1
|
Khan G, Hussain MS, Ahmad S, Alam N, Ali MS, Alam P. Metabolomics as a tool for understanding and treating triple-negative breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04234-4. [PMID: 40314763 DOI: 10.1007/s00210-025-04234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous variant of breast cancer distinguished by a lack of targeted therapies, posing significant challenges in diagnosis and treatment. Metabolomics, the comprehensive study of small compounds in biological systems, has been identified as an instrument for revealing the metabolic underpinnings of TNBC. This review highlights recent advancements in metabolomic approaches, such as mass spectrometry and nuclear magnetic resonance, which have identified metabolic vulnerabilities, resistance mechanisms, and potential therapeutic targets. Key findings include alterations in fatty acid, amino acid, and glutathione metabolism, along with hypoxia-driven metabolic reprogramming that contributes to disease progression. The combination of metabolomics with multi-omics techniques, supported by advanced computational methods such as machine learning, offers a pathway to overcome challenges in data standardization and biological complexity. Emerging strategies, including the use of artificial intelligence and multidimensional omics approaches, are paving the way for personalized medicine by enabling the discovery of novel biomarkers and targeted therapies. Despite these advances, significant hurdles remain, including the need for robust data standardization, validation of findings in diverse patient cohorts, and seamless integration with clinical workflows. By addressing these challenges, metabolomics has the potential to revolutionize TNBC management, offering tools for early detection, precision therapy, and improved patient outcomes. This review underscores the importance of interdisciplinary collaboration to translate metabolomic insights into actionable clinical applications.
Collapse
Affiliation(s)
- Gyas Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand, 248007, India.
| | - Sarfaraz Ahmad
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Wang JF, Wang MC, Jiang LL, Lin NM. The neuroscience in breast cancer: Current insights and clinical opportunities. Heliyon 2025; 11:e42293. [PMID: 39975839 PMCID: PMC11835589 DOI: 10.1016/j.heliyon.2025.e42293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/21/2025] Open
Abstract
The involvement of nerves in the development of breast cancer has emerged as a significant factor. Interaction between the nervous system and breast cancer can influence tumor initiation, growth, invasion, metastasis, reverse resistance to drugs, promote inflammation in tumors, and impair the immune system's ability to combat cancer. This review examined the intricate relationship linking the nervous system with breast cancer, emphasizing both central and peripheral aspects of the nervous system. Moreover, we reviewed neural cell factors and their impact on breast cancer progression, alongside the interactions between nerves and immunology, microbiota in breast cancer. Furthermore, the study discussed the potential of nerves as biomarkers for diagnosing and prognosticating breast cancer, and evaluated prospects for improving chemotherapy and immunotherapy therapeutic outcomes in breast cancer treatment. We hope to provide a deeper understanding of the neurobiological underpinnings of breast cancer and pave the way for the discovery of innovative therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Jia-feng Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Meng-chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Lei-lei Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine,Hefei, 230031, China
| | - Neng-ming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| |
Collapse
|
3
|
Yang X, Du Z, Xing S. CHST3, PGBD5, and SLIT2 can be identified as potential genes for the diagnosis and treatment of osteoporosis and sarcopenia. Sci Rep 2025; 15:374. [PMID: 39747879 PMCID: PMC11696926 DOI: 10.1038/s41598-024-83231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoporosis and sarcopenia are common diseases in the older. This study aims to use transcriptomics and explore common diagnostic genes of osteoporosis and sarcopenia and predict potentially effective treatment drugs. Three datasets for osteoporosis and sarcopenia were downloaded from the GEO database, and transcriptome sequencing was performed on clinical samples. A total of 23 differentially expressed genes (DEGs) were selected using the LIMMA, WGCNA, and the DEseq2 package. Three machine learning methods were employed to determine the final common diagnostic genes for the diseases. Receiver operating characteristic (ROC) curves were used to evaluate the predictive performance of genes. Single-gene enrichment analysis (GSEA), immune infiltration abundance calculation, and related metabolic analysis were used to study the pathogenesis of the two diseases. Finally, the CMap database was used to predict potential therapeutic drugs for the diseases, and further validation was conducted through RT-PCR and WB. Three genes for the diseases CHST3, PGBD5, and SLIT2 were identified, showing good predictive performance in both internal and external validations. GSEA analysis revealed that genes were enriched primarily in pathways related to cell cycle regulation, fatty acid metabolism, DNA replication, and carbohydrate synthesis. CHST3 and SLIT2 were involved in the immune response, but PGBD5 seemed unrelated to the immune response. Potential therapeutic drugs were predicted, and the RT-PCR, WB results further validated our hypotheses. CHST3, PGBD5, and SLIT2 can serve as potential genes for the diagnosis and treatment of osteoporosis and sarcopenia; furthermore, these results provide new clues for further experimental research and treatment.
Collapse
Affiliation(s)
- Xingyao Yang
- Department of Orthopaedics, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Zhangzhen Du
- Department of Orthopaedics, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Shuxing Xing
- Department of Orthopaedics, Chengdu Fifth People's Hospital, Chengdu, 611130, China.
| |
Collapse
|
4
|
Skrtic M, Yusuf B, Patel S, Reddy EC, Ting KKY, Cybulsky MI, Freeman SA, Robinson LA. The neurorepellent SLIT2 inhibits LPS-induced proinflammatory signaling in macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:141-152. [PMID: 40073268 PMCID: PMC11844144 DOI: 10.1093/jimmun/vkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/30/2024] [Indexed: 03/14/2025]
Abstract
Macrophages are important mediators of immune responses with critical roles in the recognition and clearance of pathogens, as well as in the resolution of inflammation and wound healing. The neuronal guidance cue SLIT2 has been widely studied for its effects on immune cell functions, most notably directional cell migration. Recently, SLIT2 has been shown to directly enhance bacterial killing by macrophages, but the effects of SLIT2 on inflammatory activation of macrophages are less known. Using RNA sequencing analysis, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay, we determined that in murine bone marrow-derived macrophages challenged with the potent proinflammatory mediator lipopolysaccharide (LPS), exposure to the bioactive N-terminal fragment of SLIT2 (NSLIT2) suppressed production of proinflammatory cytokines interleukin (IL)-6 and IL-12 and concurrently increased the anti-inflammatory cytokine IL-10. We found that NSLIT2 inhibited LPS-induced MyD88- and TRIF-mediated signaling cascades and did not inhibit LPS-induced internalization of Toll-like receptor 4 (TLR4), but instead inhibited LPS-induced upregulation of macropinocytosis. Inhibition of macropinocytosis in macrophages attenuated LPS-induced production of proinflammatory IL-6 and IL-12 and concurrently enhanced anti-inflammatory IL-10. Taken together, our results indicate that SLIT2 can selectively modulate macrophage response to potent proinflammatory stimuli, such as LPS, by attenuating proinflammatory activation and simultaneously enhancing anti-inflammatory activity. Our results highlight the role of macropinocytosis in proinflammatory activation of macrophages exposed to LPS. Given that LPS-producing bacteria cause host illness through synergistic direct bacterial infection and excessive LPS-induced systemic inflammation, our work suggests a novel therapeutic role for SLIT2 in combatting the significant morbidity and mortality of patients with Gram-negative bacterial sepsis.
Collapse
Affiliation(s)
- Marko Skrtic
- Division of Nephrology, Kingston Health Sciences Centre, Queen’s University, Kingston, ON, Canada
| | - Bushra Yusuf
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Emily C Reddy
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kenneth K Y Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Myron I Cybulsky
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Serrano García L, Jávega B, Llombart Cussac A, Gión M, Pérez-García JM, Cortés J, Fernández-Murga ML. Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review. Front Immunol 2024; 15:1513421. [PMID: 39735530 PMCID: PMC11671371 DOI: 10.3389/fimmu.2024.1513421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality. Standard treatment for TNBC primarily relies on cytotoxic agents, such as taxanes, anthracyclines, and platinum compounds for both early and advanced stages of the disease. Several targeted therapies, including bevacizumab and sunitinib, have failed to demonstrate significant clinical benefit in TNBC. The emergence of immune checkpoint inhibitors (ICI) has revolutionized cancer treatment. By stimulating the immune system, ICIs induce a durable anti-tumor response across various solid tumors. TNBC is a particularly promising target for treatment with ICIs due to the higher levels of tumor-infiltrating lymphocytes (TIL), increased PD-L1 expression, and higher mutational burden, which generates tumor-specific neoantigens that activate immune cells. ICIs administered as monotherapy in advanced TNBC yields only a modest response; however, response rates significantly improve when ICIs are combined with cytotoxic agents, particularly in tumors expressing PD-L1. Pembrolizumab is approved for use in both early and advanced TNBC in combination with standard chemotherapy. However, more research is needed to identify more potent biomarkers, and to better elucidate the synergism of ICIs with other targeted agents. In this review, we explore the challenges of immunotherapy in TNBC, examining the mechanisms of tumor progression mediated by immune cells within the tumor microenvironment, and the signaling pathways involved in both primary and acquired resistance. Finally, we provide a comprehensive overview of ongoing clinical trials underway to investigate novel immune-targeted therapies for TNBC.
Collapse
Affiliation(s)
- Lucía Serrano García
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Beatriz Jávega
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Antonio Llombart Cussac
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- Grupo Oncología Traslacional, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-Centro de Estudios Universitarios (CEU), Alfara del Patriarca, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
| | - María Gión
- Medical Oncology Department, Hospital Ramon y Cajal, Madrid, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - María Leonor Fernández-Murga
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| |
Collapse
|
6
|
Schol P, van Elsas MJ, Middelburg J, Nijen Twilhaar MK, van Hall T, van der Sluis TC, van der Burg SH. Myeloid effector cells in cancer. Cancer Cell 2024; 42:1997-2014. [PMID: 39658540 DOI: 10.1016/j.ccell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The role of myeloid cells in tumor immunity is multifaceted. While dendritic cells support T cell-mediated tumor control, the highly heterogenous populations of macrophages, neutrophils, and immature myeloid cells were generally considered immunosuppressive. This view has led to effective therapies reinvigorating tumor-reactive T cells; however, targeting the immunosuppressive effects of macrophages and neutrophils to boost the cancer immunity cycle was clinically less successful. Recent studies interrogating the role of immune cells in the context of successful immunotherapy affirm the key role of T cells, but simultaneously challenge the idea that the cytotoxic function of T cells is the main contributor to therapy-driven tumor regression. Rather, therapy-activated intra-tumoral T cells recruit and activate or reprogram several myeloid effector cell types, the presence of which is necessary for tumor rejection. Here, we reappreciate the key role of myeloid effector cells in tumor rejection as this may help to shape future successful immunotherapies.
Collapse
Affiliation(s)
- Pieter Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten K Nijen Twilhaar
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tetje C van der Sluis
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Dias AS, Almeida CR, Helguero L, Duarte IF. Antitumoral Activity and Metabolic Signatures of Dichloroacetate, 6-Aminonicotinamide and Etomoxir in Breast-Tumor-Educated Macrophages. J Proteome Res 2024; 23:5498-5510. [PMID: 39475502 DOI: 10.1021/acs.jproteome.4c00654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Pharmacological targeting of metabolic pathways represents an appealing strategy to selectively kill cancer cells while promoting antitumor functions of stromal cells. In this study, we assessed the effectiveness of 13 metabolic drugs (MDs) in steering in vitro generated breast tumor-educated macrophages (TEMs) toward an antitumoral phenotype. For that, the production of vascular endothelial growth factor (VEGF) and tumor necrosis factor α (TNF-α), two important regulators of tumor progression, was evaluated. Notably, dichloroacetate (DCA), 6-aminonicotinamide (6-AN), and etomoxir decreased VEGF production and enhanced TNF-α release. Hence, we further clarified their impact on TEM metabolism using an untargeted NMR-based metabolomics approach. DCA downregulated glycolysis and enhanced the utilization of extracellular substrates like lactate while reconfiguring lipid metabolism. Several DCA-induced changes significantly correlated with heightened TNF-α production in response to pro-inflammatory stimulation. The inhibition of the pentose phosphate pathway by 6-AN was accompanied by enhanced glutaminolysis, which correlated with a decreased level of VEGF production. In etomoxir-treated TEM, inhibition of fatty acid oxidation was compensated through upregulation of glycolysis, catabolism of intracellular amino acids, and consumption of extracellular branched chain alpha-ketoacids (BCKA) and citrate. Overall, our results offer a comprehensive view of the metabolic signature of each MD in breast TEM and highlight putative correlations with phenotypic effects.
Collapse
Affiliation(s)
- Ana S Dias
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina R Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luisa Helguero
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Smith TJ. TSHR-IGF-IR complex drives orbital fibroblast misbehavior in thyroid eye disease. Curr Opin Endocrinol Diabetes Obes 2024; 31:177-183. [PMID: 39082947 DOI: 10.1097/med.0000000000000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
PURPOSE OF REVIEW Evolving understanding of thyroid eye disease (TED) has led to rapidly advancing therapeutic options. Most new treatments under development or recently available to patients are predicated on insights into disease mechanism. RECENT FINDINGS TED, a disfiguring process, involves inflammation and remodeling of the connective tissues around the eye. TED most frequently presents as a component of Graves' disease. Advances in our understanding of cells involved in TED and their molecular interactions have led to novel therapeutic targets. Among these cell types are orbital fibroblasts and a subset comprising monocyte progenitor cells, known as CD34 + CXCR4 + fibrocytes. Among the attributes of fibrocytes is their expression of several autoantigens associated with Graves' disease, including TSHR, thyroglobulin and thyroperoxidase. Fibrocytes also express high levels of the insulin-like growth factor-I (IGF-I) receptor, thought to mediate fibroblast activation. Therapeutically targeting the TSHR/IGF-IR receptor complex using an IGF-I receptor antagonist, teprotumumab, has resulted in substantial clinical benefit for patients with TED. The neural axon repellent, Slit2, and its cognate receptor, ROBO1, appear to modulate the inflammatory phenotype of these orbit-infiltrating fibrocytes. SUMMARY More detailed understanding of orbital fibroblasts and the distinctions between cell subsets comprising them should lead to more effective therapies with fewer side effects.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Liu Y, Yin S, Lu G, Du Y. The intersection of the nervous system and breast cancer. Cancer Lett 2024; 598:217132. [PMID: 39059572 DOI: 10.1016/j.canlet.2024.217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Guanyu Lu
- Cancer Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
10
|
Xia Y, Jiang T, Li Y, Gu C, Lv J, Lu C, Xu P, Fang L, Chen Z, Liu H, Zhang D, Xu H, Yang L, Xu Z, Wang L. circVAPA-rich small extracellular vesicles derived from gastric cancer promote neural invasion by inhibiting SLIT2 expression in neuronal cells. Cancer Lett 2024; 592:216926. [PMID: 38714291 DOI: 10.1016/j.canlet.2024.216926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
Gastric cancer (GC) is one of the most common cancer worldwide. Neural invasion (NI) is considered as the symbiotic interaction between nerves and cancers, which strongly affects the prognosis of GC patients. Small extracellular vesicles (sEVs) play a key role in intercellular communication. However, whether sEVs mediate GC-NI remains unexplored. In this study, sEVs release inhibitor reduces the NI potential of GC cells. Muscarinic receptor M3 on GC-derived sEVs regulates their absorption by neuronal cells. The enrichment of sEV-circVAPA in NI-positive patients' serum is validated by serum high throughput sEV-circRNA sequencing and clinical samples. sEV-circVAPA promotes GC-NI in vitro and in vivo. Mechanistically, sEV-circVAPA decreases SLIT2 transcription by miR-548p/TGIF2 and inhibits SLIT2 translation via binding to eIF4G1, thereby downregulates SLIT2 expression in neuronal cells and finally induces GC-NI. Together, this work identifies the preferential absorption mechanism of GC-derived sEVs by neuronal cells and demonstrates a previously undefined role of GC-derived sEV-circRNA in GC-NI, which provides new insight into sEV-circRNA based diagnostic and therapeutic strategies for NI-positive GC patients.
Collapse
Affiliation(s)
- Yiwen Xia
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tianlu Jiang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Gu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jialun Lv
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Lu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Penghui Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lang Fang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongda Liu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Curvello R, Berndt N, Hauser S, Loessner D. Recreating metabolic interactions of the tumour microenvironment. Trends Endocrinol Metab 2024; 35:518-532. [PMID: 38212233 DOI: 10.1016/j.tem.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Tumours are heterogeneous tissues containing diverse populations of cells and an abundant extracellular matrix (ECM). This tumour microenvironment prompts cancer cells to adapt their metabolism to survive and grow. Besides epigenetic factors, the metabolism of cancer cells is shaped by crosstalk with stromal cells and extracellular components. To date, most experimental models neglect the complexity of the tumour microenvironment and its relevance in regulating the dynamics of the metabolism in cancer. We discuss emerging strategies to model cellular and extracellular aspects of cancer metabolism. We highlight cancer models based on bioengineering, animal, and mathematical approaches to recreate cell-cell and cell-matrix interactions and patient-specific metabolism. Combining these approaches will improve our understanding of cancer metabolism and support the development of metabolism-targeting therapies.
Collapse
Affiliation(s)
- Rodrigo Curvello
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Daniela Loessner
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Center of Biomaterials, Dresden, Germany; Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Saha P, Ettel P, Weichhart T. Leveraging macrophage metabolism for anticancer therapy: opportunities and pitfalls. Trends Pharmacol Sci 2024; 45:335-349. [PMID: 38494408 DOI: 10.1016/j.tips.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute an important part of the tumor microenvironment (TME) that regulates tumor progression. Tumor-derived signals, hypoxia, and competition for nutrients influence TAMs to reprogram their cellular metabolism. This altered metabolic profile creates a symbiotic communication between tumor and other immune cells to support tumor growth. In addition, the metabolic profile of TAMs regulates the expression of immune checkpoint molecules. The dynamic plasticity also allows TAMs to reshape their metabolism in response to modern therapeutic strategies. Therefore, over the years, a significant number of approaches have been implicated to reprogram cancer-promoting metabolism in TAMs. In this review, we discuss the current strategies and pitfalls, along with upcoming promising opportunities in leveraging TAM metabolism for developing better therapeutic approaches against cancer.
Collapse
Affiliation(s)
- Piyal Saha
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Cheng S, Li S, Yang P, Wang R, Zhou P, Li J. Dissecting the tumour immune microenvironment in merkel cell carcinoma based on a machine learning framework. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:397-407. [PMID: 37676035 DOI: 10.1080/21691401.2023.2244998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
Merkel cell carcinoma (MCC) is a primary cutaneous neoplasm of neuroendocrine carcinoma of the skin, which is characterized by molecular heterogeneity with diverse tumour microenvironment (TME). However, we are still lack knowledge of the cellular states and ecosystems in MCC. Here, we systematically identified and characterized the landscape of cellular states and ecotypes in MCC based on a machine learning framework. We obtained 30 distinct cellular states from 9 immune cell types and investigated the B cell, CD8 T cell, fibroblast, and monocytes/macrophage cellular states in detail. The functional profiling of cellular states were investigated and found the genes highly expressed in cellular states were significantly enriched in immune- and cancer hallmark-related pathways. In addition, four ecotypes were further identified which were with different patient compositions. Transcriptional regulation analysis revealed the critical transcription factors (i.e. E2F1, E2F3 and E2F7), which play important roles in regulating the TME of MCC. In summary, the findings of this study may provide rich knowledge to understand the intrinsic subtypes of MCCs and the pathways involved in distinct subtype oncogenesis, and will further advance the knowledge in developing a specific therapeutic strategy for these MCC subtypes.
Collapse
Affiliation(s)
- Shaowen Cheng
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Si Li
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Ping Yang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Rong Wang
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ping Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jingquan Li
- The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
14
|
Liang Y, He J, Chen X, Yin L, Yuan Q, Zeng Q, Zu X, Shen Y. The emerging roles of metabolism in the crosstalk between breast cancer cells and tumor-associated macrophages. Int J Biol Sci 2023; 19:4915-4930. [PMID: 37781517 PMCID: PMC10539698 DOI: 10.7150/ijbs.86039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
Breast cancer is the most common cancer affecting women worldwide. Investigating metabolism in breast cancer may accelerate the exploitation of new therapeutic options for immunotherapies. Metabolic reprogramming can confer breast cancer cells (BCCs) with a survival advantage in the tumor microenvironment (TME) and metabolic alterations in breast cancer, and the corresponding metabolic byproducts can affect the function of tumor-associated macrophages (TAMs). Additionally, TAMs undergo metabolic reprogramming in response to signals present in the TME, which can affect their function and breast cancer progression. Here, we review the metabolic crosstalk between BCCs and TAMs in terms of glucose, lipids, amino acids, iron, and adenosine metabolism. Summaries of inhibitors that target metabolism-related processes in BCCs or TAMs within breast cancer have also served as valuable inspiration for novel therapeutic approaches in the fight against this disease. This review provides new perspectives on targeted anticancer therapies for breast cancer that combine immunity with metabolism.
Collapse
Affiliation(s)
- Yuxin Liang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiguang Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiong Yuan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qiting Zeng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
15
|
Li M, Yang Y, Xiong L, Jiang P, Wang J, Li C. Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol 2023; 16:80. [PMID: 37491279 PMCID: PMC10367370 DOI: 10.1186/s13045-023-01478-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Tumour-associated macrophages (TAMs) are crucial components of the tumour microenvironment and play a significant role in tumour development and drug resistance by creating an immunosuppressive microenvironment. Macrophages are essential components of both the innate and adaptive immune systems and contribute to pathogen resistance and the regulation of organism homeostasis. Macrophage function and polarization are closely linked to altered metabolism. Generally, M1 macrophages rely primarily on aerobic glycolysis, whereas M2 macrophages depend on oxidative metabolism. Metabolic studies have revealed that the metabolic signature of TAMs and metabolites in the tumour microenvironment regulate the function and polarization of TAMs. However, the precise effects of metabolic reprogramming on tumours and TAMs remain incompletely understood. In this review, we discuss the impact of metabolic pathways on macrophage function and polarization as well as potential strategies for reprogramming macrophage metabolism in cancer treatment.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
16
|
Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [PMID: 36283598 DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that peripheral nerves play an important role in the progression of breast cancer. Breast cancer cells (BCCs) promote local peripheral nerve growth and branching by secreting neuroactive molecules, including neurotrophins and axon guidance molecules (AGMs). Sympathetic nerves promote breast cancer progression, while parasympathetic and sensory nerves mainly have anti-tumor effects in the progression of breast cancer. Specifically, peripheral nerves can influence the progression of breast cancer by secreting neurotransmitters not only directly binding to the corresponding receptors of BCCs, but also indirectly acting on immune cells to modulate anti-tumor immunity. In this review, we summarize the crosstalk between breast cancer and peripheral nerves and the roles of important neuroactive molecules in the progression of breast cancer. In addition, we summarize indicators, including nerve fiber density and perineural invasion (PNI), that may help determine the prognosis of breast cancer based on current research results, as well as potential therapeutic approaches, such as β-blockers and retroviral-mediated genetic neuroengineering techniques, that may enhance the prognosis of breast cancer. In addition, we propose suggestions for future research priorities based on a current lack of knowledge in this area.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| |
Collapse
|