient-derived xenografts to identify and optimize ICP combinations, potentially expediting ICP translation and enhancing personalized GBM immunotherapies.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Adam A. Walters
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Alaa Zam
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Yau Mun Lim
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
- Department of Neurodegenerative DiseaseQueen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - Alessia Marrocu
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - Revadee Liam‐Or
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionChina
| | - Joanne E. Anstee
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - James N. Arnold
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - Julie Tzu‐Wen Wang
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Steven M. Pollard
- Centre for Regenerative MedicineInstitute for Regeneration and Repair & Cancer Research UK Scotland CentreUniversity of Edinburgh5 Little France DriveEdinburghEH16 4UUUK
| | - Khuloud T. Al‐Jamal
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionChina
| |
Collapse
|
4
|
Ezdoglian A, Tsang-A-Sjoe M, Khodadust F, Burchell G, Jansen G, de Gruijl T, Labots M, van der Laken CJ. Monocyte-related markers as predictors of immune checkpoint inhibitor efficacy and immune-related adverse events: a systematic review and meta-analysis. Cancer Metastasis Rev 2025; 44:35. [PMID: 39982537 PMCID: PMC11845441 DOI: 10.1007/s10555-025-10246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
The efficacy and off-target effects of immune checkpoint inhibitors (ICI) in cancer treatment vary among patients. Monocytes likely contribute to this heterogeneous response due to their crucial role in immune homeostasis. We conducted a systematic review and meta-analysis to evaluate the impact of monocytes on ICI efficacy and immune-related adverse events (irAEs) in patients with cancer. We systematically searched PubMed, Web of Science, and Embase for clinical studies from January 2000 to December 2023. Articles were included if they mentioned cancer, ICI, monocytes, or any monocyte-related terminology. Animal studies and studies where ICIs were combined with other biologics were excluded, except for studies where two ICIs were used. This systematic review was registered with PROSPERO (CRD42023396297) prior to data extraction and analysis. Monocyte-related markers, such as absolute monocyte count (AMC), monocyte/lymphocyte ratio (MLR), specific monocyte subpopulations, and m-MDSCs were assessed in relation to ICI efficacy and safety. Bayesian meta-analysis was conducted for AMC and MLR. The risk of bias assessment was done using the Cochrane-ROBINS-I tool. Out of 5787 studies identified in our search, 155 eligible studies report peripheral blood monocyte-related markers as predictors of response to ICI, and 32 of these studies describe irAEs. Overall, based on 63 studies, a high MLR was a prognostic biomarker for short progression-free survival (PFS) and overall survival (OS) hazard ratio (HR): 1.5 (95% CI: 1.21-1.88) and 1.52 (95% CI:1.13-2.08), respectively. The increased percentage of classical monocytes was an unfavorable predictor of survival, while low baseline rates of monocytic myeloid-derived suppressor cells (m-MDSCs) were favorable. Elevated intermediate monocyte frequencies were associated but not significantly correlated with the development of irAEs. Baseline monocyte phenotyping may serve as a composite biomarker of response to ICI; however, more data is needed regarding irAEs. Monocyte-related variables may aid in risk assessment and treatment decision strategies for patients receiving ICI in terms of both efficacy and safety.
Collapse
Affiliation(s)
- Aiarpi Ezdoglian
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Michel Tsang-A-Sjoe
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Fatemeh Khodadust
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - George Burchell
- Amsterdam University Medical Library, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tanja de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam University Medical Center, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Conny J van der Laken
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
6
|
Schwarz E, Benner B, Wesolowski R, Quiroga D, Good L, Sun SH, Savardekar H, Li J, Jung KJ, Duggan MC, Lapurga G, Shaffer J, Scarberry L, Konda B, Verschraegen C, Kendra K, Shah M, Rupert R, Monk P, Shah HA, Noonan AM, Bixel K, Hays J, Wei L, Pan X, Behbehani G, Hu Y, Elemento O, Chung D, Xin G, Blaser BW, Carson WE. Inhibition of Bruton's tyrosine kinase with PD-1 blockade modulates T cell activation in solid tumors. JCI Insight 2024; 9:e169927. [PMID: 39513363 PMCID: PMC11601564 DOI: 10.1172/jci.insight.169927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUNDInhibition of Bruton's tyrosine kinase with ibrutinib blocks the function of myeloid-derived suppressor cells (MDSC). The combination of ibrutinib and nivolumab was tested in patients with metastatic solid tumors.METHODSSixteen patients received ibrutinib 420 mg p.o. daily with nivolumab 240 mg i.v. on days 1 and 15 of a 28-day cycle. The effect of ibrutinib and nivolumab on MDSC, the immune profile, and cytokine levels were measured. Single-cell RNA-Seq and T cell receptor sequencing of immune cells was performed.RESULTSCommon adverse events were fatigue and anorexia. Four patients had partial responses and 4 had stable disease at 3 months (average 6.5 months, range 3.5-14.6). Median overall survival (OS) was 10.8 months. Seven days of Bruton's tyrosine kinase (BTK) inhibition significantly increased the proportion of monocytic-MDSC (M-MDSC) and significantly decreased chemokines associated with MDSC recruitment and accumulation (CCL2, CCL3, CCL4, CCL13). Single-cell RNA-Seq revealed ibrutinib-induced downregulation of genes associated with MDSC-suppressive function (TIMP1, CXCL8, VEGFA, HIF1A), reduced MDSC interactions with exhausted CD8+ T cells, and decreased TCR repertoire diversity. The addition of nivolumab significantly increased circulating NK and CD8+ T cells and increased CD8+ T cell proliferation. Exploratory analyses suggest that MDSC and T cell gene expression and TCR repertoire diversity were differentially affected by BTK inhibition according to patient response.CONCLUSIONIbrutinib and nivolumab were well tolerated and affected MDSC and T cell function in patients with solid metastatic tumors.TRIAL REGISTRATIONClinicalTrials.gov NCT03525925.FUNDINGNIH; National Cancer Institute Cancer; National Center for Advancing Translational Sciences; Pelotonia.
Collapse
Affiliation(s)
| | | | - Robert Wesolowski
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Dionisia Quiroga
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | | | - Steven H. Sun
- Comprehensive Cancer Center
- Division of Surgical Oncology, Department of Surgery
| | | | - Jianying Li
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | - Kyeong Joo Jung
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | | | | | | | | | - Bhavana Konda
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Claire Verschraegen
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Kari Kendra
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Manisha Shah
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Robert Rupert
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Paul Monk
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Hiral A. Shah
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Anne M. Noonan
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Kristin Bixel
- Comprehensive Cancer Center
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - John Hays
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Lai Wei
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | | | - Gregory Behbehani
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Dongjun Chung
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | - Gang Xin
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | - Bradley W. Blaser
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - William E. Carson
- Comprehensive Cancer Center
- Division of Surgical Oncology, Department of Surgery
| |
Collapse
|
7
|
Zhou B, Sha S, Wang Q, Sun S, Tao J, Zhu J, Dong L. The prognostic implications of cuproptosis-related gene signature and the potential of PPIC as a promising biomarker in cutaneous melanoma. Pigment Cell Melanoma Res 2024; 37:864-880. [PMID: 39115044 DOI: 10.1111/pcmr.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/23/2024] [Indexed: 10/29/2024]
Abstract
Cutaneous melanoma is the most lethal of all skin tumors. Recently, cuproptosis, a novel form of cell death linked to oxidative phosphorylation, has emerged as an important factor. However, the precise role of cuproptosis in melanoma remains unclear. Our research explored the potential links between cuproptosis-related genes, prognosis, immune microenvironments, and melanoma treatments. Significantly, cuproptosis regulators showed remarkable differences between melanoma and normal tissues, establishing their relevance to melanoma. The newly developed cuproptosis-related gene signature (CGS) demonstrated a robust ability to predict overall survival (OS) in melanoma. We constructed a novel nomogram that combined clinical features with CGS to improve predictive accuracy. In addition, the study revealed correlations between CGS and immune cell populations, including CD8+T cells, Tfh cells, B cells, and myeloid-derived suppressor cells. Within the CGS, Peptidylprolyl isomerase C (PPIC) emerged as the most strongly associated with poor prognosis and drug resistance in melanoma. PPIC was identified as a promoter of melanoma progression, enhancing cell invasiveness while concurrently suppressing CD8+T cell activation. This comprehensive study not only elucidated the intricate connections between CGS, melanoma prognosis, immune microenvironment, and drug resistance but also provided compelling evidence supporting PPIC as a promising biomarker for predicting OS in melanoma treatment.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Shanshan Sha
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Qi Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Shuomin Sun
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| | - Liyun Dong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
- Hubei Engineering Research Center of Skin Disease Theranostics and Health, Wuhan, China
| |
Collapse
|
8
|
Kostlan RJ, Phoenix JT, Budreika A, Ferrari MG, Khurana N, Choi JE, Juckette K, Mahapatra S, McCollum BL, Moskal R, Mannan R, Qiao Y, Vander Griend DJ, Chinnaiyan AM, Kregel S. Clinically Relevant Humanized Mouse Models of Metastatic Prostate Cancer Facilitate Therapeutic Evaluation. Mol Cancer Res 2024; 22:826-839. [PMID: 38820127 PMCID: PMC11372372 DOI: 10.1158/1541-7786.mcr-23-0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
There is tremendous need for improved prostate cancer models. Anatomically and developmentally, the mouse prostate differs from the human prostate and does not form tumors spontaneously. Genetically engineered mouse models lack the heterogeneity of human cancer and rarely establish metastatic growth. Human xenografts are an alternative but must rely on an immunocompromised host. Therefore, we generated prostate cancer murine xenograft models with an intact human immune system (huNOG and huNOG-EXL mice) to test whether humanizing tumor-immune interactions would improve modeling of metastatic prostate cancer and the impact of androgen receptor-targeted and immunotherapies. These mice maintain multiple human immune cell lineages, including functional human T-cells and myeloid cells. Implications: To the best of our knowledge, results illustrate the first model of human prostate cancer that has an intact human immune system, metastasizes to clinically relevant locations, responds appropriately to standard-of-care hormonal therapies, and can model both an immunosuppressive and checkpoint-inhibition responsive immune microenvironment.
Collapse
Affiliation(s)
- Raymond J. Kostlan
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois.
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, Illinois.
| | - John T. Phoenix
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois.
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, Illinois.
| | - Audris Budreika
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois.
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, Illinois.
| | - Marina G. Ferrari
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois.
| | - Neetika Khurana
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois.
| | - Jae E. Choi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Kristin Juckette
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Brooke L. McCollum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Russell Moskal
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois.
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Steven Kregel
- Department of Cancer Biology, Loyola University Chicago, Maywood, Illinois.
| |
Collapse
|
9
|
Calabrò A, Drommi F, Sidoti Migliore G, Pezzino G, Vento G, Freni J, Costa G, Cavaliere R, Bonaccorsi I, Sionne M, Nigro S, Navarra G, Ferlazzo G, De Pasquale C, Campana S. Neutrophil-like Monocytes Increase in Patients with Colon Cancer and Induce Dysfunctional TIGIT+ NK Cells. Int J Mol Sci 2024; 25:8470. [PMID: 39126041 PMCID: PMC11313383 DOI: 10.3390/ijms25158470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous family of immune cells including granulocytic (CD14neg/CD15+/HLA-DRneg) and monocytic subtypes (CD14+/CD15neg/HLA-DRneg). In the present study, we found a population of monocytes expressing the granulocyte marker CD15 that significantly increased in both peripheral blood (PB) and tumoral tissues of patients with colorectal cancer (CRC). Further phenotypical analysis confirmed the granulocytic-like features of this monocyte subpopulation that is associated with an increase in granulocyte-monocyte precursors (GMPs) in the PB of these patients (pts). Mechanistically, this granulocyte-like monocyte population suppressed NK cell activity by inducing TIGIT and engaging NKp30. Accordingly, an increased frequency of TIGIT+ NK cells with impaired functions was found in both the PB and tumoral tissue of CRC pts. Collectively, we provided new mechanistic explanations for tumor immune escape occurring in CRC by showing the increase in this new kind of MDSC, in both PB and CRC tissue, which is able to significantly impair the effector functions of NK cells, thereby representing a potential therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Alessia Calabrò
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| | - Fabiana Drommi
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| | - Giacomo Sidoti Migliore
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, BLDG 50, RM 6308, Bethesda, MD 20892, USA;
| | - Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| | - Grazia Vento
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, 16132 Genova, Italy;
| | - José Freni
- Laboratory of Histology, Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Gregorio Costa
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
- Clinical Pathology Unit, University Hospital Policlinico G. Martino, 98125 Messina, Italy;
| | - Riccardo Cavaliere
- Clinical Pathology Unit, University Hospital Policlinico G. Martino, 98125 Messina, Italy;
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
- Clinical Pathology Unit, University Hospital Policlinico G. Martino, 98125 Messina, Italy;
| | - Mariagrazia Sionne
- Oncologic Surgery, Department of Human Pathology of Adult and Evolutive Age, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (M.S.); (S.N.); (G.N.)
| | - Stefania Nigro
- Oncologic Surgery, Department of Human Pathology of Adult and Evolutive Age, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (M.S.); (S.N.); (G.N.)
| | - Giuseppe Navarra
- Oncologic Surgery, Department of Human Pathology of Adult and Evolutive Age, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (M.S.); (S.N.); (G.N.)
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa, Via Leon Battista Alberti 2, 16132 Genova, Italy;
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department Human Pathology “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (A.C.); (F.D.); (G.P.); (G.C.); (I.B.); (C.D.P.); (S.C.)
| |
Collapse
|
10
|
Kim J, Choi JY, Min H, Hwang KW. Exploring the Potential of Glycolytic Modulation in Myeloid-Derived Suppressor Cells for Immunotherapy and Disease Management. Immune Netw 2024; 24:e26. [PMID: 38974210 PMCID: PMC11224668 DOI: 10.4110/in.2024.24.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.
Collapse
Affiliation(s)
- Jisu Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jee Yeon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Kwang Woo Hwang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
11
|
Wu LY, Park SH, Jakobsson H, Shackleton M, Möller A. Immune Regulation and Immune Therapy in Melanoma: Review with Emphasis on CD155 Signalling. Cancers (Basel) 2024; 16:1950. [PMID: 38893071 PMCID: PMC11171058 DOI: 10.3390/cancers16111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma is commonly diagnosed in a younger population than most other solid malignancies and, in Australia and most of the world, is the leading cause of skin-cancer-related death. Melanoma is a cancer type with high immunogenicity; thus, immunotherapies are used as first-line treatment for advanced melanoma patients. Although immunotherapies are working well, not all the patients are benefitting from them. A lack of a comprehensive understanding of immune regulation in the melanoma tumour microenvironment is a major challenge of patient stratification. Overexpression of CD155 has been reported as a key factor in melanoma immune regulation for the development of therapy resistance. A more thorough understanding of the actions of current immunotherapy strategies, their effects on immune cell subsets, and the roles that CD155 plays are essential for a rational design of novel targets of anti-cancer immunotherapies. In this review, we comprehensively discuss current anti-melanoma immunotherapy strategies and the immune response contribution of different cell lineages, including tumour endothelial cells, myeloid-derived suppressor cells, cytotoxic T cells, cancer-associated fibroblast, and nature killer cells. Finally, we explore the impact of CD155 and its receptors DNAM-1, TIGIT, and CD96 on immune cells, especially in the context of the melanoma tumour microenvironment and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Li-Ying Wu
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Su-Ho Park
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haakan Jakobsson
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Mark Shackleton
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
- School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Möller
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Mukherjee N, Katsnelson E, Brunetti TM, Michel K, Couts KL, Lambert KA, Robinson WA, McCarter MD, Norris DA, Tobin RP, Shellman YG. MCL1 inhibition targets Myeloid Derived Suppressors Cells, promotes antitumor immunity and enhances the efficacy of immune checkpoint blockade. Cell Death Dis 2024; 15:198. [PMID: 38459020 PMCID: PMC10923779 DOI: 10.1038/s41419-024-06524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are now the first-line treatment for patients with advanced melanoma. Despite promising clinical results, many patients fail to respond to these therapies. BH3 mimetics, a novel class of small molecule inhibitors that bind and inhibit anti-apoptotic members of the BCL2 family proteins such as BCL2 or MCL1, have been very successful in treating hematologic malignancies. However, there are limited studies on the immunomodulatory role of the BH3 mimetics. Several factors contribute to ICI resistance including myeloid-derived suppressor cells (MDSCs) that exert immunosuppressive effects through direct and indirect inhibition of antitumor immunity. Thus, targeting MDSCs to enhance antitumor immunity has the potential to enhance the efficacy of ICIs. In this study, we show that the MCL1 inhibitor S64315 reduces melanoma tumor growth in an immune cell-dependent manner in mice. Specifically, S64315 enhances antitumor immunity by reducing MDSC frequency and by promoting the activity of CD8+T cells. Additionally, human MDSCs are 10 times more sensitive to S64315 than cutaneous melanoma lines. Further, we found that a higher expression of MCL1 is associated with poor survival for patients treated with anti-PD-1. Finally, combining S64315 and anti-PD-1 significantly slowed tumor growth compared to either agent alone. Together, this proof-of-concept study demonstrates the potential of combining an MCL1 inhibitor with anti-PD-1 in the treatment of melanoma. It justifies the further development of next generation MCL1 inhibitors to improve efficacy of ICIs in treating malignant melanoma.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, 80045, USA
| | - Elizabeth Katsnelson
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Surgical Oncology, Aurora, CO, 80045, USA
| | - Tonya M Brunetti
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kylie Michel
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Aurora, CO, 80045, USA
| | - Kasey L Couts
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Aurora, CO, 80045, USA
| | - Karoline A Lambert
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, 80045, USA
| | - William A Robinson
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Aurora, CO, 80045, USA
| | - Martin D McCarter
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Surgical Oncology, Aurora, CO, 80045, USA
| | - David A Norris
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, 80045, USA
- Department of Veterans Affairs Medical Center, Dermatology Section, Denver, CO, 80220, USA
| | - Richard P Tobin
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Surgical Oncology, Aurora, CO, 80045, USA.
| | - Yiqun G Shellman
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, 80045, USA.
- University of Colorado Anschutz Medical Campus, Gates Center for Regenerative Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Savardekar H, Allen C, Jeon H, Li J, Quiroga D, Schwarz E, Wu RC, Zelinskas S, Lapurga G, Abreo A, Stiff A, Shaffer J, Blaser BW, Old M, Wesolowski R, Xin G, Kendra KL, Chung D, Carson WE. Single-Cell RNA-Seq Analysis of Patient Myeloid-Derived Suppressor Cells and the Response to Inhibition of Bruton's Tyrosine Kinase. Mol Cancer Res 2024; 22:308-321. [PMID: 38015751 PMCID: PMC10922705 DOI: 10.1158/1541-7786.mcr-22-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/06/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Myeloid-derived suppressor cell (MDSC) levels are elevated in patients with cancer and contribute to reduced efficacy of immune checkpoint therapy. MDSC express Bruton's tyrosine kinase (BTK) and BTK inhibition with ibrutinib, an FDA-approved irreversible inhibitor of BTK, leads to reduced MDSC expansion/function in mice and significantly improves the antitumor activity of anti-PD-1 antibody treatments. Single-cell RNA sequencing (scRNA-seq) was used to characterize the effect of ibrutinib on gene expression of fluorescence-activated cell sorting-enriched MDSC from patients with different cancer types [breast, melanoma, head and neck squamous cell cancer (HNSCC)]. Melanoma patient MDSC were treated in vitro for 4 hours with 5 μmol/L ibrutinib or DMSO, processed for scRNA-seq using the Chromium 10× Genomics platform, and analyzed via the Seurat v4 standard integrative workflow. Baseline gene expression of MDSC from patients with breast, melanoma, and HNSCC cancer revealed similarities among the top expressed genes. In vitro ibrutinib treatment of MDSC from patients with melanoma resulted in significant changes in gene expression. GBP1, IL-1β, and CXCL8 were among the top downregulated genes whereas RGS2 and ABHD5 were among the top upregulated genes (P < 0.001). Double positive CD14+CD15+ MDSC and PMN-MDSC responded similarly to BTK inhibition and exhibited more pronounced gene changes compared with early MDSC and M-MDSC. Pathway analysis revealed significantly downregulated pathways including TREM1, nitric oxide signaling, and IL-6 signaling (P < 0.004). IMPLICATIONS scRNA-seq revealed characteristic gene expression patterns for MDSC from different patients with cancer and BTK inhibition led to the downregulation of multiple genes and pathways important to MDSC function and migration.
Collapse
Affiliation(s)
- Himanshu Savardekar
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carter Allen
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Hyeongseon Jeon
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jianying Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dionisia Quiroga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Emily Schwarz
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Richard C. Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Sara Zelinskas
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gabriella Lapurga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alexander Abreo
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Jami Shaffer
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Bradley W. Blaser
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew Old
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kari L. Kendra
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Cen X, Li M, Yao A, Zheng Y, Lai W. Immune infiltration and clinical significance analyses of the cancer-associated fibroblast-related signature in skin cutaneous melanoma. J Gene Med 2024; 26:e3614. [PMID: 37847069 DOI: 10.1002/jgm.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most aggressive cancers with high mortality rates. Cancer-associated fibroblasts (CAFs) play essential roles in tumor growth, metastasis and the establishment of a pro-tumor microenvironment. This study aimed to establish a CAF-related signature for providing a new perspective for indicating prognosis and guiding therapeutic regimens of SKCM patients. METHODS In this study, the CAF-related genes were screened out based on melanoma-associated fibroblast markers identified from single-cell transcriptome analysis in the Gene Expression Omnibus (GEO) database and a CAF-related module identified from weighted gene co-expression analysis using The Cancer Genome Atlas (TCGA) dataset. We extracted these gene expression data of SKCM samples from TCGA and constructed a prognostic CAF-related signature. The prediction abilities of the signature for survival prognosis, tumor immune landscape and responses to chemo-/immunotherapies were evaluated in the TCGA-SKCM cohort. RESULTS We suggested that CAFs were significantly involved in the clinical outcomes of SKCM. A 10-gene CAF-related model was constructed, and the high-CAF risk group exhibited immunosuppressive features and worse prognosis. Patients with high CAF score were more likely to not respond to immune checkpoint inhibitors but were more sensitive to some chemotherapeutic agents, suggesting a potential approach of chemotherapy/anti-CAF combination treatment to improve the SKCM patient response rate of current immunotherapies. CONCLUSIONS The CAF-related risk score could serve as a robust prognostic indicator and personal assessment of this score could uncover the degree of immunosuppression and provide treatment strategies to improve outcomes in clinical decision-making in SKCM patients.
Collapse
Affiliation(s)
- Xintao Cen
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengna Li
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Amin Yao
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Zheng
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Quiroga D, Wesolowski R, Zelinskas S, Pinette A, Benner B, Schwarz E, Savardekar H, Johnson C, Stiff A, Yu L, Macrae E, Lustberg M, Mrozek E, Ramaswamy B, Carson WE. An Open-Label Study of Subcutaneous CpG Oligodeoxynucleotide (PF03512676) in Combination with Trastuzumab in Patients with Metastatic HER2+ Breast Cancer. Cancer Control 2024; 31:10732748241250189. [PMID: 38797949 PMCID: PMC11129578 DOI: 10.1177/10732748241250189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVES CpG ODN is a Toll-like receptor 9 agonist with immunotherapeutic potential for many cancer types, including aggressive breast cancers. There is strong interest in utilizing CpG ODN as an adjuvant to improve clinical efficacy of current treatments and immunogenicity of breast cancers not traditionally responsive to active immunotherapy, such as those that are human epidermal growth factor receptor 2 (HER2)-positive. This study aimed to study the efficacy and safety of combination CpG ODN plus anti-HER2 antibody trastuzumab treatment in patients with advanced/metastatic breast cancer. METHODS This single-arm, open-label phase II clinical trial treated patients (n = 6) with advanced/metastatic HER2-positive breast cancer with weekly subcutaneous CpG ODN and trastuzumab. Patients may have received any number of prior therapies to be enrolled (most enrolled at median 1 prior line of chemotherapy). Peripheral blood was collected at baseline and weeks 2, 6, 12, and 18 for immune analyses. Six patients were enrolled and 50% achieved stable disease (SD) response. RESULTS Median PFS was 8.3 months. Three of the six patients enrolled opted to stop treatment due to tolerability issues. Multiplex assay for cytokine measurements revealed significantly higher VEGF-D levels at week 2 compared to baseline. Peripheral blood mononuclear cells analyzed by flow cytometry showed a significant increase in monocytic MDSC between weeks 6 and 12. Patients with progressive disease tended to have higher levels of week 6 monocytic MDSC and PD-1+ T cells than patients with SD. NK cell populations did not significantly change throughout treatment. CONCLUSIONS CpG ODN and trastuzumab treatment of metastatic HER2 + breast cancer was safe but was not tolerable for all patients. This combination did induce potentially predictive immune profile changes in treated patients with metastatic HER2 + breast cancer, the significance of which needs to be further explored.
Collapse
Affiliation(s)
- Dionisia Quiroga
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
| | - Robert Wesolowski
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
| | - Sara Zelinskas
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ashley Pinette
- Department of Surgery, The Ohio State University, Columbus, OH, USA
- Miami Valley Hospital, Dayton, OH, USA
| | - Brooke Benner
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Emily Schwarz
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Himanshu Savardekar
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Courtney Johnson
- Department of Surgery, The Ohio State University, Columbus, OH, USA
- Miami Valley Hospital, Dayton, OH, USA
| | - Andrew Stiff
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Erin Macrae
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
- Columbus Oncology Associates, Columbus, OH, USA
| | - Maryam Lustberg
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
- Yale School of Medicine, New Haven, CN, USA
| | - Ewa Mrozek
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
- St. Rita’s Cancer Center, Lima, OH, USA
| | - Bhuvaneswari Ramaswamy
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH, USA
| | - William E. Carson
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Kostlan RJ, Phoenix JT, Budreika A, Ferrari MG, Khurana N, Cho JE, Juckette K, McCollum BL, Moskal R, Mannan R, Qiao Y, Griend DJV, Chinnaiyan AM, Kregel S. Clinically relevant humanized mouse models of metastatic prostate cancer to evaluate cancer therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562280. [PMID: 37904960 PMCID: PMC10614761 DOI: 10.1101/2023.10.13.562280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is tremendous need for improved prostate cancer (PCa) models. The mouse prostate does not spontaneously form tumors and is anatomically and developmentally different from the human prostate. Engineered mouse models lack the heterogeneity of human cancer and rarely establish metastatic growth. Human xenografts represent an alternative but rely on an immunocompromised host. Accordingly, we generated PCa murine xenograft models with an intact human immune system (huNOG and huNOG-EXL mice) to test whether humanizing tumor-immune interactions would improve modeling of metastatic PCa and the impact of hormonal and immunotherapies. These mice maintain multiple human cell lineages, including functional human T-cells and myeloid cells. In 22Rv1 xenografts, subcutaneous tumor size was not significantly altered across conditions; however, metastasis to secondary sites differed in castrate huNOG vs background-matched immunocompromised mice treated with enzalutamide (enza). VCaP xenograft tumors showed decreases in growth with enza and anti-Programed-Death-1 treatments in huNOG mice, and no effect was seen with treatment in NOG mice. Enza responses in huNOG and NOG mice were distinct and associated with increased T-cells within tumors of enza treated huNOG mice, and increased T-cell activation. In huNOG-EXL mice, which support human myeloid development, there was a strong population of immunosuppressive regulatory T-cells and Myeloid-Derived-Suppressor-Cells (MDSCs), and enza treatment showed no difference in metastasis. Results illustrate, to our knowledge, the first model of human PCa that metastasizes to clinically relevant locations, has an intact human immune system, responds appropriately to standard-of-care hormonal therapies, and can model both an immunosuppressive and checkpoint-inhibition responsive immune microenvironment.
Collapse
Affiliation(s)
- Raymond J. Kostlan
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - John T. Phoenix
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - Audris Budreika
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - Marina G. Ferrari
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| | - Neetika Khurana
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| | - Jae Eun Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Kristin Juckette
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Brooke L. McCollum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Russell Moskal
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| | - Rahul Mannan
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Steven Kregel
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
17
|
Blandino G, Dinami R, Marcia M, Anastasiadou E, Ryan BM, Palcau AC, Fattore L, Regazzo G, Sestito R, Loria R, Díaz Méndez AB, Cappelletto MC, Pulito C, Monteonofrio L, Calin GA, Sozzi G, Cheong JK, Aharonov R, Ciliberto G. The new world of RNA diagnostics and therapeutics. J Exp Clin Cancer Res 2023; 42:189. [PMID: 37507791 PMCID: PMC10386627 DOI: 10.1186/s13046-023-02752-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The 5th Workshop IRE on Translational Oncology was held in Rome (Italy) on 27-28 March at the IRCCS Regina Elena National Cancer Institute. This meeting entitled "The New World of RNA diagnostics and therapeutics" highlightes the significant progress in the RNA field made over the last years. Research moved from pure discovery towards the development of diagnostic biomarkers or RNA-base targeted therapies seeking validation in several clinical trials. Non-coding RNAs in particular have been the focus of this workshop due to their unique properties that make them attractive tools for the diagnosis and therapy of cancer.This report collected the presentations of many scientists from different institutions that discussed recent oncology research providing an excellent overview and representative examples for each possible application of RNA as biomarker, for therapy or to increase the number of patients that can benefit from precision oncology treatment.In particular, the meeting specifically emphasized two key features of RNA applications: RNA diagnostic (Blandino, Palcau, Sestito, Díaz Méndez, Cappelletto, Pulito, Monteonofrio, Calin, Sozzi, Cheong) and RNA therapeutics (Dinami, Marcia, Anastasiadou, Ryan, Fattore, Regazzo, Loria, Aharonov).
Collapse
Affiliation(s)
- Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| | - Roberto Dinami
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Alina Catalina Palcau
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Luigi Fattore
- SAFU Laboratory, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical models and new therapeutic agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Loria
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ana Belén Díaz Méndez
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Chiara Cappelletto
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Jit Kong Cheong
- National University of Singapore Yong Loo Lin School of Medicine, NUS Centre for Cancer Research and Mirxes Lab Pte Ltd, Singapore, Singapore
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
18
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
19
|
Carlson E, Savardekar H, Hu X, Lapurga G, Johnson C, Sun SH, Carson WE, Peterson BR. Fluorescent Detection of Peroxynitrite Produced by Myeloid-Derived Suppressor Cells in Cancer and Inhibition by Dasatinib. ACS Pharmacol Transl Sci 2023; 6:738-747. [PMID: 37200815 PMCID: PMC10186365 DOI: 10.1021/acsptsci.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 05/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that expand dramatically in many cancer patients. This expansion contributes to immunosuppression in cancer and reduces the efficacy of immune-based cancer therapies. One mechanism of immunosuppression mediated by MDSCs involves production of the reactive nitrogen species peroxynitrite (PNT), where this strong oxidant inactivates immune effector cells through destructive nitration of tyrosine residues in immune signal transduction pathways. As an alternative to analysis of nitrotyrosines indirectly generated by PNT, we used an endoplasmic reticulum (ER)-targeted fluorescent sensor termed PS3 that allows direct detection of PNT produced by MDSCs. When the MDSC-like cell line MSC2 and primary MDSCs from mice and humans were treated with PS3 and antibody-opsonized TentaGel microspheres, phagocytosis of these beads led to production of PNT and generation of a highly fluorescent product. Using this method, we show that splenocytes from a EMT6 mouse model of cancer, but not normal control mice, produce high levels of PNT due to elevated numbers of granulocytic (PMN) MDSCs. Similarly, peripheral blood mononuclear cells (PBMCs) isolated from blood of human melanoma patients produced substantially higher levels of PNT than healthy human volunteers, coincident with higher peripheral MDSC levels. The kinase inhibitor dasatinib was found to potently block the production of PNT both by inhibiting phagocytosis in vitro and by reducing the number of granulocytic MDSCs in mice in vivo, providing a chemical tool to modulate the production of this reactive nitrogen species (RNS) in the tumor microenvironment.
Collapse
Affiliation(s)
- Erick
J. Carlson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Himanshu Savardekar
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaojun Hu
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabriella Lapurga
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Johnson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - William E. Carson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blake R. Peterson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Tobin RP, Cogswell DT, Cates VM, Davis DM, Borgers JS, Van Gulick RJ, Katsnelson E, Couts KL, Jordan KR, Gao D, Davila E, Medina TM, Lewis KD, Gonzalez R, McFarland RW, Robinson WA, McCarter MD. Targeting MDSC Differentiation Using ATRA: A Phase I/II Clinical Trial Combining Pembrolizumab and All-Trans Retinoic Acid for Metastatic Melanoma. Clin Cancer Res 2023; 29:1209-1219. [PMID: 36378549 PMCID: PMC10073240 DOI: 10.1158/1078-0432.ccr-22-2495] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE A phase Ib/II clinical trial was conducted to evaluate the safety and efficacy of the combination of all-trans retinoic acid (ATRA) with pembrolizumab in patients with stage IV melanoma. PATIENTS AND METHODS Anti-PD-1 naïve patients with stage IV melanoma were treated with pembrolizumab plus supplemental ATRA for three days surrounding each of the first four pembrolizumab infusions. The primary objective was to establish the MTD and recommended phase II dose (RP2D) of the combination. The secondary objectives were to describe the safety and toxicity of the combined treatment and to assess antitumor activity in terms of (i) the reduction in circulating myeloid-derived suppressor cell (MDSC) frequency and (ii) progression-free survival (PFS). RESULTS Twenty-four patients were enrolled, 46% diagnosed with M1a and 29% with M1c stage disease at enrollment. All patients had an ECOG status ≤1, and 75% had received no prior therapies. The combination was well tolerated, with the most common ATRA-related adverse events being headache, fatigue, and nausea. The RP2D was established at 150 mg/m2 ATRA + 200 mg Q3W pembrolizumab. Median PFS was 20.3 months, and the overall response rate was 71%, with 50% of patients experiencing a complete response, and the 1-year overall survival was 80%. The combination effectively lowered the frequency of circulating MDSCs. CONCLUSIONS With a favorable tolerability and high response rate, this combination is a promising frontline treatment strategy for advanced melanoma. Targeting MDSCs remains an attractive mechanism to enhance the efficacy of immunotherapies, and this combination merits further investigation. See related commentary by Olson and Luke, p. 1167.
Collapse
Affiliation(s)
- Richard P. Tobin
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Dasha T. Cogswell
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Victoria M. Cates
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Dana M. Davis
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Jessica S.W. Borgers
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
- Netherlands Cancer Institute, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Robert J. Van Gulick
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Elizabeth Katsnelson
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Kasey L. Couts
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Kimberly R. Jordan
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Dexiang Gao
- University of Colorado Anschutz Medical Campus, Pediatrics, Biostatistics and Informatics, Cancer Center Biostatistics Core, Aurora, Colorado, USA
| | - Eduardo Davila
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Theresa M. Medina
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Karl D. Lewis
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Rene Gonzalez
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Ross W. McFarland
- UCHealth Cancer Care and Hematology Clinic - Harmony Campus, Fort Collins, Colorado, USA
| | - William A. Robinson
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Martin D. McCarter
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| |
Collapse
|
21
|
Tomela K, Pietrzak B, Galus Ł, Mackiewicz J, Schmidt M, Mackiewicz AA, Kaczmarek M. Myeloid-Derived Suppressor Cells (MDSC) in Melanoma Patients Treated with Anti-PD-1 Immunotherapy. Cells 2023; 12:cells12050789. [PMID: 36899926 PMCID: PMC10000540 DOI: 10.3390/cells12050789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells with suppressive activity well described in the context of cancer. They inhibit anti-tumour immunity, promote metastasis formation and can lead to immune therapy resistance. In a retrospective study, blood probes of 46 advanced melanoma patients were analysed before the first administration of anti-PD-1 immunotherapy and in the third month of treatment for MDSC, immature monocytic (ImMC), monocytic MDSC (MoMDSC) and granulocytic MDSC (GrMDSC) by multi-channel flow cytometry. Cell frequencies were correlated with response to immunotherapy, progression-free survival (PFS) and lactate dehydrogenase (LDH) serum level. Responders to anti-PD-1 therapy had higher MoMDSC levels (4.1 ± 1.2%) compared to non-responders (3.0 ± 1.2%) (p = 0.0333) before the first administration of anti-PD-1. No significant changes in MDSCs frequencies were observed in the groups of patients before and in the third month of therapy. The cut-off values of MDSCs, MoMDSCs, GrMDSCs and ImMCs for favourable 2- and 3-year PFS were established. Elevated LDH level is a negative prognostic factor of response to the treatment and is related to an elevated ratio of GrMDSCs and ImMCs level compared to patients' LDH level below the cut-off. Our data may provide a new perspective for more careful consideration of MDSCs, and specially MoMDSCs, as a tool for monitoring the immune status of melanoma patients. Changes in MDSC levels may have a potential prognostic value, however a correlation with other parameters must be established.
Collapse
Affiliation(s)
- Katarzyna Tomela
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Correspondence:
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, University of Medical Sciences, 60-355 Poznan, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, University of Medical Sciences, 60-355 Poznan, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
22
|
Owen DH, Benner B, Wei L, Sukrithan V, Goyal A, Zhou Y, Pilcher C, Suffren SA, Christenson G, Curtis N, Jukich M, Schwarz E, Savardekar H, Norman R, Ferguson S, Kleiber B, Wesolowski R, Carson WE, Otterson GA, Verschraegen CF, Shah MH, Konda B. A Phase II Clinical Trial of Nivolumab and Temozolomide for Neuroendocrine Neoplasms. Clin Cancer Res 2023; 29:731-741. [PMID: 36255391 PMCID: PMC9932582 DOI: 10.1158/1078-0432.ccr-22-1552] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Treatment options are limited in patients with metastatic neuroendocrine neoplasms (NEN). We present the results for a phase II trial of combination nivolumab and temozolomide in patients with advanced NEN along with results of immune changes in peripheral blood. PATIENTS AND METHODS NCT03728361 is a nonrandomized, phase II study of nivolumab and temozolomide in patients with NEN. The primary endpoint was response rate using RECIST 1.1. Secondary endpoints included progression-free survival (PFS), overall survival (OS), and safety. Immune profiling was performed by mass cytometry to evaluate the effect on peripheral blood immune cell subsets. RESULTS Among all 28 patients with NEN, the confirmed response rate was 9/28 [32.1%, 95% confidence interval (CI): 15.9-52.4]. Of 11 patients with lung NEN, the response rate was 64% (n = 7); there was a significant difference in responses by primary tumor location (lung vs. others, P = 0.020). The median PFS was 8.8 months (95% CI: 3.9-11.1 months), and median OS was 32.3 months (95% CI: 20.7-not reached months). Exploratory blood immune cell profiling revealed an increase in circulating CD8+ T cells (27.9% ± 13.4% vs. 31.7% ± 14.6%, P = 0.03) and a decrease in CD4+ T cells (59.6% ± 13.1% vs. 56.5% ± 13.0%, P = 0.001) after 2 weeks of treatment. LAG-3-expressing total T cells were lower in patients experiencing a partial response (0.18% ± 0.24% vs. 0.83% ± 0.55%, P = 0.028). Myeloid-derived suppressor cell levels increased during the study and did not correlate with response. CONCLUSIONS Combination nivolumab and temozolomide demonstrated promising activity in NEN. See related commentary by Velez and Garon, p. 691.
Collapse
Affiliation(s)
- Dwight H. Owen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio.,Corresponding Author: Dwight H. Owen, The Ohio State University - James Comprehensive Cancer Center, 1800 Cannon Drive, Columbus, OH 43201. Phone: 614-685-2039; E-mail:
| | - Brooke Benner
- Division of Surgical Oncology, Department of Surgery, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Lai Wei
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Vineeth Sukrithan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Ashima Goyal
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Ye Zhou
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Carly Pilcher
- Clinical Trials Office, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Sheryl-Ann Suffren
- Clinical Trials Office, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Gwen Christenson
- Clinical Trials Office, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Nancy Curtis
- Clinical Trials Office, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Megan Jukich
- Clinical Trials Office, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Emily Schwarz
- Division of Surgical Oncology, Department of Surgery, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Himanshu Savardekar
- Division of Surgical Oncology, Department of Surgery, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Ruthann Norman
- Division of Surgical Oncology, Department of Surgery, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Sarah Ferguson
- Clinical Trials Office, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Barbara Kleiber
- Clinical Trials Office, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - William E. Carson
- Division of Surgical Oncology, Department of Surgery, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Gregory A. Otterson
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Claire F. Verschraegen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Manisha H. Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| | - Bhavana Konda
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University - James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
23
|
Petrova V, Groth C, Bitsch R, Arkhypov I, Simon SCS, Hetjens S, Müller V, Utikal J, Umansky V. Immunosuppressive capacity of circulating MDSC predicts response to immune checkpoint inhibitors in melanoma patients. Front Immunol 2023; 14:1065767. [PMID: 36860876 PMCID: PMC9968744 DOI: 10.3389/fimmu.2023.1065767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Purpose Although the treatment of advanced melanoma patients with immune checkpoint inhibitors (ICI) significantly increased the therapeutic efficiency, many patients remain resistant to ICI that could be due to immunosuppression mediated by myeloid-derived suppressor cells (MDSC). These cells are enriched and activated in melanoma patients and could be considered as therapeutic targets. Here we studied dynamic changes in immunosuppressive pattern and activity of circulating MDSC from melanoma patients treated with ICI. Experimental design MDSC frequency, immunosuppressive markers and function were evaluated in freshly isolated peripheral blood mononuclear cells (PBMC) from 29 melanoma patients receiving ICI. Blood samples were taken prior and during the treatment and analyzed by flow cytometry and bio-plex assay. Results MDSC frequency was significantly increased before the therapy and through three months of treatment in non-responders as compared to responders. Prior to the ICI therapy, MDSC from non-responders displayed high levels of immunosuppression measured by the inhibition of T cell proliferation assay, whereas MDSC from responding patients failed to inhibit T cells. Patients without visible metastasis were characterized by the absence of MDSC immunosuppressive activity during the ICI treatment. Moreover, non-responders showed significantly higher IL-6 and IL-8 concentrations before therapy and after the first ICI application as compared to responders. Conclusions Our findings highlight the role of MDSC during melanoma progression and suggest that frequency and immunosuppressive activity of circulating MDSC before and during the ICI treatment of melanoma patients could be used as biomarkers of response to ICI therapy.
Collapse
Affiliation(s)
- Vera Petrova
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebekka Bitsch
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sonja C S Simon
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics and Biomathematics, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Verena Müller
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,DKFZ-Hector Cancer Institute at the University Medical Centre Mannheim, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
24
|
Xu Q, Liu H, Qile M, Wuren T. Dynamic changes in myeloid-derived suppressor cells during the menstrual cycle: A pilot study. Front Med (Lausanne) 2022; 9:940554. [PMID: 36457573 PMCID: PMC9705596 DOI: 10.3389/fmed.2022.940554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Various studies have described the roles of myeloid-derived suppressor cells (MDSCs) in pathological conditions, but relatively few have described them under normal physiological conditions. Accumulation of MDSCs is important creating an anti-inflammation environment, which is essential for fertilized egg implantation. This study was designed to record the dynamic changes in MDSC-like cells composition during the menstrual period (MP) and ovulation period (OP) in healthy volunteers over the course of a single menstrual cycle to explore the association between MDSCs and the menstrual cycle under normal physiological conditions. The ratio of MDSC-like cells was higher in MP samples, whereas the activity of Arg-1 was higher during the OP window. There was a negative correlation between the ratio of MDSC-like cells and the percentage of lymphocytes and a positive correlation between MDSC-like cells and prostaglandin E2 (PGE2). Furthermore, regular changes in the ratio and function of MDSC-like cells in the peripheral blood were observed during menstruation, all of which corresponded to the cycle stage. During menstruation, MDSCs may promote endometrial repair, whereas they promote pregnancy during the OP. These findings may help to better understand the pathophysiology of pregnancy-related complications and lay a foundation for improving perinatal outcomes.
Collapse
Affiliation(s)
- Qiying Xu
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Huifang Liu
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Muge Qile
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Tana Wuren
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
25
|
Anand S, Heusinkveld LE, Cheng CE, Lefatshe L, De Silva P, Hasan T, Maytin EV. Combination of 5-Fluorouracil with Photodynamic Therapy: Enhancement of Innate and Adaptive Immune Responses in a Murine Model of Actinic Keratosis. Photochem Photobiol 2022; 99:437-447. [PMID: 36039609 DOI: 10.1111/php.13706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
We previously showed that a combination of differentiation-inducing agents (5-fluorouracil, vitamin D3, or methotrexate) and aminolevulinate-based photodynamic therapy (PDT) improves clinical responses by enhancing protoporphyrin IX (PpIX) photosensitizer levels and cell death. Here, we show that in addition to its previously known effects, 5-fluorouracil (5FU) enhances PDT-induced tumor-regressing immunity. Murine actinic keratoses (AK) were treated with topical 5FU or vehicle for three days prior to ALA application, followed by blue light illumination (~417 nm). Lesions were harvested for time-course analyses of innate immune cell recruitment into lesions, i.e., neutrophils (Ly6G+) and macrophages (F4/80+), which peaked at 72 hours and 1 week post PDT, respectively, and was greater in 5FU treated lesions. Enhanced infiltration of activated T cells (CD3+) throughout the time course, and of cytotoxic T cells (CD8+) at 1 - 2 weeks post PDT, also occurred in 5FU treated lesions. 5FU pretreatment reduced the presence of cells expressing the immune checkpoint marker PD-1 at ~72 hours post PDT, favoring cytotoxic T cell activity. A combination of 5FU and PDT, each individually known to induce long-term tumor-targeting immune responses in addition to their more immediate effects on cancer cells, may synergize to provide better management of squamous precancers.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Lauren E Heusinkveld
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Cheng-En Cheng
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Lefatshe Lefatshe
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Edward V Maytin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
26
|
Benguigui M, Vorontsova A, Timaner M, Levin S, Haj-Shomaly J, Deo A, Menachem R, Manobla B, Cooper TJ, Raviv Z, Shaked Y. Bv8 Blockade Sensitizes Anti-PD1 Therapy Resistant Tumors. Front Immunol 2022; 13:903591. [PMID: 35874722 PMCID: PMC9301046 DOI: 10.3389/fimmu.2022.903591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are known to promote tumor growth in part by their immunosuppressive activities and their angiogenesis support. It has been shown that Bv8 blockade inhibits the recruitment of MDSCs to tumors, thereby delaying tumor relapse associated with resistance to antiangiogenic therapy. However, the impact of Bv8 blockade on tumors resistant to the new immunotherapy drugs based on the blockade of immune checkpoints has not been investigated. Here, we demonstrate that granulocytic-MDSCs (G-MDSCs) are enriched in anti-PD1 resistant tumors. Importantly, resistance to anti-PD1 monotherapy is reversed upon switching to a combined regimen comprised of anti-Bv8 and anti-PD1 antibodies. This effect is associated with a decreased level of G-MDSCs and enrichment of active cytotoxic T cells in tumors. The blockade of anti-Bv8 has shown efficacy also in hyperprogressive phenotype of anti-PD1-treated tumors. In vitro, anti-Bv8 antibodies directly inhibit MDSC-mediated immunosuppression, as evidenced by enhanced tumor cell killing activity of cytotoxic T cells. Lastly, we show that anti-Bv8-treated MDSCs secrete proteins associated with effector immune cell function and T cell activity. Overall, we demonstrate that Bv8 blockade inhibits the immunosuppressive function of MDSCs, thereby enhancing anti-tumor activity of cytotoxic T cells and sensitizing anti-PD1 resistant tumors. Our findings suggest that combining Bv8 blockade with anti-PD1 therapy can be used as a strategy for overcoming therapy resistance.
Collapse
Affiliation(s)
- Madeleine Benguigui
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Avital Vorontsova
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Michael Timaner
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Sapir Levin
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Jozafina Haj-Shomaly
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Abhilash Deo
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Rotem Menachem
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Faculty of Chemical engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Bar Manobla
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Tim J. Cooper
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziv Raviv
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
- *Correspondence: Yuval Shaked,
| |
Collapse
|
27
|
Xu J, Tao P, Lü D, Jiang Y, Xia Q. Role of high-mobility group box 1 in cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:505-511. [PMID: 35545346 PMCID: PMC10930161 DOI: 10.11817/j.issn.1672-7347.2022.210679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 06/15/2023]
Abstract
High-mobility group box 1 (HMGB1) is a non-histone nuclear protein in most eukaryocytes. Inside the nucleus, HMGB1 plays an important role in several DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it fulfils more complicated functions, including promoting cell proliferation, inflammation, angiogenesis, immune tolerance and immune escape, which may play a pro-tumoral role.Meanwhile, HMGB1 acts as an anti-tumoral protein by regulating immune cell recruitment and inducing immunogenic cell death (ICD) during the carcinogenesis process. Therefore, abnormal expression of HMGB1 is associated with oncogenesis, development, and metastasis of cancer, which may play a dual role of pro-tumor and anti-tumor.
Collapse
Affiliation(s)
- Juan Xu
- Second Department of Internal Medicine, People's Hospital of Guandu District, Kunming 650200.
| | - Pengzuo Tao
- Department of Clinical Laboratory, Yunan Cancer Hospital/Third Affiliated Hospital of Kunming Medical University, Kunming 650118
| | - Dongjin Lü
- Third Department of Internal Medicine, Yunan Cancer Hospital/Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Yu'e Jiang
- Department of Clinical Laboratory, Yunan Cancer Hospital/Third Affiliated Hospital of Kunming Medical University, Kunming 650118
| | - Quansong Xia
- Department of Clinical Laboratory, Yunan Cancer Hospital/Third Affiliated Hospital of Kunming Medical University, Kunming 650118.
| |
Collapse
|