1
|
Peris-Díaz MD, Deslignière E, Jager S, Mokiem N, Barendregt A, Bondt A, Heck AJR. Asymmetric N-Glycosylation in the Tailpiece of Recombinant IgA1. J Am Chem Soc 2024; 146:34720-34732. [PMID: 39641195 DOI: 10.1021/jacs.4c13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Here, we employed a variety of mass spectrometry (MS)-based approaches, both (glyco)peptide-centric and protein-centric, to resolve the complex glycoproteoform landscape of recombinant IgA1 produced in HEK293 cells. These key immunoglobulins harbor several N- and O-glycosylation sites, making them considerably more heterogeneous than their IgG counterparts. We provide quantitative data on the occupancy and glycan composition for each IgA1 glycosylation site. Combining all data, we revealed that IgA1 molecules consist of at least three distinct populations with varying N-glycosylation site occupancies at the C-terminal tailpiece, namely, one with both glycosylation sites occupied, another with both glycosylation sites unoccupied, and a third asymmetric population with one glycosylation site occupied and the other unoccupied, challenging the prevailing acceptance that IgA1 N-glycosylation is symmetrical. This finding is significant, given that the tailpiece is involved in interactions with the J-chain and the Polymeric Immunoglobulin Receptor, and in general as antibody glycosylation is a quality attribute that needs to be carefully monitored, as the presence and nature of these modifications can affect the antibody's efficacy, lifetime, stability, and binding and/or neutralizing capacities. Optimizing strategies to produce recombinant IgA1 requires efficient and specific quality control analytical strategies, as presented here, which is essential for therapeutic IgA1-based antibody development. We expect that the integrated MS-based strategy presented here may be beneficial to comprehensively characterize the glycoproteoform profiles of IgA1-based therapeutics, thereby improving their production and optimization processes and facilitating the pathway to bring more IgA1-based therapeutics into clinical applications.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Evolène Deslignière
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Shelley Jager
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Nadia Mokiem
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
2
|
Geyer PE, Hornburg D, Pernemalm M, Hauck SM, Palaniappan KK, Albrecht V, Dagley LF, Moritz RL, Yu X, Edfors F, Vandenbrouck Y, Mueller-Reif JB, Sun Z, Brun V, Ahadi S, Omenn GS, Deutsch EW, Schwenk JM. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. J Proteome Res 2024; 23:5279-5295. [PMID: 39479990 PMCID: PMC11629384 DOI: 10.1021/acs.jproteome.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
Collapse
Affiliation(s)
- Philipp E. Geyer
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Hornburg
- Seer,
Inc., Redwood City, California 94065, United States
- Bruker
Scientific, San Jose, California 95134, United States
| | - Maria Pernemalm
- Department
of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core, Helmholtz Zentrum München
GmbH, German Research Center for Environmental Health, 85764 Oberschleissheim,
Munich, Germany
| | | | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Laura F. Dagley
- The
Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Xiaobo Yu
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences-Beijing
(PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fredrik Edfors
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | | | - Johannes B. Mueller-Reif
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Virginie Brun
- Université Grenoble
Alpes, CEA, Leti, Clinatec, Inserm UA13
BGE, CNRS FR2048, Grenoble, France
| | - Sara Ahadi
- Alkahest, Inc., Suite
D San Carlos, California 94070, United States
| | - Gilbert S. Omenn
- Institute
for Systems Biology, Seattle, Washington 98109, United States
- Departments
of Computational Medicine & Bioinformatics, Internal Medicine,
Human Genetics and Environmental Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M. Schwenk
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| |
Collapse
|
3
|
Fiala J, Schuster D, Ollivier S, Pengelley S, Lubeck M, Busch F, Jankevics A, Raether O, Greisch JF, Heck AJR. Protein-Centric Analysis of Personalized Antibody Repertoires Using LC-MS-Based Fab-Profiling on a timsTOF. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1292-1300. [PMID: 38662593 PMCID: PMC11157643 DOI: 10.1021/jasms.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
Endogenous antibodies, or immunoglobulins (Igs), abundantly present in body fluids, represent some of the most challenging samples to analyze, largely due to the immense variability in their sequences and concentrations. It has been estimated that our body can produce billions of different Ig proteins with different isotypes, making their individual analysis seemingly impossible. However, recent advances in protein-centric proteomics using LC-MS coupled to Orbitrap mass analyzers to profile intact Fab fragments formed by selective cleavage at the IgG-hinge revealed that IgG repertoires may be less diverse, albeit unique for each donor. Serum repertoires seem to be dominated by a few hundred clones that cumulatively make up 50-95% of the total IgG content. Enabling such analyses required careful optimization of the chromatography and mass analysis, as all Fab analytes are highly alike in mass (46-51 kDa) and sequence. To extend the opportunities of this mass-spectrometry-based profiling of antibody repertoires, we here report the optimization and evaluation of an alternative MS platform, namely, the timsTOF, for antibody repertoire profiling. The timsTOF mass analyzer has gained traction in recent years for peptide-centric proteomics and found wide applicability in plasma proteomics, affinity proteomics, and HLA peptidomics, to name a few. However, for protein-centric analysis, this platform has been less explored. Here, we demonstrate that the timsTOF platform can be adapted to perform protein-centric LC-MS-based profiling of antibody repertoires. In a side-by-side comparison of the timsTOF and the Orbitrap we demonstrate that the extracted serum antibody repertoires are alike qualitatively and quantitatively, whereby in particular the sensitivity of the timsTOF platform excels. Future incorporation of advanced top-down capabilities on the timsTOF may make this platform a very valuable alternative for protein-centric proteomics and top-down proteomics and thus also for personalized antibody repertoire profiling.
Collapse
Affiliation(s)
- Jan Fiala
- Biomolecular
Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular
Research & Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Dina Schuster
- Biomolecular
Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular
Research & Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Simon Ollivier
- Biomolecular
Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular
Research & Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Stuart Pengelley
- Bruker
Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Markus Lubeck
- Bruker
Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - Florian Busch
- Bruker
Switzerland AG, 8117 Fällanden, Zurich Switzerland
| | - Andris Jankevics
- Biomolecular
Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular
Research & Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Oliver Raether
- Bruker
Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | | | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular
Research & Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Stork EM, van Rijswijck DMH, van Schie KA, Hoek M, Kissel T, Scherer HU, Huizinga TWJ, Heck AJR, Toes REM, Bondt A. Antigen-specific Fab profiling achieves molecular-resolution analysis of human autoantibody repertoires in rheumatoid arthritis. Nat Commun 2024; 15:3114. [PMID: 38600082 PMCID: PMC11006680 DOI: 10.1038/s41467-024-47337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
The presence of autoantibodies is a defining feature of many autoimmune diseases. The number of unique autoantibody clones is conceivably limited by immune tolerance mechanisms, but unknown due to limitations of the currently applied technologies. Here, we introduce an autoantigen-specific liquid chromatography-mass spectrometry-based IgG1 Fab profiling approach using the anti-citrullinated protein antibody (ACPA) repertoire in rheumatoid arthritis (RA) as an example. We show that each patient harbors a unique and diverse ACPA IgG1 repertoire dominated by only a few antibody clones. In contrast to the total plasma IgG1 antibody repertoire, the ACPA IgG1 sub-repertoire is characterised by an expansion of antibodies that harbor one, two or even more Fab glycans, and different glycovariants of the same clone can be detected. Together, our data indicate that the autoantibody response in a prominent human autoimmune disease is complex, unique to each patient and dominated by a relatively low number of clones.
Collapse
Affiliation(s)
- Eva Maria Stork
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Danique M H van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, the Netherlands
| | - Karin A van Schie
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, the Netherlands
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, the Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, Utrecht, the Netherlands.
| |
Collapse
|
5
|
de Graaf SC, Bondt A, van Rijswijck DMH, Juncker HG, Mulleners SJ, Damen MJA, Hoek M, van Keulen BJ, van Goudoever JB, Heck AJR, Dingess KA. A case series exploring the human milk polyclonal IgA1 response to repeated SARS-CoV-2 vaccinations by LC-MS based fab profiling. Front Nutr 2024; 10:1305086. [PMID: 38288064 PMCID: PMC10822949 DOI: 10.3389/fnut.2023.1305086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Upon vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) humans will start to produce antibodies targeting virus specific antigens that will end up in circulation. In lactating women such antibodies will also end up in breastmilk, primarily in the form of secretory immunoglobulin A1 (SIgA1), the most abundant immunoglobulin (Ig) in human milk. Here we set out to investigate the SIgA1 clonal repertoire response to repeated SARS-CoV-2 vaccination, using a LC-MS fragment antigen-binding (Fab) clonal profiling approach. Methods We analyzed the breastmilk of six donors from a larger cohort of 109 lactating mothers who received one of three commonly used SARS-CoV-2 vaccines. We quantitatively monitored the SIgA1 Fab clonal profile over 16 timepoints, from just prior to the first vaccination until 15 days after the second vaccination. Results In all donors, we detected a population of 89-191 vaccine induced clones. These populations were unique to each donor and heterogeneous with respect to individual clonal concentrations, total clonal titer, and population size. The vaccine induced clones were dominated by persistent clones (68%) which came up after the first vaccination and were retained or reoccurred after the second vaccination. However, we also observe transient SIgA1 clones (16%) which dissipated before the second vaccination, and vaccine induced clones which uniquely emerged only after the second vaccination (16%). These distinct populations were observed in all analyzed donors, regardless of the administered vaccine. Discussion Our findings suggest that while individual donors have highly unique human milk SIgA1 clonal profiles and a highly personalized SIgA1 response to SARS-CoV-2 vaccination, there are also commonalities in vaccine induced responses.
Collapse
Affiliation(s)
- Sebastiaan C. de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Danique M. H. van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Hannah G. Juncker
- Department of Pediatrics, Amsterdam Reproduction and Development Research Institute, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Sien J. Mulleners
- Department of Pediatrics, Amsterdam Reproduction and Development Research Institute, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mirjam J. A. Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Britt J. van Keulen
- Department of Pediatrics, Amsterdam Reproduction and Development Research Institute, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Johannes B. van Goudoever
- Department of Pediatrics, Amsterdam Reproduction and Development Research Institute, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
| | - Kelly A. Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands
- Netherlands Proteomics Center, Utrecht, Netherlands
- Department of Pediatrics, Amsterdam Reproduction and Development Research Institute, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Bondt A, Hoek M, Dingess K, Tamara S, de Graaf B, Peng W, den Boer MA, Damen M, Zwart C, Barendregt A, van Rijswijck DMH, Schulte D, Grobben M, Tejjani K, van Rijswijk J, Völlmy F, Snijder J, Fortini F, Papi A, Volta CA, Campo G, Contoli M, van Gils MJ, Spadaro S, Rizzo P, Heck AJR. Into the Dark Serum Proteome: Personalized Features of IgG1 and IgA1 Repertoires in Severe COVID-19 Patients. Mol Cell Proteomics 2024; 23:100690. [PMID: 38065436 PMCID: PMC10784693 DOI: 10.1016/j.mcpro.2023.100690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
Serum proteomics has matured and is now able to monitor hundreds of proteins quantitatively in large cohorts of patients. However, the fine characteristics of some of the most dominant proteins in serum, the immunoglobulins, are in these studies often ignored, due to their vast, and highly personalized, diversity in sequences. Here, we focus exclusively on these personalized features in the serum proteome and distinctively chose to study individual samples from a low diversity population: elderly donors infected by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). By using mass spectrometry-based methods, immunoglobulin IgG1 and IgA1 clonal repertoires were monitored quantitatively and longitudinally in more than 50 individual serum samples obtained from 17 Corona virus disease 2019 patients admitted to intensive care units. These clonal profiles were used to examine how each patient reacted to a severe SARS-CoV-2 infection. All 17 donors revealed unique polyclonal repertoires and substantial changes over time, with several new clones appearing following the infection, in a few cases leading to a few, very high, abundant clones dominating their repertoire. Several of these clones were de novo sequenced through combinations of top-down, middle-down, and bottom-up proteomics approaches. This revealed sequence features in line with sequences deposited in the SARS-CoV-specific antibody database. In other patients, the serological Ig profiles revealed the treatment with tocilizumab, that subsequently dominated their serological IgG1 repertoire. Tocilizumab clearance could be monitored, and a half-life of approximately 6 days was established. Overall, our longitudinal monitoring of IgG1 and IgA1 repertoires of individual donors reveals that antibody responses are highly personalized traits of each patient, affected by the disease and the chosen clinical treatment. The impact of these observations argues for a more personalized and longitudinal approach in patients' diagnostics, both in serum proteomics as well as in monitoring immune responses.
Collapse
Affiliation(s)
- Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Kelly Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Bastiaan de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Mirjam Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Ceri Zwart
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Danique M H van Rijswijck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Franziska Völlmy
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Alberto Papi
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Respiratory Disease Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Intensive Care Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, University of Ferrara, Ferrara, Italy
| | - Marco Contoli
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Respiratory Disease Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy; Intensive Care Unit, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy; Department of Translational Medicine and Laboratory for Technology of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Thesbjerg MN, Nielsen SDH, Sundekilde UK, Poulsen NA, Larsen LB. Fingerprinting of Proteases, Protease Inhibitors and Indigenous Peptides in Human Milk. Nutrients 2023; 15:4169. [PMID: 37836453 PMCID: PMC10574734 DOI: 10.3390/nu15194169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The presence of proteases and their resulting level of activity on human milk (HM) proteins may aid in the generation of indigenous peptides as part of a pre-digestion process, of which some have potential bioactivity for the infant. The present study investigated the relative abundance of indigenous peptides and their cleavage products in relation to the abundance of observed proteases and protease inhibitors. The proteomes and peptidomes in twelve HM samples, representing six donors at lactation months 1 and 3, were profiled. In the proteome, 39 proteases and 29 protease inhibitors were identified in 2/3 of the samples. Cathepsin D was found to be present in higher abundance in the proteome compared with plasmin, while peptides originating from plasmin cleavage were more abundant than peptides from cathepsin D cleavage. As both proteases are present as a system of pro- and active- forms, their activation indexes were calculated. Plasmin was more active in lactation month 3 than month 1, which correlated with the total relative abundance of the cleavage product ascribed to plasmin. By searching the identified indigenous peptides in the milk bioactive peptide database, 283 peptides were ascribed to 10 groups of bioactivities. Antimicrobial peptides were significantly more abundant in month 1 than month 3; this group comprised 103 peptides, originating from the β-CN C-terminal region.
Collapse
Affiliation(s)
- Martin Nørmark Thesbjerg
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Søren Drud-Heydary Nielsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
| | - Ulrik Kræmer Sundekilde
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
| | - Nina Aagaard Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
| | - Lotte Bach Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus, Denmark; (M.N.T.); (N.A.P.)
| |
Collapse
|
8
|
Johnson-Hence CB, Gopalakrishna KP, Bodkin D, Coffey KE, Burr AH, Rahman S, Rai AT, Abbott DA, Sosa YA, Tometich JT, Das J, Hand TW. Stability and heterogeneity in the antimicrobiota reactivity of human milk-derived immunoglobulin A. J Exp Med 2023; 220:e20220839. [PMID: 37462916 PMCID: PMC10354535 DOI: 10.1084/jem.20220839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 04/11/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Immunoglobulin A (IgA) is secreted into breast milk and is critical for both protecting against enteric pathogens and shaping the infant intestinal microbiota. The efficacy of breast milk-derived maternal IgA (BrmIgA) is dependent upon its specificity; however, heterogeneity in BrmIgA binding ability to the infant microbiota is not known. Using a flow cytometric array, we analyzed the reactivity of BrmIgA against bacteria common to the infant microbiota and discovered substantial heterogeneity between all donors, independent of preterm or term delivery. Surprisingly, we also observed intradonor variability in the BrmIgA response to closely related bacterial isolates. Conversely, longitudinal analysis showed that the antibacterial BrmIgA reactivity was relatively stable through time, even between sequential infants, indicating that mammary gland IgA responses are durable. Together, our study demonstrates that the antibacterial BrmIgA reactivity displays interindividual heterogeneity but intraindividual stability. These findings have important implications for how breast milk shapes the development of the preterm infant microbiota and protects against necrotizing enterocolitis.
Collapse
Affiliation(s)
- Chelseá B. Johnson-Hence
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathyayini P. Gopalakrishna
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Darren Bodkin
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara E. Coffey
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ansen H.P. Burr
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed Rahman
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ali T. Rai
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Darryl A. Abbott
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yelissa A. Sosa
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin T. Tometich
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy W. Hand
- Pediatrics Department, Infectious Disease Section, R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Johnson-Hence CB, Gopalakrishna KP, Bodkin D, Coffey KE, Burr AH, Rahman S, Rai AT, Abbott DA, Sosa YA, Tometich JT, Das J, Hand TW. Stability and heterogeneity in the anti-microbiota reactivity of human milk-derived Immunoglobulin A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532940. [PMID: 36993366 PMCID: PMC10055037 DOI: 10.1101/2023.03.16.532940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED Immunoglobulin A (IgA) is secreted into breast milk and is critical to both protecting against enteric pathogens and shaping the infant intestinal microbiota. The efficacy of breast milk-derived maternal IgA (BrmIgA) is dependent upon its specificity, however heterogeneity in BrmIgA binding ability to the infant microbiota is not known. Using a flow cytometric array, we analyzed the reactivity of BrmIgA against bacteria common to the infant microbiota and discovered substantial heterogeneity between all donors, independent of preterm or term delivery. We also observed intra-donor variability in the BrmIgA response to closely related bacterial isolates. Conversely, longitudinal analysis showed that the anti-bacterial BrmIgA reactivity was relatively stable through time, even between sequential infants, indicating that mammary gland IgA responses are durable. Together, our study demonstrates that the anti-bacterial BrmIgA reactivity displays inter-individual heterogeneity but intra-individual stability. These findings have important implications for how breast milk shapes the development of the infant microbiota and protects against Necrotizing Enterocolitis. SUMMARY We analyze the ability of breast milk-derived Immunoglobulin A (IgA) antibodies to bind the infant intestinal microbiota. We discover that each mother secretes into their breast milk a distinct set of IgA antibodies that are stably maintained over time.
Collapse
Affiliation(s)
- Chelseá B. Johnson-Hence
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center
| | - Kathyayini P. Gopalakrishna
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| | - Darren Bodkin
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| | - Kara E. Coffey
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
- Department of Pediatrics, Division of Allergy and Immunology, University of Pittsburgh School of Medicine
| | - Ansen H.P. Burr
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
- Department of Immunology, University of Pittsburgh School of Medicine
| | - Syed Rahman
- Department of Immunology, University of Pittsburgh School of Medicine
- Center for Systems Immunology, University of Pittsburgh School of Medicine
| | - Ali T. Rai
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| | - Darryl A. Abbott
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| | - Yelissa A. Sosa
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| | - Justin T. Tometich
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh School of Medicine
- Center for Systems Immunology, University of Pittsburgh School of Medicine
| | - Timothy W. Hand
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, 15224
- Department of Immunology, University of Pittsburgh School of Medicine
| |
Collapse
|
10
|
Kazieva LS, Farafonova TE, Zgoda VG. [Antibody proteomics]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:5-18. [PMID: 36857423 DOI: 10.18097/pbmc20236901005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Antibodies represent an essential component of humoral immunity; therefore their study is important for molecular biology and medicine. The unique property of antibodies to specifically recognize and bind a certain molecular target (an antigen) determines their widespread application in treatment and diagnostics of diseases, as well as in laboratory and biotechnological practices. High specificity and affinity of antibodies is determined by the presence of primary structure variable regions, which are not encoded in the human genome and are unique for each antibody-producing B cell clone. Hence, there is little or no information about amino acid sequences of the variable regions in the databases. This differs identification of antibody primary structure from most of the proteomic studies because it requires either B cell genome sequencing or de novo amino acid sequencing of the antibody. The present review demonstrates some examples of proteomic and proteogenomic approaches and the methodological arsenal that proteomics can offer for studying antibodies, in particular, for identification of primary structure, evaluation of posttranslational modifications and application of bioinformatics tools for their decoding.
Collapse
Affiliation(s)
- L Sh Kazieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
11
|
Dingess KA, Hoek M, van Rijswijk DMH, Tamara S, den Boer MA, Veth T, Damen MJA, Barendregt A, Romijn M, Juncker HG, van Keulen BJ, Vidarsson G, van Goudoever JB, Bondt A, Heck AJR. Identification of common and distinct origins of human serum and breastmilk IgA1 by mass spectrometry-based clonal profiling. Cell Mol Immunol 2023; 20:26-37. [PMID: 36447030 PMCID: PMC9707141 DOI: 10.1038/s41423-022-00954-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The most abundant immunoglobulin present in the human body is IgA. It has the highest concentrations at the mucosal lining and in biofluids such as milk and is the second most abundant class of antibodies in serum. We assessed the structural diversity and clonal repertoire of IgA1-containing molecular assemblies longitudinally in human serum and milk from three donors using a mass spectrometry-based approach. IgA-containing molecules purified from serum or milk were assessed by the release and subsequent analysis of their Fab fragments. Our data revealed that serum IgA1 consists of two distinct structural populations, namely monomeric IgA1 (∼80%) and dimeric joining (J-) chain coupled IgA1 (∼20%). Also, we confirmed that IgA1 in milk is present solely as secretory (S)IgA, consisting of two (∼50%), three (∼33%) or four (∼17%) IgA1 molecules assembled with a J-chain and secretory component (SC). Interestingly, the serum and milk IgA1-Fab repertoires were distinct between monomeric, and J-chain coupled dimeric IgA1. The serum dimeric J-chain coupled IgA1 repertoire contained several abundant clones also observed in the milk IgA1 repertoire. The latter repertoire had little to no overlap with the serum monomeric IgA1 repertoire. This suggests that human IgA1s have (at least) two distinct origins; one of these produces dimeric J-chain coupled IgA1 molecules, shared in human serum and milk, and another produces monomeric IgA1 ending up exclusively in serum.
Collapse
Affiliation(s)
- Kelly A Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Danique M H van Rijswijk
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Tim Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Mirjam J A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Michelle Romijn
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Hannah G Juncker
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Britt J van Keulen
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Johannes B van Goudoever
- Amsterdam UMC, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam Reproduction & Development Research Institute, Department of Pediatrics, Amsterdam, the Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
12
|
de Graaf SC, Hoek M, Tamara S, Heck AJR. A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies. MAbs 2022; 14:2079449. [PMID: 35699511 PMCID: PMC9225641 DOI: 10.1080/19420862.2022.2079449] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A key step in therapeutic and endogenous humoral antibody characterization is identifying the amino acid sequence. So far, this task has been mainly tackled through sequencing of B-cell receptor (BCR) repertoires at the nucleotide level. Mass spectrometry (MS) has emerged as an alternative tool for obtaining sequence information directly at the – most relevant – protein level. Although several MS methods are now well established, analysis of recombinant and endogenous antibodies comes with a specific set of challenges, requiring approaches beyond the conventional proteomics workflows. Here, we review the challenges in MS-based sequencing of both recombinant as well as endogenous humoral antibodies and outline state-of-the-art methods attempting to overcome these obstacles. We highlight recent examples and discuss remaining challenges. We foresee a great future for these approaches making de novo antibody sequencing and discovery by MS-based techniques feasible, even for complex clinical samples from endogenous sources such as serum and other liquid biopsies.
Collapse
Affiliation(s)
- Sebastiaan C de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|