1
|
Van Acker N, Frenois FX, Gravelle P, Tosolini M, Syrykh C, Laurent C, Brousset P. Spatial mapping of innate lymphoid cells in human lymphoid tissues and lymphoma at single-cell resolution. Nat Commun 2025; 16:4545. [PMID: 40374674 PMCID: PMC12081901 DOI: 10.1038/s41467-025-59811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 05/06/2025] [Indexed: 05/17/2025] Open
Abstract
Innate lymphoid cells (ILC) distribution and compartmentalization in human lymphoid tissues are incompletely described. Through combined multiplex immunofluorescence, multispectral imaging, and advanced computer vision methods, we provide a map of ILCs at the whole-slide single-cell resolution level, and study their proximity to T helper (Th) cells. The results show that ILC2 predominates in thymic medulla; by contrast, immature Th cells prevail in the cortex. Unexpectedly, we find that Th2-like and Th17-like phenotypes appear before complete T cell receptor gene rearrangements in these immature thymocytes. In the periphery, ILC2 are more abundant in lymph nodes and tonsils, penetrating lymphoid follicles. NK cells are uncommon in lymphoid tissues but abundant in the spleen, whereas ILC1 and ILC3 predominate in the ileum and appendix. Under pathogenic conditions, a deep perturbation of both ILC and Th populations is seen in follicular lymphoma compared with non-neoplastic conditions. Lastly, all ILCs are preferentially in close proximity to their Th counterparts. In summary, our histopathology tool help present a spatial mapping of human ILCs and Th cells, in normal and neoplastic lymphoid tissues.
Collapse
Affiliation(s)
- Nathalie Van Acker
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - François-Xavier Frenois
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Pauline Gravelle
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Charlotte Syrykh
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Camille Laurent
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Pierre Brousset
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France.
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France.
| |
Collapse
|
2
|
Bedrosian ZK, Ruark EM, Sharma N, Silverstein RB, Manning A, Kohlsaat L, Markiewicz MA. NKG2D ligand expression on NK cells induces NKG2D-mediated cross-tolerization of cytokine signaling and reduces NK cell tumor immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf030. [PMID: 40199610 DOI: 10.1093/jimmun/vkaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/22/2025] [Indexed: 04/10/2025]
Abstract
Studies support a role for natural killer (NK) cells in cancer control, making these cells attractive for immunotherapy. One method being tested to make effective NK cells is the ex vivo activation with interleukin (IL)-12, IL-15, and IL-18. We demonstrate that this induces NKG2D ligands on NK cells. By engaging NKG2D, this NKG2D ligand expression eliminated the ability of both mouse and human NK cells to control tumor growth in vivo and in vitro, respectively. NKG2D-NKG2D ligand interaction between mouse NK cells reduced NK cell proliferation, CD25 and T-bet expression, and tumor necrosis factor and interferon γ release. NKG2D signaling induced between human NK cells similarly decreased interferon γ but did not affect T-bet or CD25 expression. These data demonstrate that NKG2D signaling can cross-tolerize cytokine signaling and suggest that eliminating this signaling could be beneficial in NK cell adoptive therapy. Further, these results highlight a need to better delineate effects downstream of NKG2D signaling in human, rather than mouse, NK cells.
Collapse
Affiliation(s)
- Zoe K Bedrosian
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Elizabeth M Ruark
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Neekun Sharma
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Rachel B Silverstein
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Allison Manning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Lauren Kohlsaat
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Mary A Markiewicz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
3
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Natural Killer Cells in Alzheimer's Disease: From Foe to Friend. Eur J Neurosci 2025; 61:e70096. [PMID: 40207701 DOI: 10.1111/ejn.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
The neuroinflammatory aspect of Alzheimer's disease (AD) has been largely focused on microglia, the innate immune cells of the brain; however, recent evidence increasingly points to the importance of multiple alterations in the systemic immune response during disease development. Natural killer (NK) cells are also components of innate immunity, whose role in AD pathogenesis has been sporadically investigated and often conflicting results have been reported. Recent clinical trial has suggested the potential beneficial effects of AD immunotherapy based on ex vivo-expanded, genetically unmodified, NK cells. This has led to increased interest in understanding the function of these cells in the central nervous system in both physiological and pathological contexts such as AD. Considering that AD is predominantly a disease of the elderly population, in this review, we summarized the current state of knowledge on the physiological changes that occur in the NK cell compartment during the normal aging process and the pathophysiological alterations that occur throughout the AD continuum that could potentially explain the therapeutic efficacy of these cells.
Collapse
Affiliation(s)
- Milos Kostic
- Medical Faculty of Nis, Department of Immunology, University of Nis, Nis, Serbia
| | - Nikola Zivkovic
- Medical Faculty of Nis, Department of Pathology, University of Nis, Nis, Serbia
| | - Ana Cvetanovic
- Medical Faculty of Nis, Department of Oncology, University of Nis, Nis, Serbia
| | - Jelena Basic
- Medical Faculty of Nis, Department of Biochemistry, University of Nis, Nis, Serbia
| | - Ivana Stojanovic
- Medical Faculty of Nis, Department of Biochemistry, University of Nis, Nis, Serbia
| |
Collapse
|
4
|
Wu Y, Han X, Zhou L, Liu X, Zhang D, Sun G. The T-box transcription factor plays an important role in regulating the immunoregulatory function of double-negative T cells. Biochem Biophys Res Commun 2025; 752:151492. [PMID: 39955950 DOI: 10.1016/j.bbrc.2025.151492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Double-negative T (DNT) cells are important immunoregulatory cells that play a key role in maintaining immune homeostasis. However, the specific immune molecular mechanisms regulating DNT cell function have yet to be studied in depth. This study revealed that compared with conventional T cells, natural DNT cells and CD4+ T cell-converted DNT (cDNT) cells can secrete high levels of IFN-γ. Further analysis revealed that DNT cells highly expressed Th1-related genes and the T-box transcription factor (T-bet). Knocking out T-bet significantly reduced the level of IFN-γ secretion by DNT cells, indicating that T-bet is involved in the regulation of IFN-γ. Knocking out T-bet did not affect the conversion, survival or proliferation of cDNT cells but weakened the ability of cDNT cells to kill monocytes and inhibit monocytes TNF-α secretion. Transcriptome sequencing analysis confirmed that T-bet knockout in cDNT cells significantly reduced the immune-killing ability and activation level of cDNT cells. The ChIP-seq analysis revealed that T-bet directly transcriptionally regulated genes associated with cytotoxicity and activation, such as Gzma, Gzmb, Prf1, and Cd28. After T-bet knockout, the expression levels of these genes in cDNT cells were significantly reduced. In summary, this study revealed the key role of T-bet in regulating the immunoregulatory function of DNT cells, expanded knowledge on the mechanisms of action by which DNT cells exert immunoregulatory effects and provided a theoretical basis for the application of DNT cells in immune cell therapy.
Collapse
Affiliation(s)
- Yongle Wu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Xiaotong Han
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Longyang Zhou
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Dong Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China.
| | - Guangyong Sun
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China.
| |
Collapse
|
5
|
Lee JS, Lacerda E, Kingdon C, Susannini G, Dockrell HM, Nacul L, Cliff JM. Abnormal T-Cell Activation And Cytotoxic T-Cell Frequency Discriminates Symptom Severity In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.02.24319359. [PMID: 39830245 PMCID: PMC11741448 DOI: 10.1101/2025.01.02.24319359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating but poorly-understood disease. ME/CFS symptoms can range from mild to severe, and include immune system effects alongside incapacitating fatigue and post-exertional disease exacerbation. In this study, we examined immunological profiles of people living with ME/CFS by flow cytometry, focusing on cytotoxic cells, to determine whether people with mild/moderate (n= 43) or severe ME/CFS (n=53) expressed different immunological markers. We found that people with mild/moderate ME/CFS had increased expression of cytotoxic effector molecules alongside enhanced proportions of early-immunosenescence cells, determined by the CD28 - CD57 - phenotype, indicative of persistent viral infection. In contrast, people with severe ME/CFS had higher proportions of activated circulating lymphocytes, determined by CD69 + and CD38 + expression, and expressed more pro-inflammatory cytokines, including IFNγ, TNF and IL-17, following stimulation in vitro , indicative of prolonged non-specific inflammation. These changes were consistent across different cell types including CD8 + T cells, mucosal associated invariant T cells and Natural Killer cells, indicating generalised altered cytotoxic responses across the innate and adaptive immune system. These immunological differences likely reflect different disease pathogenesis mechanisms occurring in the two clinical groups, opening up opportunities for the development of prognostic markers and stratified treatments.
Collapse
|
6
|
Liao Y, Zheng Y, Zhang R, Chen X, Huang J, Liu J, Zhao Y, Zheng Y, Zhang X, Gao Z, Gao X, Bu J, Peng T, Li X, Shen E. Regulatory roles of transcription factors T-bet and Eomes in group 1 ILCs. Int Immunopharmacol 2024; 143:113229. [PMID: 39357208 DOI: 10.1016/j.intimp.2024.113229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
T-bet and Eomes, both T-box transcription factors, have been extensively studied for their critical roles in the differentiation and functional maintenance of various immune cells. In this review, we provide a focused overview of their contributions to the transcriptional activation and differentiation, development, and terminal maturation of natural killer cells and innate lymphoid cell 1 cells. Furthermore, the interplay between T-bet and Eomes in regulating NK cell function, and its subsequent implications for immune responses against infections and tumors, is thoroughly examined. The review explores the ramifications of dysregulated transcription factor expression, examining its impact on homeostatic balance and its role in a spectrum of disease models. Expression variances among distinct NK cell subsets resident in different tissues are highlighted to underscore the complexity of their biological roles. Collectively, this work aims to expand the current understanding of NK cell biology, thereby paving the way for innovative approaches in the realm of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruizhi Zhang
- Department of Emergency Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Xueyan Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhiyan Gao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Gao
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jin Bu
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, Jiangsu, China; Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Tieli Peng
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China.
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Watanabe CM, Suzuki CI, Dos Santos AM, Aloia TPA, Lee G, Wald D, Okamoto OK, de Azevedo JTC, de Godoy JAP, Santos FPS, Weinlich R, Kerbauy LN, Kutner JM, Paiva RDMA, Hamerschlak N. An Extended Flow Cytometry Evaluation of ex Vivo Expanded NK Cells Using K562.Clone1, a Feeder Cell Line Manufactured in Brazil. Transplant Cell Ther 2024; 30:1063.e1-1063.e19. [PMID: 38986739 DOI: 10.1016/j.jtct.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Natural killer (NK) cells play a crucial role in the immune system's response against cancer. However, the challenge of obtaining the required quantity of NK cells for effective therapeutic response necessitates the development of strategies for their ex vivo expansion. This study aimed to develop a novel feeder cell line, K562.Clone1, capable of promoting the ex vivo expansion of NK cells while preserving their cytotoxic potential. he K562 leukemic cell line was transduced with mbIL-21 and 4-1BBL proteins to generate K562.Clone1 cells. NK cells were then co-cultured with these feeder cells, and their expansion rate was monitored over 14 days. The cytotoxic potential of the expanded NK cells was evaluated against acute myeloid leukemia blasts and tumor cell lines of leukemia and glial origin. Statistical analysis was performed to determine the significance of the results. The K562.Clone1 co-cultured with peripheral NK showed a significant increase in cell count, with an approximate 94-fold expansion over 14 days. Expanded NK cells demonstrated cytotoxicity against the tested tumor cell lines, indicating preservation of their cytotoxic characteristics. Additionally, the CD56, CD16, inhibitory KIRs, and activation receptors were conserved and present in a well-balanced manner. The study successfully developed a feeder cell line, K562.Clone1, that effectively promotes the expansion of NK cells ex vivo while maintaining their cytotoxic potential. This development could significantly contribute to the advancement of NK cell therapy, especially in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Oswaldo Keith Okamoto
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Julia T Cottas de Azevedo
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Juliana Aparecida Preto de Godoy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Fabio P S Santos
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Lucila N Kerbauy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose Mauro Kutner
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel de Melo Alves Paiva
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Nelson Hamerschlak
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Park CY, Shin S, Han SN. Multifaceted Roles of Vitamin D for Diabetes: From Immunomodulatory Functions to Metabolic Regulations. Nutrients 2024; 16:3185. [PMID: 39339785 PMCID: PMC11435169 DOI: 10.3390/nu16183185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Numerous studies have established associations between vitamin D and diabetes. The vitamin D receptor is widely distributed throughout the human body, including in pancreatic beta cells (β-cells), hepatocytes, and immune cells. Therefore, vitamin D's effect on the risk, progression, or complications of diabetes may be mediated through various mechanisms. These include the regulation of insulin secretion or sensitivity and modulation of β-cell function and its immunomodulatory and anti-inflammatory effects. This review extensively explores the relationship between vitamin D status and diabetes, as well as the preventive or therapeutic effects of vitamin D supplementation on diabetes from human studies. Additionally, it examines in detail the impact of vitamin D on immune and inflammatory responses in the diabetic milieux and β-cell function to better understand the underlying mechanisms through which vitamin D influences diabetes.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Food & Nutrition, College of Life Care Science Technology, The University of Suwon, Hwaseong-si 18323, Republic of Korea
| | - Sunhye Shin
- Department of Food and Nutrition, College of Science and Convergence Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Shen G, Wang Q, Li Z, Xie J, Han X, Wei Z, Zhang P, Zhao S, Wang X, Huang X, Xu M. Bridging Chronic Inflammation and Digestive Cancer: The Critical Role of Innate Lymphoid Cells in Tumor Microenvironments. Int J Biol Sci 2024; 20:4799-4818. [PMID: 39309440 PMCID: PMC11414386 DOI: 10.7150/ijbs.96338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
The incidence and mortality of digestive system-related cancers have always been high and attributed to the heterogeneity and complexity of the immune microenvironment of the digestive system. Furthermore, several studies have shown that chronic inflammation in the digestive system is responsible for cancer incidence; therefore, controlling inflammation is a potential strategy to stop the development of cancer. Innate Lymphoid Cells (ILC) represent a heterogeneous group of lymphocytes that exist in contrast to T cells. They function by interacting with cytokines and immune cells in an antigen-independent manner. In the digestive system cancer, from the inflammatory phase to the development, migration, and metastasis of tumors, ILC have been found to interact with the immune microenvironment and either control or promote these processes. The conventional treatments for digestive tumors have limited efficacy, therefore, ILC-associated immunotherapies are promising strategies. This study reviews the characterization of different ILC subpopulations, how they interact with and influence the immune microenvironment as well as chronic inflammation, and their promotional or inhibitory role in four common digestive system tumors, including pancreatic, colorectal, gastric, and hepatocellular cancers. In particular, the review emphasizes the role of ILC in associating chronic inflammation with cancer and the potential for enhanced immunotherapy with cytokine therapy and adoptive immune cell therapy.
Collapse
Affiliation(s)
- Guanliang Shen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinda Han
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Zehao Wei
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiumei Wang
- Affiliated Cancer Hospital of Inner Mongolia Medical University, 010020, Inner Mongolia, China
| | | | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
10
|
Jakobs J, Bertram J, Rink L. Ca 2+ signals are essential for T-cell proliferation, while Zn 2+ signals are necessary for T helper cell 1 differentiation. Cell Death Discov 2024; 10:336. [PMID: 39043646 PMCID: PMC11266428 DOI: 10.1038/s41420-024-02104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
The regulation of T-cell fate is crucial for the balance between infection control and tolerance. Calcium (Ca2+) and zinc (Zn2+) signals are both induced after T-cell stimulation, but their specific roles in the fate of activation and differentiation remain to be elucidated. Are Zn2+- and Ca2+ signals responsible for different aspects in T-cell activation and differentiation and do they act in concert or in opposition? It is crucial to understand the interplay of the intracellular signals to influence the fate of T cells in diseases with undesirable T-cell activities or in Zn2+-deficient patients. Human peripheral blood mononuclear cells were stimulated with the Zn2+ ionophore pyrithione and thapsigargin, an inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). Intracellular Zn2+ and Ca2+ signals were monitored by flow cytometry and ELISA, quantitative PCR and western blot were used to evaluate T-cell differentiation and the underlying molecular mechanism. We found that Zn2+ signals upregulated the early T-cell activation marker CD69, interferon regulatory factor 1 (IRF-1), and Krüppel-like factor 10 (KLF-10) expression, which are important for T helper cell (Th) 1 differentiation. Ca2+ signals, on the other hand, increased T-bet and Forkhead box P3 (FoxP3) expression and interleukin (IL)-2 release. Most interestingly, the combination of Zn2+ and Ca2+ signals was indispensable to induce interferon (IFN)-γ expression and increased the surface expression of CD69 by several-fold. These results highlight the importance of the parallel occurrence of Ca2+ and Zn2+ signals. Both signals act in concert and are required for the differentiation into Th1 cells, for the stabilization of regulatory T cells, and induces T-cell activation by several-fold. This provides further insight into the impaired immune functions of patients with zinc deficiency.
Collapse
Affiliation(s)
- Jana Jakobs
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Jens Bertram
- Institute for Occupational, Social and Environmental Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
11
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Chen Y, Gu X, Cao K, Tu M, Liu W, Ju J. The role of innate lymphoid cells in systemic lupus erythematosus. Cytokine 2024; 179:156623. [PMID: 38685155 DOI: 10.1016/j.cyto.2024.156623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Systemic lupus erythematosus (SLE) is a connective tissue disorder that affects various body systems. Both the innate and adaptive immunity contribute to the onset and progression of SLE. The main mechanism of SLE is an excessive immune response of immune cells to autoantigens, which leads to systemic inflammation and inflammation-induced organ damage. Notably, a subset of innate immune cells known as innate lymphoid cells (ILCs) has recently emerged. ILCs are pivotal in the early stages of infection; participate in immune responses, inflammation, and tissue repair; and regulate the immune function of the body by resisting pathogens and regulating autoimmune inflammation and metabolic homeostasis. Thus, ILCs dysfunction can lead to autoimmune diseases. This review discusses the maturation of ILCs, the potential mechanisms by which ILCs exacerbate SLE pathogenesis, and their contributions to organ inflammatory deterioration in SLE.
Collapse
Affiliation(s)
- Yong Chen
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xiaotian Gu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Miao Tu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wan Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jiyu Ju
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
13
|
Oh M, Jung S, Kim YA, Lee GY, Han SN. Dietary vitamin D 3 supplementation enhances splenic NK cell activity in healthy and diabetic male mice. Nutr Res 2024; 127:144-155. [PMID: 38954977 DOI: 10.1016/j.nutres.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Type 2 diabetes mellitus negatively affects the immune system, resulting in reduced natural killer (NK) cell activity. Vitamin D has been shown to regulate innate and adaptive immune cells. However, the effects of vitamin D on NK cells remain inconclusive, especially in the context of diabetes. We hypothesized that dietary vitamin D3 supplementation can enhance NK cell activity in diabetic mice. Therefore, we investigated the effects of dietary vitamin D3 on NK cell activity in control and diabetic mice and explored the mechanisms of NK cell activity modulation by vitamin D3. Control (CON) and diabetic mice (db/db) were randomly divided into 2 groups, then fed either a control diet (948 IU vitamin D3/kg diet, vDC) or a diet supplemented with vitamin D3 (9,477 IU vitamin D3/kg diet, vDS) for 8 weeks. Diabetic mice exhibited lower NK cell activity than control mice. The vDS group had significantly higher NK cell activity than the vDC group in both control and diabetic mice. The vDS group had a higher percentage of CD11b single-positive NK cells than the vDC group (CON-vDS 34%; db/db-vDS 30%; CON-vDC 27%; db/db-vDC 22%). The intracellular expression of splenic TGF-β was significantly higher in the db/db group than in the CON group. Overall, vDS group had higher Bcl2 and Tbx21 mRNA expressions than the vDC group. In conclusion, the present study shows that NK cell activity is impaired under diabetic conditions, possibly due to the reduced percentage of mature NK cells. Moreover, NK activity is enhanced by dietary supplementation in both control and diabetic mice that may be associated with changes in the proportion of mature NK cells.
Collapse
Affiliation(s)
- Minha Oh
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Sohee Jung
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Ah Kim
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Ga Young Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Sung Nim Han
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
15
|
Bischoff P, Reck M, Overbeck T, Christopoulos P, Rittmeyer A, Lüders H, Kollmeier J, Kulhavy J, Kemper M, Reinmuth N, Röper J, Janning M, Sommer L, Aguinarte L, Koch M, Wiesweg M, Wesseler C, Waller CF, Kauffmann-Guerrero D, Stenzinger A, Stephan-Falkenau S, Trautmann M, Lassmann S, Tiemann M, Klauschen F, Sebastian M, Griesinger F, Wolf J, Loges S, Frost N. Outcome of First-Line Treatment With Pembrolizumab According to KRAS/TP53 Mutational Status for Nonsquamous Programmed Death-Ligand 1-High (≥50%) NSCLC in the German National Network Genomic Medicine Lung Cancer. J Thorac Oncol 2024; 19:803-817. [PMID: 38096950 DOI: 10.1016/j.jtho.2023.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION Programmed death-ligand 1 expression currently represents the only validated predictive biomarker for immune checkpoint inhibition in metastatic NSCLC in the clinical routine, but it has limited value in distinguishing responses. Assessment of KRAS and TP53 mutations (mut) as surrogate for an immunosupportive tumor microenvironment (TME) might help to close this gap. METHODS A total of 696 consecutive patients with programmed death-ligand 1-high (≥50%), nonsquamous NSCLC, having received molecular testing within the German National Network Genomic Medicine Lung Cancer between 2017 and 2020, with Eastern Cooperative Oncology Group performance status less than or equal to 1 and pembrolizumab as first-line palliative treatment, were included into this retrospective cohort analysis. Treatment efficacy and outcome according to KRAS/TP53 status were correlated with TME composition and gene expression analysis of The Cancer Genome Atlas lung adenocarcinoma cohort. RESULTS Proportion of KRASmut and TP53mut was 53% (G12C 25%, non-G12C 28%) and 51%, respectively. In KRASmut patients, TP53 comutations increased response rates (G12C: 69.7% versus 46.5% [TP53mut versus wild-type (wt)], p = 0.004; non-G12C: 55.4% versus 39.5%, p = 0.03), progression-free survival (G12C: hazard ratio [HR] = 0.59, p = 0.009, non-G12C: HR = 0.7, p = 0.047), and overall survival (G12C: HR = 0.72, p = 0.16, non-G12C: HR = 0.56, p = 0.002), whereas no differences were observed in KRASwt patients. After a median follow-up of 41 months, G12C/TP53mut patients experienced the longest progression-free survival and overall survival (33.7 and 65.3 mo), which correlated with high tumor-infiltrating lymphocyte densities in the TME and up-regulation of interferon gamma target genes. Proinflammatory pathways according to TP53 status (mut versus wt) were less enhanced and not different in non-G12C and KRASwt, respectively. CONCLUSIONS G12C/TP53 comutations identify a subset of patients with a very favorable long-term survival with immune checkpoint inhibitor monotherapy, mediated by highly active interferon gamma signaling in a proinflammatory TME.
Collapse
Affiliation(s)
- Philip Bischoff
- Institute of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany
| | - Tobias Overbeck
- Department of Haematology and Medical Oncology, University Medical Center Göttingen and Lungentumorzentrum Universität Göttingen, Göttingen, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Achim Rittmeyer
- Department of Thoracic Oncology, LKI Lungenfachklinik Immenhausen, Immenhausen, Germany
| | - Heike Lüders
- Klinik für Pneumologie-Evangelische Lungenklinik Berlin Buch, Berlin, Germany
| | - Jens Kollmeier
- Helios Klinikum Emil von Behring, Lungenklinik Heckeshorn, Berlin, Germany; Berlin Lung Institute, Berlin, Germany
| | - Jonas Kulhavy
- Translational Oncology/Early Clinical Trial Unit (ECTU), Comprehensive Cancer Center Mainfranken and Bavarian Cancer Research Center (BZKF), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marcel Kemper
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Niels Reinmuth
- Asklepios Lung Clinic, member of the German Center for Lung Research (DZL), Munich-Gauting, Germany
| | - Julia Röper
- Department of Hematology and Oncology, Pius-Hospital, University Dept. of Internal Medicine-Oncology, Oldenburg, Germany
| | - Melanie Janning
- DKFZ-Hector Cancer Institute and Department of Personalized Oncology at the University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Linna Sommer
- Department of Thoracic Oncology, Carl-Gustav-Carus Dresden University Hospital, Dresden, Germany
| | - Lukas Aguinarte
- Hematology/Oncology, Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany
| | - Myriam Koch
- University Hospital Regensburg, Department of Internal Medicine 2, Regensburg, Germany
| | - Marcel Wiesweg
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Claas Wesseler
- Department of Thoracic Oncology, Asklepios Klinikum Harburg, Hamburg, Germany
| | - Cornelius F Waller
- Department of Haematology, Oncology and Stem Cell Transplantation, University Medical Centre Freiburg and Faculty of Medicine, Freiburg, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL-CPCM), Munich, Germany
| | | | | | - Marcel Trautmann
- University of Münster, Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Silke Lassmann
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany; Berlin Institute for the Foundation of Learning and Data (BIFOLD) and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Sebastian
- Hematology/Oncology, Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany
| | - Frank Griesinger
- Department of Hematology and Oncology, Pius-Hospital, University Dept. of Internal Medicine-Oncology, Oldenburg, Germany
| | - Jürgen Wolf
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany
| | - Sonja Loges
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Nikolaj Frost
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany.
| |
Collapse
|
16
|
Li X, Wu M, Lu J, Yu J, Chen D. Interleukin-21 as an adjuvant in cancer immunotherapy: Current advances and future directions. Biochim Biophys Acta Rev Cancer 2024; 1879:189084. [PMID: 38354828 DOI: 10.1016/j.bbcan.2024.189084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Immunotherapy has revolutionized cancer treatment. However, it's well-recognized that a considerable proportion of patients fail to benefit from immunotherapy, and to improve immunotherapy response is clinically urgent. Insufficient immune infiltration and immunosuppressive tumor microenvironments (TME) are main contributors to immunotherapy resistance. Thus sustaining functional self-renewal capacity for immune cells and subverting immune-suppressive signals are potential strategies for boosting the efficacy of immunotherapy. Interleukin-21 (IL-21), a crucial cytokine, which could enhance cytotoxic function of immune cells and reduces immunosuppressive cells enrichment in TME, shows promising orientations as an immunoadjuvant in tumor immunotherapy. This review focuses on IL-21 in cancer treatment, including function and mechanisms of IL-21, preclinical and clinical studies, and future directions for IL-21-assisted therapies.
Collapse
Affiliation(s)
- Xinyang Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
17
|
Silva JDM, Alves CEDC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol 2024; 15:1297994. [PMID: 38384471 PMCID: PMC10879370 DOI: 10.3389/fimmu.2024.1297994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human pathogen linked to various diseases, including infectious mononucleosis and multiple types of cancer. To control and eliminate EBV, the host's immune system deploys its most potent defenses, including pattern recognition receptors, Natural Killer cells, CD8+ and CD4+ T cells, among others. The interaction between EBV and the human immune system is complex and multifaceted. EBV employs a variety of strategies to evade detection and elimination by both the innate and adaptive immune systems. This demonstrates EBV's mastery of navigating the complexities of the immunological landscape. Further investigation into these complex mechanisms is imperative to advance the development of enhanced therapeutic approaches with heightened efficacy. This review provides a comprehensive overview of various mechanisms known to date, employed by the EBV to elude the immune response, while establishing enduring latent infections or instigate its lytic replication.
Collapse
Affiliation(s)
- Jean de Melo Silva
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Gemilson Soares Pontes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
18
|
Kongkatitham V, Dehlinger A, Chaotham C, Likhitwitayawuid K, Böttcher C, Sritularak B. Diverse modulatory effects of bibenzyls from Dendrobium species on human immune cell responses under inflammatory conditions. PLoS One 2024; 19:e0292366. [PMID: 38300920 PMCID: PMC10833532 DOI: 10.1371/journal.pone.0292366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 02/03/2024] Open
Abstract
Dendrobium plants are widely used in traditional Chinese medicine. Their secondary metabolites such as bibenzyls and phenanthrenes show various pharmacological benefits such as immunomodulation and inhibitory effects on cancer cell growth. However, our previous study also showed that some of these promising compounds (i.e., gigantol and cypripedin) also induced the expression of inflammatory cytokines including TNF in human monocytes, and thus raising concerns about the use of these compounds in clinical application. Furthermore, the effects of these compounds on other immune cell populations, apart from monocytes, remain to be investigated. In this study, we evaluated immunomodulatory effects of seven known bibenzyl compounds purified from Dendrobium species in human peripheral blood mononuclear cells (PBMCs) that were stimulated with lipopolysaccharide (LPS). Firstly, using flow cytometry, moscatilin (3) and crepidatin (4) showed the most promising dose-dependent immunomodulatory effects among all seven bibenzyls, determined by significant reduction of TNF expression in LPS-stimulated CD14+ monocytes. Only crepidatin at the concentration of 20 μM showed a significant cytotoxicity, i.e., an increased cell death in late apoptotic state. In addition, deep immune profiling using high-dimensional single-cell mass cytometry (CyTOF) revealed broad effects of Dendrobium compounds on diverse immune cell types. Our findings suggest that to precisely evaluate therapeutic as well as adverse effects of active natural compounds, a multi-parameter immune profiling targeting diverse immune cell population is required.
Collapse
Affiliation(s)
- Virunh Kongkatitham
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Rodrigues RR, Freitas VS, Alves PM, Almeida Freitas RD, Souza LBD, Andrade Santos PPD. Evaluation of the presence of Th1 response through T-bet and IFN-gamma immunohistochemical expression in lower lip and oral tongue squamous cell carcinomas. Pathol Res Pract 2024; 253:155010. [PMID: 38101155 DOI: 10.1016/j.prp.2023.155010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Evaluate the immunohistochemical expression of T-bet and IFN-γ in lower lip (LLSCC) and oral tongue squamous cell carcinoma (OTSCC), verifying the presence of Th1 responses in lesions with different clinical conditions. METHODS AND MATERIALS Thirty OTSCC and 30 LLSCC were analyzed by immunohistochemistry. T-bet was quantitatively assessed by parenchyma cell and stroma quantification, and IFN-γ was semi-quantitatively analyzed: 1:0-25%; 2:26-50%; 3:51-75%; 4:> 75% immunopositive cells. Histological differentiation degrees were categorized as well differentiated (WD), moderately differentiated (MD), or poorly differentiated (PD). RESULTS OTSCC presented the highest number of T-bet+, parenchyma (p: 0.006), stroma (p: 0.156), parenchyma/stroma (p: 0.015), with no relationship to histological malignancy grade. IFN-γ higher concentrations in LLSCC were detected in parenchyma, stroma and in parenchyma/stroma (p: 0.000), as well as greater immunoreactivity in WD and MD (p: 0.001). In OTSCC, a positive and statistically significant correlation was observed between T-bet+ in parenchyma and IFN-γ in stroma(r: 0.388; p: 0.034), in addition to a statistically significant positive correlation between T-bet in parenchyma compared to stroma(r: 0.411; p: 0.024) and for IFN-γ in both parenchyma and stroma(r: 0.775; p: 0.000) in LLSCC. Higher T-bet+ was observed in OTSCCs, although higher IFN-γ was detected in LLSCCs. CONCLUSION Thus, we suggest that, even though LLSCC presented lower T-bet+, the favorable microenvironment in these lesions led to an expressive activation of IFN-γ by T-bet+, considerably acting on Th1 differentiation and in antitumor activity, which, admittedly, present less aggressive behavior, reinforcing once again the important role of this cytokine and its use in strategy to fight cancer.
Collapse
Affiliation(s)
| | - Valéria Souza Freitas
- Department of Dentistry, State University of Feira de Santana (UEFS), Feira de Santana, BA, Brazil
| | - Pollianna Muniz Alves
- Department of Dentistry, State University of Paraíba (UEPB), Campina Grande, PB, Brazil
| | | | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | |
Collapse
|
20
|
Jiang X, Du W, Yang C, Wang S, Li Y, Shen X, Yang X, Yao J, Du R, Zhang X, Huang Y, Shen W. TBX21 attenuates colorectal cancer progression via an ARHGAP29/RSK/GSK3β dependent manner. Cell Oncol (Dordr) 2023; 46:1269-1283. [PMID: 37067748 DOI: 10.1007/s13402-023-00809-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE Previous studies have shown that TBX21 (T-Box Transcription Factor 21) plays a vital role in coordinating multiple aspects of the immune response especially type 1 immune response as well as tumor progression. However, the function of TBX21 in colorectal cancer (CRC) remains unclear. METHODS IHC to investigate TBX21 expression in CRC tissues. Cell proliferation and apoptosis assays to validate TBX21 function in vitro and in vivo. RNA-seq assay to explore target genes of TBX21. Human phospho-kinase array assay to explore down-stream signaling of TBX21. RESULTS We disclosed that the expression of TBX21 was marked decreased in CRC versus normal tissue, and negatively correlated with CRC TNM stages. Surprisingly, we found that the CRC and normal cell lines show no TBX21 expression levels. Ectopic expression of TBX21 inhibited cell proliferation and promoted cell apoptosis in vitro. Moreover, RNA-sequence data first time showed that ARHGAP29 acts as the target gene of TBX21 to mediate down-stream signaling activation. Human phospho-kinase array data first time displayed that ectopic expression of TBX21 reduced kinase RSK and GSK3β activation. In contrast, knocked down the expression of TBX21 or ARHGAP29 alternatively abolished TBX21 mediated cell proliferation suppression, cell apoptosis enhancement and RSK/GSK3β activation. In addition, xenograft model studies demonstrated that TBX21 inhibits colorectal tumor progression via ARHGAP29/ RSK/ GSK3β signaling in vivo. CONCLUSIONS In summary, the aforementioned findings suggest a model of TBX21 in suppressing CRC progression. This may provide a promising target for CRC therapy.
Collapse
Affiliation(s)
- Xinyu Jiang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Wenfei Du
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Chenglong Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Shuying Wang
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, China
| | - Yifei Li
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, Jining, 272067, China
| | - Xinzhuang Shen
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, Jining, 272067, China
| | - Xiaowen Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Jie Yao
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, Jining, 272000, China
| | - Renle Du
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China.
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
21
|
Lee MJ, Blish CA. Defining the role of natural killer cells in COVID-19. Nat Immunol 2023; 24:1628-1638. [PMID: 37460639 PMCID: PMC10538371 DOI: 10.1038/s41590-023-01560-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 09/20/2023]
Abstract
Natural killer (NK) cells are critical effectors of antiviral immunity. Researchers have therefore sought to characterize the NK cell response to coronavirus disease 2019 (COVID-19) and the virus that causes it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The NK cells of patients with severe COVID-19 undergo extensive phenotypic and functional changes. For example, the NK cells from critically ill patients with COVID-19 are highly activated and exhausted, with poor cytotoxic function and cytokine production upon stimulation. The NK cell response to SARS-CoV-2 is also modulated by changes induced in virally infected cells, including the ability of a viral peptide to bind HLA-E, preventing NK cells from receiving inhibitory signals, and the downregulation of major histocompatibility complex class I and ligands for the activating receptor NKG2D. These changes have important implications for the ability of infected cells to escape NK cell killing. The implications of these findings for antibody-dependent NK cell activity in COVID-19 are also reviewed. Despite these advances in the understanding of the NK cell response to SARS-CoV-2, there remain critical gaps in our current understanding and a wealth of avenues for future research on this topic.
Collapse
Affiliation(s)
- Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Kudling TV, Clubb JH, Pakola S, Quixabeira DC, Lähdeniemi IA, Heiniö C, Arias V, Havunen R, Cervera-Carrascon V, Santos JM, Sutinen E, Räsänen J, Borenius K, Mäyränpää MI, Aaltonen E, Sorsa S, Hemminki O, Kanerva A, Verschuren EW, Ilonen I, Hemminki A. Effective intravenous delivery of adenovirus armed with TNFα and IL-2 improves anti-PD-1 checkpoint blockade in non-small cell lung cancer. Oncoimmunology 2023; 12:2241710. [PMID: 37546696 PMCID: PMC10399490 DOI: 10.1080/2162402x.2023.2241710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
Lung cancer remains among the most difficult-to-treat malignancies and is the leading cause of cancer-related deaths worldwide. The introduction of targeted therapies and checkpoint inhibitors has improved treatment outcomes; however, most patients with advanced-stage non-small cell lung cancer (NSCLC) eventually fail these therapies. Therefore, there is a major unmet clinical need for checkpoint refractory/resistant NSCLC. Here, we tested the combination of aPD-1 and adenovirus armed with TNFα and IL-2 (Ad5-CMV-mTNFα/mIL-2) in an immunocompetent murine NSCLC model. Moreover, although local delivery has been standard for virotherapy, treatment was administered intravenously to facilitate clinical translation and putative routine use. We showed that treatment of tumor-bearing animals with aPD-1 in combination with intravenously injected armed adenovirus significantly decreased cancer growth, even in the presence of neutralizing antibodies. We observed an increased frequency of cytotoxic tumor-infiltrating lymphocytes, including tumor-specific cells. Combination treatment led to a decreased percentage of immunosuppressive tumor-associated macrophages and an improvement in dendritic cell maturation. Moreover, we observed expansion of the tumor-specific memory T cell compartment in secondary lymphoid organs in the group that received aPD-1 with the virus. However, although the non-replicative Ad5-CMV-mTNFα/mIL-2 virus allows high transgene expression in the murine model, it does not fully reflect the clinical outcome in humans. Thus, we complemented our findings using NSCLC ex vivo models fully permissive for the TNFα and IL-2- armed oncolytic adenovirus TILT-123. Overall, our data demonstrate the ability of systemically administered adenovirus armed with TNFα and IL-2 to potentiate the anti-tumor efficacy of aPD-1 and warrant further investigation in clinical trials.
Collapse
Affiliation(s)
- Tatiana V. Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - James H.A. Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dafne C.A. Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Iris A.K. Lähdeniemi
- Translational Lung Cancer Research Group, Institute for Molecular Medicine Finland (FIMM), HiLife, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao M. Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Eva Sutinen
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Jari Räsänen
- General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristian Borenius
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko I. Mäyränpää
- Pathology, University of Helsinki and Helsinki University Hospital (HUSLAB), Helsinki, Finland
| | - Eero Aaltonen
- Faculty of Medicine, Medicum, University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Otto Hemminki
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Gynecology and Obstetrics, Helsinki University Hospital, Helsinki, Finland
| | - Emmy W. Verschuren
- Translational Lung Cancer Research Group, Institute for Molecular Medicine Finland (FIMM), HiLife, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Ilkka Ilonen
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- General Thoracic and Esophageal Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
23
|
Ford SL, Buus TB, Nastasi C, Geisler C, Bonefeld CM, Ødum N, Woetmann A. In vitro differentiated human CD4 + T cells produce hepatocyte growth factor. Front Immunol 2023; 14:1210836. [PMID: 37520551 PMCID: PMC10374024 DOI: 10.3389/fimmu.2023.1210836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Differentiation of naive CD4+ T cells into effector T cells is a dynamic process in which the cells are polarized into T helper (Th) subsets. The subsets largely consist of four fundamental categories: Th1, Th2, Th17, and regulatory T cells. We show that human memory CD4+ T cells can produce hepatocyte growth factor (HGF), a pleiotropic cytokine which can affect several tissue types through signaling by its receptor, c-Met. In vitro differentiation of T cells into Th-like subsets revealed that HGF producing T cells increase under Th1 conditions. Enrichment of HGF producing cells was possible by targeting cells with surface CD30 expression, a marker discovered through single-cell RNA-sequencing. Furthermore, pharmacological inhibition of PI3K or mTOR was found to inhibit HGF mRNA and protein, while an Akt inhibitor was found to increase these levels. The findings suggest that HGF producing T cells could play a role in disease where Th1 are present.
Collapse
Affiliation(s)
- Shayne Lavondua Ford
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Immunopharmacology Unit, Department of Oncology, Mario Negri Pharmacological Research Institute (Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)), Milan, Italy
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Ait Djebbara S, Mcheik S, Percier P, Segueni N, Poncelet A, Truyens C. The macrophage infectivity potentiator of Trypanosoma cruzi induces innate IFN-γ and TNF-α production by human neonatal and adult blood cells through TLR2/1 and TLR4. Front Immunol 2023; 14:1180900. [PMID: 37304288 PMCID: PMC10250606 DOI: 10.3389/fimmu.2023.1180900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
We previously identified the recombinant (r) macrophage (M) infectivity (I) potentiator (P) of the protozoan parasite Trypanosoma cruzi (Tc) (rTcMIP) as an immuno-stimulatory protein that induces the release of IFN-γ, CCL2 and CCL3 by human cord blood cells. These cytokines and chemokines are important to direct a type 1 adaptive immune response. rTcMIP also increased the Ab response and favored the production of the Th1-related isotype IgG2a in mouse models of neonatal vaccination, indicating that rTcMIP could be used as a vaccine adjuvant to enhance T and B cell responses. In the present study, we used cord and adult blood cells, and isolated NK cells and human monocytes to investigate the pathways and to decipher the mechanism of action of the recombinant rTcMIP. We found that rTcMIP engaged TLR1/2 and TLR4 independently of CD14 and activated the MyD88, but not the TRIF, pathway to induce IFN-γ production by IL-15-primed NK cells, and TNF-α secretion by monocytes and myeloid dendritic cells. Our results also indicated that TNF-α boosted IFN-γ expression. Though cord blood cells displayed lower responses than adult cells, our results allow to consider rTcMIP as a potential pro-type 1 adjuvant that might be associated to vaccines administered in early life or later.
Collapse
Affiliation(s)
- Sarra Ait Djebbara
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Saria Mcheik
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pauline Percier
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Service Immune Response, Sciensano, Brussels, Belgium
| | - Noria Segueni
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antoine Poncelet
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
25
|
Korchagina AA, Shein SA, Koroleva E, Tumanov AV. Transcriptional control of ILC identity. Front Immunol 2023; 14:1146077. [PMID: 36969171 PMCID: PMC10033543 DOI: 10.3389/fimmu.2023.1146077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are heterogeneous innate immune cells which participate in host defense, mucosal repair and immunopathology by producing effector cytokines similarly to their adaptive immune cell counterparts. The development of ILC1, 2, and 3 subsets is controlled by core transcription factors: T-bet, GATA3, and RORγt, respectively. ILCs can undergo plasticity and transdifferentiate to other ILC subsets in response to invading pathogens and changes in local tissue environment. Accumulating evidence suggests that the plasticity and the maintenance of ILC identity is controlled by a balance between these and additional transcription factors such as STATs, Batf, Ikaros, Runx3, c-Maf, Bcl11b, and Zbtb46, activated in response to lineage-guiding cytokines. However, how interplay between these transcription factors leads to ILC plasticity and the maintenance of ILC identity remains hypothetical. In this review, we discuss recent advances in understanding transcriptional regulation of ILCs in homeostatic and inflammatory conditions.
Collapse
|
26
|
Taggenbrock RLRE, van Gisbergen KPJM. ILC1: Development, maturation, and transcriptional regulation. Eur J Immunol 2023; 53:e2149435. [PMID: 36408791 PMCID: PMC10099236 DOI: 10.1002/eji.202149435] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Type 1 Innate Lymphoid cells (ILC1s) are tissue-resident cells that partake in the regulation of inflammation and homeostasis. A major feature of ILC1s is their ability to rapidly respond after infections. The effector repertoire of ILC1s includes the pro-inflammatory cytokines IFN-γ and TNF-α and cytotoxic mediators such as granzymes, which enable ILC1s to establish immune responses and to directly kill target cells. Recent advances in the characterization of ILC1s have considerably furthered our understanding of ILC1 development and maintenance in tissues. In particular, it has become clear how ILC1s operate independently from conventional natural killer cells, with which they share many characteristics. In this review, we discuss recent developments with regards to the differentiation, polarization, and effector maturation of ILC1s. These processes may underlie the observed heterogeneity in ILC1 populations within and between different tissues. Next, we highlight transcriptional programs that control each of the separate steps in the differentiation of ILC1s. These transcriptional programs are shared with other tissue-resident type-1 lymphocytes, such as tissue-resident memory T cells (TRM ) and invariant natural killer T cells (iNKT), highlighting that ILC1s utilize networks of transcriptional regulation that are conserved between lymphocyte lineages to respond effectively to tissue-invading pathogens.
Collapse
Affiliation(s)
- Renske L R E Taggenbrock
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Zhang Z, Sun H, Mariappan R, Chen X, Chen X, Jain MS, Efremova M, Teichmann SA, Rajan V, Zhang X. scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection. Nat Commun 2023; 14:384. [PMID: 36693837 PMCID: PMC9873790 DOI: 10.1038/s41467-023-36066-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Single cell data integration methods aim to integrate cells across data batches and modalities, and data integration tasks can be categorized into horizontal, vertical, diagonal, and mosaic integration, where mosaic integration is the most general and challenging case with few methods developed. We propose scMoMaT, a method that is able to integrate single cell multi-omics data under the mosaic integration scenario using matrix tri-factorization. During integration, scMoMaT is also able to uncover the cluster specific bio-markers across modalities. These multi-modal bio-markers are used to interpret and annotate the clusters to cell types. Moreover, scMoMaT can integrate cell batches with unequal cell type compositions. Applying scMoMaT to multiple real and simulated datasets demonstrated these features of scMoMaT and showed that scMoMaT has superior performance compared to existing methods. Specifically, we show that integrated cell embedding combined with learned bio-markers lead to cell type annotations of higher quality or resolution compared to their original annotations.
Collapse
Affiliation(s)
- Ziqi Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haoran Sun
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ragunathan Mariappan
- Department of Information Systems and Analytics, National University of Singapore, Singapore, Singapore
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinyu Chen
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | - Vaibhav Rajan
- Department of Information Systems and Analytics, National University of Singapore, Singapore, Singapore
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
28
|
Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A, Borji H. Antitumor Mechanisms of Molecules Secreted by Trypanosoma cruzi in Colon and Breast Cancer: A Review. Anticancer Agents Med Chem 2023; 23:1710-1721. [PMID: 37254546 DOI: 10.2174/1871520623666230529141544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Molecules secreted by Trypanosoma cruzi (T. cruzi) have beneficial effects on the immune system and can fight against cancer by inhibiting the growth of tumor cells, preventing angiogenesis, and promoting immune activation. OBJECTIVE This study aimed to investigate the effects of molecules secreted by Trypanosoma cruzi on the growth of colon and breast cancer cells, to understand the underlying mechanisms of action. RESULTS Calreticulin from T. cruzi, a 45 kDa protein, participates in essential changes in the tumor microenvironment by triggering an adaptive immune response, exerting an antiangiogenic effect, and inhibiting cell growth. On the other hand, a 21 kDa protein (P21) secreted at all stages of the parasite's life cycle can inhibit cell invasion and migration. Mucins, such as Tn, sialyl-Tn, and TF, are present both in tumor cells and on the surface of T. cruzi and are characterized as common antigenic determinants, inducing a cross-immune response. In addition, molecules secreted by the parasite are used recombinantly in immunotherapy against cancer for their ability to generate a reliable and long-lasting immune response. CONCLUSION By elucidating the antitumor mechanisms of the molecules secreted by T. cruzi, this study provides valuable insights for developing novel therapeutic strategies to combat colon and breast cancer.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shakila Ghiassi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Narges Lotfalizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pouria Ahmadi Simab
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
29
|
Persyn E, Wahlen S, Kiekens L, Van Loocke W, Siwe H, Van Ammel E, De Vos Z, Van Nieuwerburgh F, Matthys P, Taghon T, Vandekerckhove B, Van Vlierberghe P, Leclercq G. IRF2 is required for development and functional maturation of human NK cells. Front Immunol 2022; 13:1038821. [PMID: 36544762 PMCID: PMC9762550 DOI: 10.3389/fimmu.2022.1038821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic and cytokine-producing lymphocytes that play an important role in the first line of defense against malignant or virus-infected cells. A better understanding of the transcriptional regulation of human NK cell differentiation is crucial to improve the efficacy of NK cell-mediated immunotherapy for cancer treatment. Here, we studied the role of the transcription factor interferon regulatory factor (IRF) 2 in human NK cell differentiation by stable knockdown or overexpression in cord blood hematopoietic stem cells and investigated its effect on development and function of the NK cell progeny. IRF2 overexpression had limited effects in these processes, indicating that endogenous IRF2 expression levels are sufficient. However, IRF2 knockdown greatly reduced the cell numbers of all early differentiation stages, resulting in decimated NK cell numbers. This was not caused by increased apoptosis, but by decreased proliferation. Expression of IRF2 is also required for functional maturation of NK cells, as the remaining NK cells after silencing of IRF2 had a less mature phenotype and showed decreased cytotoxic potential, as well as a greatly reduced cytokine secretion. Thus, IRF2 plays an important role during development and functional maturation of human NK cells.
Collapse
Affiliation(s)
- Eva Persyn
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sigrid Wahlen
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laura Kiekens
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hannah Siwe
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Zenzi De Vos
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, K.U. Leuven, Leuven, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Vandekerckhove
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,Cancer Research Institute Ghent (CRIG), Ghent, Belgium,*Correspondence: Georges Leclercq,
| |
Collapse
|
30
|
Fionda C, Ruggeri S, Sciumè G, Laffranchi M, Quinti I, Milito C, Palange P, Menichini I, Sozzani S, Frati L, Gismondi A, Santoni A, Stabile H. Age-dependent NK cell dysfunctions in severe COVID-19 patients. Front Immunol 2022; 13:1039120. [PMID: 36466890 PMCID: PMC9713640 DOI: 10.3389/fimmu.2022.1039120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 09/20/2023] Open
Abstract
Natural Killer (NK) cells are key innate effectors of antiviral immune response, and their activity changes in ageing and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated the age-related changes of NK cell phenotype and function during SARS-CoV-2 infection, by comparing adult and elderly patients both requiring mechanical ventilation. Adult patients had a reduced number of total NK cells, while elderly showed a peculiar skewing of NK cell subsets towards the CD56lowCD16high and CD56neg phenotypes, expressing activation markers and check-point inhibitory receptors. Although NK cell degranulation ability is significantly compromised in both cohorts, IFN-γ production is impaired only in adult patients in a TGF-β-dependent manner. This inhibitory effect was associated with a shorter hospitalization time of adult patients suggesting a role for TGF-β in preventing an excessive NK cell activation and systemic inflammation. Our data highlight an age-dependent role of NK cells in shaping SARS-CoV-2 infection toward a pathophysiological evolution.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Ruggeri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ilaria Menichini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Luigi Frati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
31
|
Sato M, Arakaki R, Tawara H, Nagao R, Tanaka H, Tamura K, Kawahito Y, Otsuka K, Ushio A, Tsunematsu T, Ishimaru N. Disturbed natural killer cell homeostasis in the salivary gland enhances autoimmune pathology via IFN-γ in a mouse model of primary Sjögren's syndrome. Front Med (Lausanne) 2022; 9:1036787. [PMID: 36388880 PMCID: PMC9643684 DOI: 10.3389/fmed.2022.1036787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE Innate lymphoid cells (ILCs), including natural killer (NK) cells, ILC1, ILC2, lymphoid tissue-inducer (LTi) cells, and ILC3 cell, play a key role in various immune responses. Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by chronic inflammation of exocrine glands, such as the lacrimal and salivary glands (SGs). The role of NK cells among ILCs in the pathogenesis of pSS is still unclear. In this study, the characteristics and subsets of NK cells in the salivary gland (SG) tissue were analyzed using a murine model of pSS. METHODS Multiple phenotypes and cytotoxic signature of the SG NK cells in control and pSS model mice were evaluated by flow cytometric analysis. Intracellular expression of interferon-γ (IFN-γ) among T cells and NK cells from the SG tissues was compared by in vitro experiments. In addition, pathological analysis was performed using anti-asialo-GM1 (ASGM1) antibody (Ab)-injected pSS model mice. RESULTS The number of conventional NK (cNK) cells in the SG of pSS model mice significantly increased compared with that in control mice at 6 weeks of age. The production level of IFN-γ was significantly higher in SG NK cells than in SG T cells. The depletion of NK cells by ASGM1 Ab altered the ratio of tissue resident NK (rNK) cells to cNK cells, which inhibited the injury to SG cells with the recovery of saliva secretion in pSS model mice. CONCLUSION The results indicate that SG cNK cells may enhance the autoreactive response in the target organ by upregulating of IFN-γ, whereas SG rNK cells protect target cells against T cell cytotoxicity. Therefore, the activation process and multiple functions of NK cells in the target organ could be helpful to develop potential markers for determining autoimmune disease activity and target molecules for incurable immune disorders.
Collapse
|
32
|
Kang J, Liggett JR, Patil D, Ranjit S, Loh K, Duttargi A, Cui Y, Oza K, Frank BS, Kwon D, Kallakury B, Robson SC, Fishbein TM, Cui W, Khan K, Kroemer A. Type 1 Innate Lymphoid Cells Are Proinflammatory Effector Cells in Ischemia-Reperfusion Injury of Steatotic Livers. Front Immunol 2022; 13:899525. [PMID: 35833123 PMCID: PMC9272906 DOI: 10.3389/fimmu.2022.899525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs), the most recently described family of lymphoid cells, play fundamental roles in tissue homeostasis through the production of key cytokine. Group 1 ILCs, comprised of conventional natural killer cells (cNKs) and type 1 ILCs (ILC1s), have been implicated in regulating immune-mediated inflammatory diseases. However, the role of ILC1s in nonalcoholic fatty liver disease (NAFLD) and ischemia-reperfusion injury (IRI) is unclear. Here, we investigated the role of ILC1 and cNK cells in a high-fat diet (HFD) murine model of partial warm IRI. We demonstrated that hepatic steatosis results in more severe IRI compared to non-steatotic livers. We further elicited that HFD-IRI mice show a significant increase in the ILC1 population, whereas the cNK population was unchanged. Since ILC1 and cNK are major sources of IFN-γ and TNF-α, we measured the level of ex vivo cytokine expression in normal diet (ND)-IRI and HFD-IRI conditions. We found that ILC1s in HFD-IRI mice produce significantly more IFN-γ and TNF-α when compared to ND-IRI. To further assess whether ILC1s are key proinflammatory effector cells in hepatic IRI of fatty livers, we studied both Rag1−/− mice, which possess cNK cells, and a substantial population of ILC1s versus the newly generated Rag1−/−Tbx21−/− double knockout (Rag1-Tbet DKO) mice, which lack type 1 ILCs, under HFD IRI conditions. Importantly, HFD Rag1-Tbet DKO mice showed significant protection from hepatic injury upon IRI when compared to Rag1−/− mice, suggesting that T-bet-expressing ILC1s play a role, at least in part, as proinflammatory effector cells in hepatic IRI under steatotic conditions.
Collapse
Affiliation(s)
- Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Jedson R. Liggett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
- Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Katrina Loh
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Kesha Oza
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Brett S. Frank
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - DongHyang Kwon
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Bhaskar Kallakury
- Department of Pathology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Simon C. Robson
- Departments of Anesthesiology and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Thomas M. Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Wanxing Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, United States
- *Correspondence: Alexander Kroemer, ;
| |
Collapse
|
33
|
Liu S, Meng Y, Liu L, Lv Y, Yu W, Liu T, Wang L, Mu D, Zhou Q, Liu M, Ren Y, Zhang D, Li B, Sun Q, Ren X. CD4 + T cells are required to improve the efficacy of CIK therapy in non-small cell lung cancer. Cell Death Dis 2022; 13:441. [PMID: 35523765 PMCID: PMC9076680 DOI: 10.1038/s41419-022-04882-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
As a widely studied adoptive treatment method, CIK (cytokine-induced killer cells) treatment has shown clinical benefits in many clinical trials on non-small cell lung cancer. As a heterogeneous cell population, however, CIK cells have a strong instability and individual differences in their efficacies, which are collaboratively regulated by the tumor microenvironment and CIK subpopulations. Among them, CD4+ T cells belong to a crucial subgroup of the CIK cell population, and their influence on CIK therapy is still unclear. Herein, we show how CD4+ T cells positively regulate the functions of CD3+CD56+ T and CD3+CD8+ T cells. During this process, we found that Th1/Th17 CD4+ subgroups can induce the phosphorylation of the AKT pathway by secreting IL-17A, and upregulate the expression of T-bet/Eomes transcription factors, thereby restoring the function of CD8+/CD3+CD56+ T cells and reversing the exhaustion of PD-1+Tim-3+ T cells. These findings will provide guidance for the clinical screening of suitable populations for CIK treatment and formulation of strategies for CIK therapy plus immune checkpoint treatment. Based on these findings, we are conducting an open-label phase II study (NCT04836728) is to evaluate the effects of autologous CIKs in combination with PD-1 inhibitor in the first-line treatment of IV NSCLC, and hope to observe patients' benefits in this clinical trial.
Collapse
Affiliation(s)
- Shaochuan Liu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuan Meng
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liang Liu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yingge Lv
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Yu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ting Liu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Limei Wang
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Di Mu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiuru Zhou
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Min Liu
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yulin Ren
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dong Zhang
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Baihui Li
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qian Sun
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- grid.411918.40000 0004 1798 6427Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin, China ,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
34
|
Huang M, Cai H, Han B, Xia Y, Kong X, Gu J. Natural Killer Cells in Hepatic Ischemia-Reperfusion Injury. Front Immunol 2022; 13:870038. [PMID: 35418990 PMCID: PMC8996070 DOI: 10.3389/fimmu.2022.870038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion injury can be divided into two phases, including insufficient supply of oxygen and nutrients in the first stage and then organ injury caused by immune inflammation after blood flow recovery. Hepatic ischemia-reperfusion is an important cause of liver injury post-surgery, consisting of partial hepatectomy and liver transplantation, and a central driver of graft dysfunction, which greatly leads to complications and mortality after liver transplantation. Natural killer (NK) cells are the lymphocyte population mainly involved in innate immune response in the human liver. In addition to their well-known role in anti-virus and anti-tumor defense, NK cells are also considered to regulate the pathogenesis of liver ischemia-reperfusion injury under the support of more and more evidence recently. The infiltration of NK cells into the liver exacerbates the hepatic ischemia-reperfusion injury, which could be significantly alleviated after depletion of NK cells. Interestingly, NK cells may contribute to both liver graft rejection and tolerance according to their origins. In this article, we discussed the development of liver NK cells, their role in ischemia-reperfusion injury, and strategies of inhibiting NK cell activation in order to provide potential possibilities for translation application in future clinical practice.
Collapse
Affiliation(s)
- Miao Huang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Cai
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Khokhar M, Tomo S, Gadwal A, Purohit P. Multi-omics integration and interactomics reveals molecular networks and regulators of the beneficial effect of yoga and exercise. Int J Yoga 2022; 15:25-39. [PMID: 35444372 PMCID: PMC9015089 DOI: 10.4103/ijoy.ijoy_146_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background Yoga is a multifaceted spiritual tool that helps in maintaining health, peace of mind, and positive thoughts. In the context of asana, yoga is similar to physical exercise. This study aims to construct a molecular network to find hub genes that play important roles in physical exercise and yoga. Methodology We combined differentially expressed genes (DEGs) in yoga and exercise using computational bioinformatics from publicly available gene expression omnibus (GEO) datasets and identified the codifferentially expressed mRNAs with GEO2R. The co-DEGs were divided into four different groups and each group was subjected to protein-protein interaction (PPI) network, pathways analysis, and gene ontology. Results Our study identified immunological modulation as a dominant target of differential expression in yoga and exercise. Yoga predominantly modulated genes affecting the Th1 and NK cells, whereas Cytokines, Macrophage activation, and oxidative stress were affected by exercise. We also observed that while yoga regulated genes for two main physiological functions of the body, namely Circadian Rhythm (BHLHE40) and immunity (LBP, T-box transcription factor 21, CEACAM1), exercise-regulated genes involved in apoptosis (BAG3, protein kinase C alpha), angiogenesis, and cellular adhesion (EPH receptor A1). Conclusion The dissimilarity in the genetic expression patterns in Yoga and exercise highlights the discrete effect of each in biological systems. The integration and convergences of multi-omics signals can provide deeper and comprehensive insights into the various biological mechanisms through which yoga and exercise exert their beneficial effects and opens up potential newer research areas.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,Department of Biochemistry, Santosh Medical College, Ghaziabad, Uttar Pradesh, India
| | - Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India,Address for correspondence: Dr. Purvi Purohit, Department of Biochemistry, All India Institute of Medical Sciences, Basni Industrial Area, Phase-2, Jodhpur - 342 005, Rajasthan, India. E-mail:
| |
Collapse
|