1
|
Liu X, Pan B, Ding J, Zhai X, Hong J, Zheng J. Identifying potential signatures of immune cells in hepatocellular carcinoma using integrative bioinformatics approaches and machine-learning strategies. Immunol Res 2025; 73:46. [PMID: 39904830 DOI: 10.1007/s12026-024-09585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/24/2024] [Indexed: 02/06/2025]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor regulated by the immune system. Immunotherapy using checkpoint inhibitors has shown encouraging outcomes in a subset of HCC patients. The main challenges in checkpoint immunotherapy for HCC are to expand treatment options and to broaden the beneficiary population. Therefore, the search for potential signatures of immune cells is meaningful in the development of immunotherapy for HCC. The HCC related datasets were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Differential expression analysis and functional analysis were performed first. Then support vector machine-recursive feature elimination (SVM-RFE), random forests (RF), least absolute shrinkage and selection operation (LASSO), and weighed gene co-expression network analysis (WGCNA) were employed to screen for critical genes, and receiver operating characteristic (ROC) analysis was performed to compare diagnostic performance. Subsequently, single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between signatures and immune cells. Finally, we validated the expression of these biomarkers in human HCC samples. 531 overlapping differentially expressed genes (DEGs) were identified. Furthermore, enrichment analysis revealed pathways associated with immune activation processes, immune cell involvement and inflammatory signaling. After using multiple machine-learning strategies, extracellular matrix protein 1 (ECM1), leukemia inhibitory factor receptor (LIFR), sushi repeat containing protein X-linked (SRPX), and thromboxane A2 receptor (TBXA2R) were identified as critical signatures, and exhibited high expression in tumor-adjacent normal tissues. According to the ssGSEA results, ECM1, LIFR, SRPX and TBXA2R were all significantly associated with diverse immune cells, such as monocytes and neutrophils. Moreover, immunostaining of human HCC samples showed that these critical signatures all colocalized with CD14-positive monocytes. Our findings report the potential signatures of immune cells in HCC and confirm that they localize in monocytes of tumor-adjacent normal tissues. ECM1, LIFR, SRPX and TBXA2R could become new potential targets for predictive diagnosis, early intervention and immunotherapy of HCC in the future.
Collapse
Affiliation(s)
- Xingchen Liu
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Bo Pan
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xiaofeng Zhai
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jing Hong
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jianming Zheng
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Wang Y, Xiong C, Yu W, Zhou M, Shugg T, Hsu FC, Eadon MT, Su J, Song Q. PCCA variant rs16957301 is a novel AKI risk genotype-specific for patients who receive ICI treatment: Real-world evidence from all of us cohort. Eur J Cancer 2024; 213:115114. [PMID: 39536432 PMCID: PMC11798912 DOI: 10.1016/j.ejca.2024.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) enhance the immune system's ability to target and destroy cancer cells, but can also trigger immune-related adverse events (irAEs), such as acute kidney injury (ICI-AKI), complicating patient management. Limited knowledge of genetic predispositions to ICI-AKI highlights the need for genomic studies to improve therapeutic strategies. OBJECTIVE To identify genetic predispositions for ICI-AKI using large-scale real-world data. METHODS A systematic literature search led to 14 candidate variants related to irAEs. We performed a candidate variant association study with these variants using the All of Us cohort. An ICI-treated cohort and a general cohort were established to evaluate ICI-AKI risk. Logistic regression, adjusted for sex, evaluated the impact of each candidate genotype, separately for self-reported and ancestry-estimated race. Kaplan-Meier survival analysis assessed genetic effects on AKI-free survival. RESULTS The ICI cohort (n = 414) showed a one-year AKI incidence rate of 23.2 %, significantly higher than the general cohort (6.5 %, n = 213,282). The rs16957301 variant (chr13:100324308, T > C) in the PCCA gene was a significant risk genotype for ICI-AKI among self-reported White (Beta=0.93, CI: 0.32 - 1.54, ORs= 2.53, Bonferroni-corrected P-value=0.047) and ancestry estimated Europeans (Beta = 0.94, CI: 0.31 - 1.57, ORs= 2.56, Bonferroni-corrected P-value=0.044). Self-reported White with the rs16957301 risk genotypes (TC/CC) developed AKI significantly earlier (3.6 months) compared to the reference genotype (TT, 7.0 months, log-rank P = 0.04). Consistent results were found in ancestry-estimated Europeans. This variant did not present significant AKI risks in the general cohort (Beta: -0.008-0.035, FDR: 0.75-0.99). CONCLUSION Our findings suggest that rs16957301 in PCCA may serve as an ICI-AKI risk marker in Caucasians. Further studies are needed to validate this association and explore risks in other populations.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, FL, USA
| | - Chenxi Xiong
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, IN, USA; Department of Computer and Information Technology, Purdue University, IN, USA
| | - Weifeng Yu
- Department of Computer Science, University of Virginia, VA, USA
| | - Minghao Zhou
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, FL, USA
| | - Tyler Shugg
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, IN, USA
| | - Fang-Chi Hsu
- Biostatistics and Data Science, Wake Forest School of Medicine, NC, USA
| | - Michael T Eadon
- Department of Medicine, Indiana University School of Medicine, IN, USA
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, IN, USA.
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, FL, USA.
| |
Collapse
|
3
|
Belizário J, Garay-Malpartida M. Key Epigenetic Players in Etiology and Novel Combinatorial Therapies for Treatment of Hepatocellular Carcinoma. LIVERS 2024; 4:638-655. [DOI: 10.3390/livers4040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of death in which the molecular tumorigenesis and cellular heterogeneity are poorly understood. The genetic principle that specific driver mutations in oncogenes, DNA repair genes, and tumor-suppressor genes can independently drive cancer development has been widely explored. Additionally, a repertory of harmful epigenetic modifications in DNA and chromatin—impacting the expression of genes involved in cellular proliferation, differentiation, genome stability, cell-cycle control, and DNA repair—are now acknowledged across various biological contexts that contribute to cancer etiology. Notably, the dynamic hypermethylation and hypomethylation in enhancer and promoter regions that promote activation or silencing of the master regulatory genes of the epigenetic programs is often altered in tumor cells due to mutation. Genome instability is one of the cancer hallmarks that contribute to transdifferentiation and intratumoral heterogeneity. Thus, it is broadly accepted that tumor tissue is dominated by genetically and epigenetically distinct sub-clones which display a set of genetic and epigenetic mutations. Here we summarize some functions of key genetic and epigenetic players and biochemical pathways leading to liver cell transformation. We discuss the role of the potential epigenetic marks in target genes thought to be involved in sequential events following liver lipid metabolism dysregulation, inflammation, fibrosis, cirrhosis, and finally hepatocellular carcinoma. We also briefly describe new findings showing how epigenetic drugs together with chemotherapy and immunotherapy can improve overall responses in patients with hepatic tumors.
Collapse
Affiliation(s)
- José Belizário
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo 03828-000, Brazil
| | - Miguel Garay-Malpartida
- School of Arts, Sciences and Humanities of the University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo 03828-000, Brazil
| |
Collapse
|
4
|
Zheng X, Wang Y, Qiu X. Comprehensive analysis of MAPK genes in the prognosis, immune characteristics, and drug treatment of renal clear cell carcinoma using bioinformatic analysis and Mendelian randomization. Eur J Pharmacol 2024; 980:176840. [PMID: 39038636 DOI: 10.1016/j.ejphar.2024.176840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Mitogen-activated protein kinase (MAPK) signalling is vitally important in tumour development and progression. This study is the first to comprehensively analyse the role of MAPK-family genes in the progression, prognosis, immune-cell infiltration, methylation, and potential therapeutic value drug candidates in ccRCC. We identified a novel prognostic panel of six MAPK-signature genes (MAP3K12, MAP3K1, MAP3K5, MAPK1, MAPK8, MAPK9), and introduced a robust MAPK-signature risk model for predicting ccRCC prognosis. Model construction, evaluation, and external validation using datasets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database demonstrated its stability, as well as high sensitivity and specificity. Enrichment analysis suggested the participation of immune-mediated mechanism in MAPK dysregulation in ccRCC. Immune-infiltration analysis confirmed the relationship and revealed that the MAPK-signature risk model might stratify immunotherapy response in ccRCC, which was verified in drug sensitivity analysis and validated in external ccRCC immunotherapy dataset (GSE67501). Potential therapeutic drug predictions for key MAPKs using DSigDB, Network Analyst, CTD, and DGIdb were subsequently verified by molecular docking with AutoDock Vina and PyMol. Mendelian randomization further demonstrated the possibilities of the MAPK-signature genes as targets for therapeutic drugs in ccRCC. Methylation analysis using UALCAN and MethSurv revealed the participation of epigenetic modifications in dysregulation and survival difference of MAPK pathway in ccRCC. Among the key MAPKs, MAP3K12 exhibited the highest significance, indicating its independent prognostic value as single gene in ccRCC. Knockout and overexpression validation experiments in vitro and in vivo found that MAP3K12 acted as a promoter of tumour progression in RCC, suggesting a pivotal role for MAP3K12 in the proliferation, migration, and invasion of RCC cells. Our findings proposed the potential of MAPK-signature genes as biomarkers for prognosis and therapy response, as well as targets for therapeutic drugs in ccRCC.
Collapse
Affiliation(s)
- Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Yiqiu Wang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
5
|
Li F, Wu Z, Du Z, Ke Q, Fu Y, Zhan J. Comprehensive molecular analyses and experimental validation of CDCAs with potential implications in kidney renal papillary cell carcinoma prognosis. Heliyon 2024; 10:e33045. [PMID: 38988558 PMCID: PMC11234104 DOI: 10.1016/j.heliyon.2024.e33045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Previous reports have revealed that the abnormal expression of the cell division cycle-associated gene family (CDCAs) is closely associated with some human cancers. However, the precise functional roles and mechanisms of CDCAs in kidney renal papillary cell carcinoma (KIRP) remain unclear. In this study, RNA sequencing data from the Cancer Genome Atlas database and Genotype-Tissue Expression databases were utilized to perform the expression, correlation, survival, mutation, functional enrichment analysis, and immunoinfiltration analyses of CDCAs in KIRP. We found that the expression levels of CDCA genes were significantly increased in KIRP across multiple databases, as confirmed by immunohistochemistry and quantitative reverse transcription PCR (RT-qPCR). Moreover, increased expression of CDCA genes is significantly associated with poor prognosis. Univariate and multivariate Cox regression analyses demonstrated that pathologic T and N staging, NUF2, CDCA2, CDCA3, CDCA5, CBX2, CDCA7, and CDCA8 were independent prognostic factors for patients with KIRP. Utilizing these nine variables, we developed a nomogram prognostic model. Furthermore, the results of GO and KEGG functional enrichment analyses suggested that CDCA genes were associated with nuclear division, mitotic nuclear division, and chromosome segregation and were involved in the cell cycle, p53 signaling pathway, and cellular senescence. We found that the expression of NUF2, CDCA2, CDCA5, and CBX2 was closely associated with the expression of lymphocytes, immunostimulatory molecules, immunoinhibitory molecules, and chemokines. In summary, NUF2, CDCA2, CDCA3, CDCA5, CBX2, CDCA7, and CDCA8 are potential biomarkers for KIRP diagnosis and prognosis.
Collapse
Affiliation(s)
- Fuping Li
- Department of General Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of the Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhenheng Wu
- Department of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhiyong Du
- Department of General Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Qiming Ke
- Department of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxiang Fu
- Department of General Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jiali Zhan
- Department of General Practice, Xiamen Fifth Hospital, Xiamen, China
| |
Collapse
|
6
|
Wang Y, Xiong C, Yu W, Zhou M, Shugg TA, Hsu FC, Eadon MT, Su J, Song Q. PCCA variant rs16957301 is a novel AKI risk genotype-specific for patients who receive ICI treatment: Real-world evidence from All of Us cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.20.24309197. [PMID: 38946978 PMCID: PMC11213073 DOI: 10.1101/2024.06.20.24309197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Immune checkpoint inhibitors (ICIs) enhance the immune system's ability to target and destroy cancer cells by blocking inhibitory pathways. Despite their efficacy, these treatments can trigger immune-related adverse events (irAEs), such as acute kidney injury (ICI-AKI), complicating patient management. The genetic predispositions to ICI-AKI are not well understood, necessitating comprehensive genomic studies to identify risk factors and improve therapeutic strategies. Objective To identify genetic predispositions for ICI-AKI using large-scale real-world data. Methods A systematic literature search led to 14 candidate variants related to irAEs. We performed a candidate variant association study with these 14 variants using the All of Us cohort (AoU, v7, cutoff date: 7/1/2022). A cohort for cancer patients receiving ICI and a general cohort were established to evaluate ICI-AKI risk. Logistic regression, adjusted for sex, was used to evaluate the impact of each candidate genotype, separately for self-reported and ancestry-estimated race. Kaplan-Meier survival analysis assessed the genetic effects on AKI-free survival. Results The ICI cohort (n=414) showed a one-year AKI incidence rate of 23.2%, significantly higher than the general cohort (6.5%, n=213,282). The rs16957301 variant (chr13:100324308, T>C) in the PCCA gene was a significant risk genotype for ICI-AKI among self-reported Caucasians (Beta=0.93, Bonferroni-corrected P-value=0.047) and ancestry estimated Caucasians (Beta = 0.94, Bonferroni-corrected P-value=0.044). Self-reported Caucasians with the rs16957301 risk genotypes (TC/CC) developed AKI significantly earlier (3.6 months) compared to the reference genotype (TT, 7.0 months, log-rank P=0.04). Consistent results were found in ancestry-estimated Caucasians. This variant did not present significant AKI risks in the general cohort (Beta: -0.008-0.035, FDR: 0.75-0.99). Conclusion Real-world evidence from the All of Us cohort suggests that, in Caucasians, PCCA variant rs16957301 is a novel AKI risk genotype specific to ICI treatment. Additional studies are warranted to validate rs16957301 as risk marker for AKI in Caucasian patients treated with ICIs and to assess its risk in other ancestral populations.
Collapse
|
7
|
Xiao T, Hu S, Dong S, Cai Q, Gong W, Zhang Y, Long C, Li X. A study on combination of non-ablative local RFA with PD-1 and angiogenesis blocking to prolong survival through improvement of immune microenvironment in advanced Hepatocellular Carcinoma. Int Immunopharmacol 2024; 134:112144. [PMID: 38733820 DOI: 10.1016/j.intimp.2024.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Radiofrequency ablation (RFA), an effective local treatment method for early-stage Hepatocellular Carcinoma (HCC), combined with PD-1 blocking and anti-angiogenic therapy is being extensively explored in advanced HCC, however, the definite results and underlying mechanisms still remain to be elucidated. Therefore, whether non-ablative RFA-based combined therapy can play a synergistic anti-tumor effect through improving tumor immune microenvironment was investigated by us in HCC mouse models. Our results showed that non-ablative RFA could regulate multilayered immunity, such as inducing immunogenic death of tumor cells, upregulating the secretion of inflammatory cytokines, mainly IFN-γ, TNF-α, and IL-10, and subsequently promoting the infiltration of CD8 + T cells. As a result, a significant synergistic anti-tumor effect was demonstrated in the combination therapy group. Similarly, in the real-world setting, non-curative RFA combined with PD-1 blocking and Lenvatinib for 12 patients with Barcelona Clinic Liver Cancer (BCLC) stage C achieve promising results, with 6.9 months (95 % CI: 3.23-15.73) median progression-free survival (mPFS) and 12.7 months (95 % CI: 7.40-19.73) median overall survival (mOS). The common treatment-related adverse reactions were pneumonia and thyroiditis with low prevalence, both less than grade 3 and manageable by symptomatic treatment. Summarily, local non-ablative RFA should be a clinically preferred strategy in combination with PD-1 blocking and anti-angiogenic therapy, because this more flexible scheme abandons its historical concept of tumor eradication, but fully utilizes the immune regulatory function by inducing immunogenic tumor death and has higher-level of safety. Therefore, this is a two-pronged and highly balanced approach to achieved favorable treatment outcomes, while conclusive evidence is still pending, it can be attempted in the real world anyway.
Collapse
Affiliation(s)
- Tianlin Xiao
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Sheng Hu
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Dong
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Cai
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Gong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yang Zhang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Cheng Long
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiaoyu Li
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Li Y, Li C, Wu L, Li J, Gan Y, Tan S, Zhou L, Xiong W, Zhou L, Li C, Liu J, Liu D, Wang Y, Fu Y, Yao K, Wang L. Epigenetic-related gene-based prognostic model construction and validation in prostate adenocarcinoma. Heliyon 2024; 10:e30941. [PMID: 38779031 PMCID: PMC11109796 DOI: 10.1016/j.heliyon.2024.e30941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate adenocarcinoma (PRAD), driven by both genetic and epigenetic factors, is a common malignancy that affects men worldwide. We aimed to identify and characterize differentially expressed epigenetic-related genes (ERGs) in PRAD and investigate their potential roles in disease progression and prognosis. We used PRAD samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to identify prognosis-associated ERGs. Thirteen ERGs with two distinct expression profiles were identified through consensus clustering. Gene set variation analysis highlighted differences in pathway activities, particularly in the Hedgehog and Notch pathways. Higher epigenetic scores correlated with favorable prognosis and improved immunotherapeutic response. Experimental validation underscored the importance of CBX3 and KAT2A, suggesting their pivotal roles in PRAD. This study provides crucial insights into the epigenetic scoring approach and presents a promising prognostic tool, with CBX3 and KAT2A as key players. These findings pave the way for targeted and personalized interventions for the treatment of PRAD.
Collapse
Affiliation(s)
- Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chao Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Longxiang Wu
- Department of Urology, The Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yu Gan
- Department of Urology, The Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuo Tan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Dingwen Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yichuan Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yunlong Fu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Kun Yao
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
9
|
Liu C, Yuan ZY, Zhang XX, Chang JJ, Yang Y, Sun SJ, Du Y, Zhan HQ. Novel molecular classification and prognosis of papillary renal cell carcinoma based on a large-scale CRISPR-Cas9 screening and machine learning. Heliyon 2024; 10:e23184. [PMID: 38163209 PMCID: PMC10754875 DOI: 10.1016/j.heliyon.2023.e23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Papillary renal cell carcinoma (PRCC) is a highly heterogeneous cancer, and PRCC patients with advanced/metastatic subgroup showed obviously shorter survival compared to other kinds of renal cell carcinomas. However, the molecular mechanism and prognostic predictors of PRCC remain unclear and are worth deep studying. The aim of this study is to identify novel molecular classification and construct a reliable prognostic model for PRCC. The expression data were retrieved from TCGA, GEO, GTEx and TARGET databases. CRISPR data was obtained from Depmap database. The key genes were selected by the intersection of CRISPR-Cas9 screening genes, differentially expressed genes, and genes with prognostic capacity in PRCC. The molecular classification was identified based on the key genes. Drug sensitivity, tumor microenvironment, somatic mutation, and survival were compared among the novel classification. A prognostic model utilizing multiple machine learning algorithms based on the key genes was developed and tested by independent external validation set. Our study identified three clusters (C1, C2 and C3) in PRCC based on 41 key genes. C2 had obviously higher expression of the key genes and lower survival than C1 and C3. Significant differences in drug sensitivity, tumor microenvironment, and mutation landscape have been observed among the three clusters. By utilizing 21 combinations of 9 machine learning algorithms, 9 out of 41 genes were chosen to construct a robust prognostic signature, which exhibited good prognostic ability. SERPINH1 was identified as a critical gene for its strong prognostic ability in PRCC by univariate and multiple Cox regression analyses. Quantitative real-time PCR and Western blot demonstrated that SERPINH1 mRNA and protein were highly expressed in PRCC cells compared with normal human renal cells. This study exhibited a new molecular classification and prognostic signature for PRCC, which may provide a potential biomarker and therapy target for PRCC patients.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Zhan-Yuan Yuan
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Xiao-Xun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Jia-Jun Chang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Yang Yang
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Sheng-Jia Sun
- School of Clinical Medicine, Anhui Medical University, Hefei, 230031, PR China
| | - Yinan Du
- Department of Pathogenic microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| |
Collapse
|
10
|
Wu D, Li Y. Application of adoptive cell therapy in hepatocellular carcinoma. Immunology 2023; 170:453-469. [PMID: 37435926 DOI: 10.1111/imm.13677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge. Novel treatment modalities are urgently needed to extend the overall survival of patients. The liver plays an immunomodulatory function due to its unique physiological structural characteristics. Therefore, following surgical resection and radiotherapy, immunotherapy regimens have shown great potential in the treatment of hepatocellular carcinoma. Adoptive cell immunotherapy is rapidly developing in the treatment of hepatocellular carcinoma. In this review, we summarize the latest research on adoptive immunotherapy for hepatocellular carcinoma. The focus is on chimeric antigen receptor (CAR)-T cells and T cell receptor (TCR) engineered T cells. Then tumour-infiltrating lymphocytes (TILs), natural killer (NK) cells, cytokine-induced killer (CIK) cells, and macrophages are briefly discussed. The main overview of the application and challenges of adoptive immunotherapy in hepatocellular carcinoma. It aims to provide the reader with a comprehensive understanding of the current status of HCC adoptive immunotherapy and offers some strategies. We hope to provide new ideas for the clinical treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No. 6 Hospital, Ningbo, China
| | - Yujie Li
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Zhejiang, Ningbo, China
| |
Collapse
|
11
|
Cheng M, Zheng X, Wei J, Liu M. Current state and challenges of emerging biomarkers for immunotherapy in hepatocellular carcinoma (Review). Exp Ther Med 2023; 26:586. [PMID: 38023367 PMCID: PMC10665984 DOI: 10.3892/etm.2023.12285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer. According to the American Cancer Society, among patients diagnosed with advanced liver cancer, HCC has the sixth-highest incident rate, resulting in a poor prognosis. Surgery, radiofrequency ablation, transcatheter arterial chemoembolization, radiation, chemotherapy, targeted therapy and immunotherapy are the current treatment options available. Immunotherapy, which has emerged as an innovative treatment strategy over the past decade, is serving a vital role in the treatment of advanced liver cancer. Since only a small number of individuals can benefit from immunotherapy, biomarkers are required to help clinicians identify the target populations for this precision medicine. These biomarkers, such as PD-1/PD-L1, tumor mutational burden and circulating tumor DNA, can be used to investigate interactions between immune checkpoint inhibitors and tumors. The present review summarizes information on the currently available biomarkers used for immunotherapy and the challenges that are present.
Collapse
Affiliation(s)
- Mo Cheng
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiufeng Zheng
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing Wei
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming Liu
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Wang K, Jiang X, Jiang Y, Liu J, Du Y, Zhang Z, Li Y, Zhao X, Li J, Zhang R. EZH2-H3K27me3-mediated silencing of mir-139-5p inhibits cellular senescence in hepatocellular carcinoma by activating TOP2A. J Exp Clin Cancer Res 2023; 42:320. [PMID: 38008711 PMCID: PMC10680220 DOI: 10.1186/s13046-023-02855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/08/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Epigenetic alterations play an important role in hepatocellular carcinoma (HCC) development. Enhancer of zeste homolog 2 (EZH2) is a well-known epigenetic modifier that functions as an oncogene in tumors by promoting the H3K27me3-mediated transcriptional repression of tumor suppressor genes. "Senescent cells" has been proposed as a possible core component of the hallmarks of cancer conceptualization. Induction of cell senescence and targeted elimination of these senescent tumor cells are new strategies for tumor therapy. However, the role of EZH2 in regulating cellular senescence remains poorly understood. METHODS Bioinformatics analyses suggested that EZH2 and DNA topoisomerase II alpha (TOP2A) are coexpressed in tumors, including HCC. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses and gene set enrichment analyses (GSEA) suggests a correlation of EZH2 and TOP2A expression with cellular senescence in HCC. MicroRNA (miRNA) inhibitor and mimics, siRNA, PLKO-shRNA, and plenti6.3-miR-139 were used to upregulate or downregulate the expression of target genes. CCK8, EdU, clone formation, and senescence-associated β-galactosidase (SA-β-gal) staining assays were performed to assess cell proliferation and cellular senescence phenotypes. Dual-luciferase reporter and chromatin immunoprecipitation assays were performed to investigate the targeted binding and inhibition of TOP2A 3' untranslated region (UTR) by miR-139-5p and the DNA enrichment of miR139-5p by EZH2 and H3K27me3. BALB/c nude mice were used to establish a xenograft tumor model and verify the phenotypes upon EZH2 and TOP2A silencing and miR-139 overexpression in vivo. In addition, tissue microarrays were used to analyze the expression patterns and correlations among EZH2, TOP2A, and miR-139-5p expression in HCC. RESULTS Bioinformatics analysis revealed that EZH2 and TOP2A are coexpressed in HCC. In vitro gain- and loss-of-function experiments showed that inhibition of EZH2 and TOP2A induces cellular senescence and inhibits proliferation of HCC cells. In vivo tumorigenesis assays indicated that EZH2 and TOP2A knockdown inhibits tumorigenesis by inducing cellular senescence. Mechanistically, EZH2 promotes TOP2A expression by regulating the H3K27me3-mediated epigenetic silencing of miR-139-5p. TOP2A is a direct target of miR-139-5p, and inhibition of miR-139-5p can reverse the promotion by EZH2 of TOP2A expression. The overexpression of miR-139-5p induces cellular senescence and inhibits proliferation of HCC cells both in vitro and in vivo. Clinically, expression of EZH2 and TOP2A are higher in HCC tissues than in normal tissues, and this high coexpression indicates a worse outcome of patients with HCC. Moreover, expression of EZH2 and TOP2A is significantly correlated with tumor differentiation grade, tumor invasion, and TNM stage in HCC. miR-139-5p expression is lower in HCC tumors than in normal tissues and is correlated with better prognosis of HCC patients. CONCLUSIONS Our study revealed the role of the EZH2/miR-139-5p/TOP2A axis in regulating cellular senescence and cell proliferation in HCC, enriching the molecular mechanisms of EZH2-mediated epigenetic regulation in HCC. Therefore, our results provide insight into the therapeutic potential of targeting EZH2 to induce cellular senescence and then destroy senescent cells for HCC.
Collapse
Affiliation(s)
- Ke Wang
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of General Surgery, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430064, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xunliang Jiang
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Jiang
- Department of Hepatobiliary Surgery, XI'AN DAXING hospital, Xi'an, 710032, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongtao Du
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zecheng Zhang
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinhui Zhao
- Department of Thyroid and Breast Surgery, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, 710018, China
| | - Jipeng Li
- Department of digestive surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
13
|
Yang Q, Tian H, Guo Z, Ma Z, Wang G. The role of noncoding RNAs in the tumor microenvironment of hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1697-1706. [PMID: 37867435 PMCID: PMC10686793 DOI: 10.3724/abbs.2023231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 10/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading fatal malignancy worldwide. The tumor microenvironment (TME) can affect the survival, proliferation, migration, and even dormancy of cancer cells. Hypoxia is an important component of the TME, and hypoxia-inducible factor-1α (HIF-1α) is the most important transcriptional regulator. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), comprise a large part of the human transcriptome and play an important role in regulating the tumorigenesis of HCC. This review discusses the role of ncRNAs in hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), and angiogenesis in a hypoxic microenvironment, as well as the interactions between ncRNAs and key components of the TME. It further discusses their use as biomarkers and the potential clinical value of drugs, as well as the challenges faced in the future.
Collapse
Affiliation(s)
- Qianqian Yang
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Hui Tian
- Department of GeriatricsZhongshan HospitalFudan UniversityShanghai200032China
| | - Ziyi Guo
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Guangzhi Wang
- School of Medical ImagingWeifang Medical UniversityWeifang261053China
- Department of Medical Imaging CenterAffiliated Hospital of Weifang Medical UniversityWeifang261053China
| |
Collapse
|
14
|
Brown ZJ, Ruff SM, Pawlik TM. The effect of liver disease on hepatic microenvironment and implications for immune therapy. Front Pharmacol 2023; 14:1225821. [PMID: 37608898 PMCID: PMC10441240 DOI: 10.3389/fphar.2023.1225821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the fourth leading cause of cancer-related death worldwide. HCC often occurs in the setting of chronic liver disease or cirrhosis. Recent evidence has highlighted the importance of the immune microenvironment in the development and progression of HCC, as well as its role in the potential response to therapy. Liver disease such as viral hepatitis, alcohol induced liver disease, and non-alcoholic fatty liver disease is a major risk factor for the development of HCC and has been demonstrated to alter the immune microenvironment. Alterations in the immune microenvironment may markedly influence the response to different therapeutic strategies. As such, research has focused on understanding the complex relationship among tumor cells, immune cells, and the surrounding liver parenchyma to treat HCC more effectively. We herein review the immune microenvironment, as well as the relative effect of liver disease on the immune microenvironment. In addition, we review how changes in the immune microenvironment can lead to therapeutic resistance, as well as highlight future strategies aimed at developing the next-generation of therapies for HCC.
Collapse
Affiliation(s)
- Zachary J. Brown
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY, United States
| | - Samantha M. Ruff
- James Comprehensive Cancer Center, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Timothy M. Pawlik
- James Comprehensive Cancer Center, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
15
|
Li K, Yang Y, Ma M, Lu S, Li J. Hypoxia-based classification and prognostic signature for clinical management of hepatocellular carcinoma. World J Surg Oncol 2023; 21:216. [PMID: 37481543 PMCID: PMC10362578 DOI: 10.1186/s12957-023-03090-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023] Open
Abstract
OBJECTIVE Intratumoral hypoxia is an essential feature of hepatocellular carcinoma (HCC). Herein, we investigated the hypoxia-based heterogeneity and relevant clinical implication in HCC. METHODS Three HCC cohorts: TCGA-LIHC, LICA-FR, and LIRI-JP were retrospectively gathered. Consensus clustering analysis was utilized for hypoxia-based classification based upon transcriptome of hypoxia genes. Through LASSO algorithm, a hypoxia-relevant prognostic signature was built. Immunotherapeutic response was inferred through analyzing immune checkpoints, T cell inflamed score, TIDE score, and TMB score. RNF145 expression was measured in normoxic or hypoxic HCC cells. In RNF145-knockout cells, CCK-8, TUNEL, and scratch tests were implemented. RESULTS HCC patients were classified into two hypoxia subtypes, with more advanced stages and poorer prognosis in cluster2 than cluster1. The heterogeneity in tumor infiltrating immune cells and genetic mutation was found between subtypes. The hypoxia-relevant prognostic model was proposed, composed of ANLN, CBX2, DLGAP5, FBLN2, FTCD, HMOX1, IGLV1-44, IL33, LCAT, LPCAT1, MKI67, PFN2, RNF145, S100A9, and SPP1). It was predicted that high-risk patients presented worse prognosis with an independent and reliable manner. Based upon high expression of immune checkpoints (CD209, CTLA4, HAVCR2, SIRPA, TNFRSF18, TNFRSF4, and TNFRSF9), high T cell inflamed score, low TIDE score and high TMB score, high-risk patients might respond to immunotherapy. Experimental validation showed that RNF145 was upregulated in hypoxic HCC cells, RNF145 knockdown attenuated proliferation and migration, but aggravated apoptosis in HCC cells. CONCLUSION Altogether, the hypoxia-based classification and prognostic signature might be useful for prognostication and guiding treatment of HCC.
Collapse
Affiliation(s)
- Ke Li
- Ruigu Medical Laboratory of Guangxi Medical University Co., LTD, Nanning, Guangxi, China
| | - Yanfang Yang
- Guangxi Zhuoqiang Technology Co. LTD, Nanning, Guangxi, China.
| | - Mingwei Ma
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Suping Lu
- Foresea Life Insurance Nanning Hospital, Nanning, Guangxi, China
| | - Junjie Li
- Guangxi Zhuoqiang Technology Co. LTD, Nanning, Guangxi, China
| |
Collapse
|
16
|
Yu S, Zhao R, Zhang B, Lai C, Li L, Shen J, Tan X, Shao J. Research progress and application of the CRISPR/Cas9 gene-editing technology based on hepatocellular carcinoma. Asian J Pharm Sci 2023; 18:100828. [PMID: 37583709 PMCID: PMC10424087 DOI: 10.1016/j.ajps.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now a common cause of cancer death, with no obvious change in patient survival over the past few years. Although the traditional therapeutic modalities for HCC patients mainly involved in surgery, chemotherapy, and radiotherapy, which have achieved admirable achievements, challenges are still existed, such as drug resistance and toxicity. The emerging gene therapy of clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9-based (CRISPR/Cas9), as an alternative to traditional treatment methods, has attracted considerable attention for eradicating resistant malignant tumors and regulating multiple crucial events of target gene-editing. Recently, advances in CRISPR/Cas9-based anti-drugs are presented at the intersection of science, such as chemistry, materials science, tumor biology, and genetics. In this review, the principle as well as statues of CRISPR/Cas9 technique were introduced first to show its feasibility. Additionally, the emphasis was placed on the applications of CRISPR/Cas9 technology in therapeutic HCC. Further, a broad overview of non-viral delivery systems for the CRISPR/Cas9-based anti-drugs in HCC treatment was summarized to delineate their design, action mechanisms, and anticancer applications. Finally, the limitations and prospects of current studies were also discussed, and we hope to provide comprehensively theoretical basis for the designing of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bingchen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linyan Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiarong Tan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
17
|
Li H, Guo L, Su K, Li C, Jiang Y, Wang P, Chen J, Wu Z, Xu K, Gu T, Zeng H, He K, Chi H, Zhao W, Han L, Han Y. Construction and Validation of TACE Therapeutic Efficacy by ALR Score and Nomogram: A Large, Multicenter Study. J Hepatocell Carcinoma 2023; 10:1009-1017. [PMID: 37405321 PMCID: PMC10317537 DOI: 10.2147/jhc.s414926] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND TACE and TACE with or without targeted immunotherapy are crucial comprehensive therapies for middle and advanced HCC. However, a reasonable and concise score is needed to evaluate TACE and TACE combined with systemic therapy in HCC treatment. METHODS The HCC patients were grouped into two groups: training group (n = 778) (treated with TACE) and verification group (n = 333). The predictive value of baseline variables on overall survival was analyzed using COX model, and easy-to-use ALR (AST and Lym-R) scores. The best cut-off value of AST and Lym-R were determined using X-Tile software based on total survival time (OS) and further verified via a restricted three-spline method. Meanwhile, the score was further verified using two independent valid sets: TACE combined with targeted therapy and TACE with targeted combined immunotherapy. RESULTS In multivariate analysis, baseline serum AST>57.1 (p < 0.001) and Lym-R≤21.7 (p < 0.001) were identified as independent prognostic factors. The OS of patients in the TACE pooled cohort with 0, 1, and 2 scores were 28.1 (95% CI 24-33.8) months, 15 (95% CI 12.4-18.6) months, and 7.4 (95% CI 5.7-9.1) months, respectively. The time-varying ROC curve based on ALR showed that the AUC values for predicting 1, -2-and 3-year OS were 0.698, 0.718, and 0.636, respectively. These results are confirmed in two independent valid sets of TACE combined with targeted therapy and TACE with targeted combined immunotherapy. And we established a nomogram after COX regression to predict the 1 -, 2- and 3-year survival time. CONCLUSION Our study confirmed that ALR score can predict the prognosis of HCC treated with TACE or TACE combined with systemic therapy.
Collapse
Affiliation(s)
- Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Lu Guo
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ke Su
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Changlun Li
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Yi Jiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Pan Wang
- Clinical Skills Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiali Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zhenying Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing, 401147, People’s Republic of China
| | - Tao Gu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hao Zeng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Kun He
- Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hao Chi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Wenxi Zhao
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Lei Han
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, 272000, People’s Republic of China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
18
|
Wu Z, Wang W, Zhang K, Fan M, Lin R. Epigenetic and Tumor Microenvironment for Prognosis of Patients with Gastric Cancer. Biomolecules 2023; 13:biom13050736. [PMID: 37238607 DOI: 10.3390/biom13050736] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Epigenetics studies heritable or inheritable mechanisms that regulate gene expression rather than altering the DNA sequence. However, no research has investigated the link between TME-related genes (TRGs) and epigenetic-related genes (ERGs) in GC. METHODS A complete review of genomic data was performed to investigate the relationship between the epigenesis tumor microenvironment (TME) and machine learning algorithms in GC. RESULTS Firstly, TME-related differential expression of genes (DEGs) performed non-negative matrix factorization (NMF) clustering analysis and determined two clusters (C1 and C2). Then, Kaplan-Meier curves for overall survival (OS) and progression-free survival (PFS) rates suggested that cluster C1 predicted a poorer prognosis. The Cox-LASSO regression analysis identified eight hub genes (SRMS, MET, OLFML2B, KIF24, CLDN9, RNF43, NETO2, and PRSS21) to build the TRG prognostic model and nine hub genes (TMPO, SLC25A15, SCRG1, ISL1, SOD3, GAD1, LOXL4, AKR1C2, and MAGEA3) to build the ERG prognostic model. Additionally, the signature's area under curve (AUC) values, survival rates, C-index scores, and mean squared error (RMS) curves were evaluated against those of previously published signatures, which revealed that the signature identified in this study performed comparably. Meanwhile, based on the IMvigor210 cohort, a statistically significant difference in OS between immunotherapy and risk scores was observed. It was followed by LASSO regression analysis which identified 17 key DEGs and a support vector machine (SVM) model identified 40 significant DEGs, and based on the Venn diagram, eight co-expression genes (ENPP6, VMP1, LY6E, SHISA6, TMEM158, SYT4, IL11, and KLK8) were discovered. CONCLUSION The study identified some hub genes that could be useful in predicting prognosis and management in GC.
Collapse
Affiliation(s)
- Zenghong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kun Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengke Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Lin J, Yan J, Deng XL, Wang CS, Wang HS. SPATS2 is correlated with cell cycle progression and immune cells infiltration in hepatocellular carcinoma. BMC Gastroenterol 2023; 23:8. [PMID: 36631750 PMCID: PMC9832668 DOI: 10.1186/s12876-022-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
The spermatogenesis associated serine rich 2 (SPATS2) is a member of RNA-binding protein in which the abnormal expression is linked with carcinogenesis in serval types of cancer. However, there is no systematic study on the differential expression, prognostic significance, epigenetic regulation, immune infiltration of SPATS2 in hepatocellular carcinoma (HCC). In the present study, we investigated the expression, prognosis, epigenetic regulation, and immune cell infiltration of SPATS2 in HCC. We found that the elevated expression of SPATS2 was unfavorably associated with the clinical pathological stage and prognosis. Functional enrichment analysis revealed that SPATS2 is associated with cell cycle, apoptosis and cancer cell metastasis processes in HCC. Our results confirmed that knockdown of SPATS2 will affect cell cycle, apoptosis and invasion of HCC cell lines. Moreover, the expression of SPATS2 is upregulated by epigenetic regulation, including DNA methylation, m6A and histone modification in HCC. In addition, SPATS2 expression was positively correlated with immune cell infiltration or expression of immune related gene markers in HCC. Taken together, our data demonstrated that SPATS2 is associated with progression and immune infiltration, and could serve as a prognostic biomarker for HCC. In conclusion, these results highlight the potential of SPATS2 to be used as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Jing Lin
- grid.411643.50000 0004 1761 0411College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia China
| | - Jia Yan
- grid.410612.00000 0004 0604 6392School of Basic Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Xiu ling Deng
- grid.410612.00000 0004 0604 6392School of Basic Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| | - Chang shan Wang
- grid.411643.50000 0004 1761 0411College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia China
| | - Hai sheng Wang
- grid.410612.00000 0004 0604 6392School of Basic Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia China
| |
Collapse
|
20
|
Tao S, Liang S, Zeng T, Yin D. Epigenetic modification-related mechanisms of hepatocellular carcinoma resistance to immune checkpoint inhibition. Front Immunol 2023; 13:1043667. [PMID: 36685594 PMCID: PMC9845774 DOI: 10.3389/fimmu.2022.1043667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes most primary liver cancers and is one of the most lethal and life-threatening malignancies globally. Unfortunately, a substantial proportion of HCC patients are identified at an advanced stage that is unavailable for curative surgery. Thus, palliative therapies represented by multi-tyrosine kinase inhibitors (TKIs) sorafenib remained the front-line treatment over the past decades. Recently, the application of immune checkpoint inhibitors (ICIs), especially targeting the PD-1/PD-L1/CTLA-4 axis, has achieved an inspiring clinical breakthrough for treating unresectable solid tumors. However, many HCC patients with poor responses lead to limited benefits in clinical applications, which has quickly drawn researchers' attention to the regulatory mechanisms of immune checkpoints in HCC immune evasion. Evasion of immune surveillance by cancer is attributed to intricate reprogramming modulation in the tumor microenvironment. Currently, more and more studies have found that epigenetic modifications, such as chromatin structure remodeling, DNA methylation, histone post-translational modifications, and non-coding RNA levels, may contribute significantly to remodeling the tumor microenvironment to avoid immune clearance, affecting the efficacy of immunotherapy for HCC. This review summarizes the rapidly emerging progress of epigenetic-related changes during HCC resistance to ICIs and discusses the mechanisms of underlying epigenetic therapies available for surmounting immune resistance. Finally, we summarize the clinical advances in combining epigenetic therapies with immunotherapy, aiming to promote the formation of immune combination therapy strategies.
Collapse
Affiliation(s)
- Shengwei Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Taofei Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
21
|
Zou R, Liu Y, Qiu S, Lu Y, Chen Y, Yu H, Zhu H, Zhu W, Zhu L, Feng J, Han J. The identification of N6-methyladenosine-related miRNAs predictive of hepatocellular carcinoma prognosis and immunotherapy efficacy. Cancer Biomark 2023; 38:551-566. [PMID: 38007640 DOI: 10.3233/cbm-230263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high degree of malignancy and poor prognosis. N6-methyladenosine (m6A) modifications and microRNAs (miRNAs) play pivotal roles in tumorigenesis and development. However, the role of m6A-related miRNAs in HCC has not been clarified yet. This study aimed to identify the role of m6A-miRNAs in HCC prognosis through bioinformatics analysis. METHODS The clinicopathological information and RNA sequencing data of 369 HCC tumor tissues and 49 tumor-adjacent tissues were downloaded from the TCGA database. A total of 23 m6A regulators were extracted to evaluated the m6A-related miRNAs using Pearson's correlation analysis. Then, we selected prognosis-related m6A-miRNAs using a univariate Cox regression model and used the consensus cluster analysis to explore the characteristics of the m6A-miRNAs. The coefficient of the least absolute shrinkage and selection operator (LASSO) Cox regression was applied to construct a prognostic risk score model. The receiver operated characteristic (ROC) analysis was applied to evaluate the prognostic value of the signature. The biological functions of targeted genes were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Then, to validate the potential predictive value for prognosis, the miRNA expression profiles from the GSE76903 and GSE6857 were used. Single sample Gene Set Enrichment Analysis (ssGSEA) and Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) were applied to assess the immune microenvironment of HCC. Additionally, a meta-analysis was used to verify the prognostic value of the m6A-microRNAs. RT-PCR was applied to validated the expression of miRNAs in HCC tissues. Cell viability, transwell assay and RNA m6A dot blot assays of HCC cells was applied to access the function of miR-17-5p. RESULTS The expression of 48 m6A-related miRNAs was identified and 17 prognostic m6A-miRNAs was discovered. The expression profile of those 17 miRNAs was divided into three clusters, and these clusters were associated with the tumor microenvironment (TME) and prognosis. The nine m6A-related miRNA signature was associated with the prognosis of HCC, the AUC of the ROC was 0.771(TCGA dataset), 0.788(GSE76903) and 0.646(GSE6857). The TME and the expression of immune checkpoint molecules were associated with the risk score. The meta-analysis also validated the prognostic value of the m6A-related miRNAs (miR182-5p (HR:1.58, 95%CI:1.04-2.40) and miR-17-5p (HR:1.58, 95%CI: 1.04-2.40)). The expression of miR-17-5p was upregulated in HCC tissues and miR-17-5p showed an oncogenic role in HCC cells. CONCLUSION The clinical innovation is the use of m6A-miRNAs as biomarkers for predicting prognosis regarding immunotherapy response in HCC patients.
Collapse
Affiliation(s)
- Renrui Zou
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yaqian Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Sangsang Qiu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Ya Lu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Chen
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hangju Zhu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Zhu
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longbiao Zhu
- Department of The Sixth Dental Division, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Jiangsu, China
| | - Jifeng Feng
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Han
- Jiangsu Cancer Centre, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Aravena TI, Valdés E, Ayala N, D’Afonseca V. A Computational Approach to Predict the Role of Genetic Alterations in Methyltransferase Histones Genes With Implications in Liver Cancer. Cancer Inform 2023; 22:11769351231161480. [PMID: 37008071 PMCID: PMC10064455 DOI: 10.1177/11769351231161480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 04/04/2023] Open
Abstract
Histone methyltransferases (HMTs) comprise a subclass of epigenetic regulators. Dysregulation of these enzymes results in aberrant epigenetic regulation, commonly observed in various tumor types, including hepatocellular adenocarcinoma (HCC). Probably, these epigenetic changes could lead to tumorigenesis processes. To predict how histone methyltransferase genes and their genetic alterations (somatic mutations, somatic copy number alterations, and gene expression changes) are involved in hepatocellular adenocarcinoma processes, we performed an integrated computational analysis of genetic alterations in 50 HMT genes present in hepatocellular adenocarcinoma. Biological data were obtained through the public repository with 360 samples from patients with hepatocellular carcinoma. Through these biological data, we identified 10 HMT genes (SETDB1, ASH1L, SMYD2, SMYD3, EHMT2, SETD3, PRDM14, PRDM16, KMT2C, and NSD3) with a significant genetic alteration rate (14%) within 360 samples. Of these 10 HMT genes, KMT2C and ASH1L have the highest mutation rate in HCC samples, 5.6% and 2.8%, respectively. Regarding somatic copy number alteration, ASH1L and SETDB1 are amplified in several samples, while SETD3, PRDM14, and NSD3 showed a high rate of large deletion. Finally, SETDB1, SETD3, PRDM14, and NSD3 could play an important role in the progression of hepatocellular adenocarcinoma since alterations in these genes lead to a decrease in patient survival, unlike patients who present these genes without genetic alterations. Our computational analysis provides new insights that help to understand how HMTs are associated with hepatocellular carcinoma, as well as provide a basis for future experimental investigations using HMTs as genetic targets against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tania Isabella Aravena
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Elizabeth Valdés
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Nicolás Ayala
- Departamento de Genética, Microbiología y Estadística, Universidad de Barcelona, España
| | - Vívian D’Afonseca
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
- Vívian D’Afonseca, Universidad Católica del Maule, Av. San Miguel 3605, Talca, 3460000, Chile.
| |
Collapse
|
23
|
Li X, Zhao K, Lu Y, Wang J, Yao W. Genetic Analysis of Platelet-Related Genes in Hepatocellular Carcinoma Reveals a Novel Prognostic Signature and Determines PRKCD as the Potential Molecular Bridge. Biol Proced Online 2022; 24:22. [PMID: 36463115 PMCID: PMC9719151 DOI: 10.1186/s12575-022-00185-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) belongs to a representative lethality gastrointestinal malignancy, and comprehensive management of HCC remains intractable at present on account of its invasive biological feature that is easy to relapse and early metastasis. The intimate connection between platelets and tumor progression has been widely reported, and platelet-related indicators are also used in the clinical practice of carcinoma. This work is designed to investigate the significance of platelet-related genes in the prognostic prediction of patients with HCC and their potential role in the cross-talk between HCC cells and platelets in the tumor microenvironment. METHODS By integrating the RNA-seq data and clinicopathological information of HCC patients, we extracted prognosis-associated platelet-related genes based on the univariate cox analysis and further established a relevant prognostic signature via the lasso cox regression analysis, and two independent HCC cohorts were used as external validation. Multiple bioinformatics methods were utilized to explore the underlying functional discrepancy between different risk groups classified by the risk model. And in vitro proliferation, invasion, and migration assays were conducted to investigate the effect of platelet stimulation on HCC cells' viability and motility, and flow cytometric analysis was exerted to demonstrate the influence of HCC cells on platelet activation. RESULTS A novel platelet-related risk model was developed and patients both in the training and testing cohorts were divided into distinct risk subgroups according to the median risk score. It was observed that the high-risk status was closely associated with poor prognosis and worse clinicopathological parameters. Meanwhile, an obvious discrepancy in the constitution of the immune microenvironment also indicated that distinct immune status might be a potential determinant affecting prognosis as well as immunotherapy reactiveness. Moreover, in vitro experiments demonstrated that PRKCD could act as a molecular bridge between tumor cells and platelets, which could either participate in regulating tumor malignant phenotype or mediating platelet activation. CONCLUSIONS In brief, this work reveals a novel platelet-related risk signature for prognostic evaluation of HCC patients and confirms that PRKCD is a key messenger in HCC cell-platelet interaction and plays a crucial role in mediating platelet-induced tumor progression.
Collapse
Affiliation(s)
- Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun Lu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, 430064, China.
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
24
|
Lu L, Huang J, Mo J, Da X, Li Q, Fan M, Lu H. Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis. Cell Mol Biol Lett 2022; 27:17. [PMID: 35193488 PMCID: PMC8903597 DOI: 10.1186/s11658-022-00309-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence suggests that taurine upregulated gene 1 (TUG1) is crucial for tumor progression; however, its role in hepatocellular carcinoma (HCC) and the underlying mechanisms are not well characterized. Methods The expression levels of TUG1, miR-524-5p, and sine oculis homeobox homolog 1 (SIX1) were determined using quantitative real-time PCR. The regulatory relationships were confirmed by dual-luciferase reporter assay. Cell proliferation and invasion were assessed using Cell Counting Kit 8 and transwell assays. Glucose uptake, cellular levels of lactate, lactate dehydrogenase (LDH), and adenosine triphosphate (ATP) were detected using commercially available kits. Silencing of TUG1 or SIX1 was performed by lentivirus transduction. Protein levels were measured by immunoblotting. Results Cancer-associated fibroblasts (CAFs)-secreted exosomes promoted migration, invasion, and glycolysis in HepG2 cells by releasing TUG1. The promotive effects of CAFs-secreted exosomes were attenuated by silencing of TUG1. TUG1 and SIX1 are targets of miR-524-5p. SIX1 knockdown inhibited the promotive effects of miR-524-5p inhibitor. Silencing of TUG1 suppressed tumor growth and lung metastasis and therefore increased survival of xenograft model mice. We also found that TUG1 and SIX1 were increased in HCC patients with metastasis while miR-524-5p was decreased in HCC patients with metastasis. Conclusions CAFs-derived exosomal TUG1 promoted migration, invasion, and glycolysis in HCC cells via the miR-524-5p/SIX1 axis. These findings may help establish the foundation for the development of therapeutics strategies and clinical management for HCC in future. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00309-9.
Collapse
Affiliation(s)
- Le Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Jingjing Huang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Jiantao Mo
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Xuanbo Da
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Qiaoxin Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China.
| |
Collapse
|