1
|
Prates JAM. Nutritional Value and Health Implications of Meat from Monogastric Animals Exposed to Heat Stress. Nutrients 2025; 17:1390. [PMID: 40284253 PMCID: PMC12030530 DOI: 10.3390/nu17081390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Heat stress (HS), driven by rising global temperatures, significantly impairs the nutritional composition and sensory quality of meat from monogastric animals, particularly swine and poultry. HS induces physiological disturbances, including reduced feed intake, oxidative stress, and endocrine disruption, which together reduce muscle protein content by 10-15% and essential amino acid levels (e.g., lysine, methionine, threonine) by 15-25%. Lipid profiles are also altered, with up to 30% reductions in polyunsaturated fatty acids (PUFAs), especially omega-3s, and an increased saturated fat content. Additionally, HS reduces the retention of vitamins E, A, D, and C by 20-50% and critical minerals such as selenium, zinc, and iron, compromising antioxidant capacity, immune function, and oxygen transport. These changes diminish meat tenderness, juiciness, flavour, and colour stability, leading to reduced consumer appeal and dietary quality. The consumption of heat-stressed meat may elevate risks for cardiovascular disease, oxidative stress, and micronutrient deficiencies. Mitigation strategies, including dietary antioxidant and osmolyte supplementation, genetic selection for thermotolerance, and optimised feeding practices, can reduce oxidative damage by up to 40% and improve nutrient retention. This review synthesises the current evidence on HS-induced meat quality deterioration and explores nutritional and management strategies to protect animal productivity and human health.
Collapse
Affiliation(s)
- José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Ying Z, Xie S, Xiu Z, Sun Y, Yang Q, Gao H, Fan W, Wu Y. Under heat stress conditions, selenium nanoparticles promote lactation through modulation of rumen microbiota and metabolic processes in dairy goats. Sci Rep 2025; 15:9063. [PMID: 40097638 PMCID: PMC11914082 DOI: 10.1038/s41598-025-93710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
This study aimed to investigate the effects of dietary supplementation with Selenium nanoparticles (SeNPs) on lactation performance, rumen microbial communities, and metabolism in dairy goats under heat stress conditions. Twenty Guanzhong dairy goats with the same parity, similar lactation period (120 ± 15 days), and similar milk yield (1.20 ± 0.16 kg/day) were randomly divided into two groups, with 10 replicates in each group. The control group was fed a standard diet, while the experimental group was supplemented with 0.5 mg SeNPs/kg DM based on the standard diet. The pretrial period lasted for seven days, followed by a 30-day trial period. The results showed that dietary supplementation with SeNPs significantly increased milk yield, milk fat and lactose content in dairy goats, under heat stress conditions. SeNPs significantly altered the composition of the rumen microbiota, increasing the relative abundance of Prevotella and Ruminococcus while decreasing the relative abundance of Succiniclasticum. This enhanced the rumen's ability to degrade starch and fiber under heat stress conditions. Non-targeted metabolomic analysis revealed a total of 119 differential metabolites between the two groups, indicating changes in rumen metabolism. Further correlation analysis indicated that Rumen bacterium R-21 was positively correlated with propionate, while Ralstonia insidiosa was negatively correlated with γ-glutamylcysteine. Additionally, several differential microbes, including Succinivibrio dextrinosolvens, Rummeliibacillus pycnus, Ralstonia insidiosa, and Prevotella sp BP1-56, were significantly correlated with milk composition. In conclusion, dietary supplementation with SeNPs can positively impact milk yield, milk components, and metabolism in dairy goats by improving the composition of the rumen microbiota under heat stress conditions.
Collapse
Affiliation(s)
- Zaixiang Ying
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Shan Xie
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Ziqing Xiu
- College of Animal Science and Technology, Southwest University, Beibei, 400715, China
| | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Beibei, 400715, China
| | - Qinlin Yang
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, 408435, China
| | - Hanyu Gao
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Wenqiao Fan
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Yongjiang Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| |
Collapse
|
3
|
Yang Z, Zheng Y, Ren K, Wang W, Li S. Hydroxy-selenomethionine helps cows to overcome heat stress by enhancing antioxidant capacity and alleviating blood-milk barrier damage. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:171-181. [PMID: 39967694 PMCID: PMC11833791 DOI: 10.1016/j.aninu.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/23/2024] [Accepted: 10/30/2024] [Indexed: 02/20/2025]
Abstract
Heat stress can lead to decreased feed intake, apoptosis of mammary epithelial cells, and decreased milk yield and quality. Selenium is an important element in the composition of at least 25 selenoproteins. Hydroxy-selenomethionine (HMSeBA) is a novel organic selenium that has been shown to have a better deposition effect. However, whether HMSeBA alleviates damage to the mammary gland blood-milk barrier caused by heat stress and how this affects the performance of dairy cows remain largely unexplored. Therefore, 32 healthy Holstein cows with similar gestation days (150.41 ± 20.07 d), milk yield (36.15 ± 3.02 kg) and parity (3.25 ± 0.51) were selected and randomly divided into two total mixed rations with different selenium (Se) sources: sodium selenite (SSe) and HMSeBA. This study evaluated the outcomes of HMSeBA on antioxidant capacity, immunity, and blood-milk barrier damage in dairy cows during heat stress by collecting the samples of blood, rumen fluid and mammary gland biopsy. The experiment was conducted over 35 d, including a 5-day pre-feeding period and a 30-day experimental period. The temperature and humidity index (THI) were all above 80 throughout the experiment period. The results showed that HMSeBA decreased the respiratory rate (P < 0.001) and the content of inflammatory cytokines in the serum and increased the content of immune factors and antioxidant capacity (P < 0.05). In addition, HMSeBA reduced the expression of inflammatory cytokines and heat shock proteins in mammary gland (P < 0.05). Hematoxylin-eosin-stained pathological sections showed massive thickening of acinar walls and severe destruction of glandular structures in the SSe group, but the structure of the acinar mammary gland in the HMSeBA group was intact. Furthermore, HMSeBA promoted the expression of the phosphatidylinositol 3-kinase (PI3K, P < 0.001)/protein kinase B (AKT, P = 0.011)/mammalian target of rapamycin (mTOR, P = 0.008) pathway and improved the expression of zonula occludens-1 (ZO-1, P = 0.014) and occluding (OCLN, P = 0.012) in the mammary gland, suggesting less damage caused by heat stress to the blood-milk barrier. Our results demonstrated that HMSeBA can improve the antioxidant capacity and immunity of dairy cows and the expression of tight junction proteins in mammary gland to help alleviate the blood-milk barrier damage by heat stress, which could reduce the damage of heat stress on milk yield.
Collapse
Affiliation(s)
- Zhantao Yang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuhui Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kai Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Lu J, Li C, Zhao T, Li F, Yao Z, Dong Y, Gong Z, Yan Y, Luo X, Wang H. Sodium Butyrate Alleviates Heat Stress-Induced Oxidative Stress and Skeletal Muscle Homeostasis Disruption by Promoting Autophagy in Mice. Nutrients 2025; 17:696. [PMID: 40005024 PMCID: PMC11858507 DOI: 10.3390/nu17040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/19/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The gradual rise in global temperatures can affect skeletal muscle development and intestinal microorganisms. However, the influence of microbial metabolites on skeletal muscle homeostasis under heat stress (HS) remains unclear. METHODS C57BL/6J mice were exposed to normal temperature or 40 °C conditions for 3 d, 7 d, or 14 d. The HS 7 d mice also were treated with sodium butyrate (NaB, 200 mg/kg, gavage). RESULTS Strikingly, the body weight, antioxidative ability (MDA, T-SOD, and GSH-Px), and average cross-sectional area decreased, but the blood glucose and core temperature increased under HS. However, the NaB treatment reversed these effects. Meanwhile, HS also increased the levels of TNF-α and CORT. Additionally, HS led to a reduction in the villus height and an increase in the crypt depth of the intestine. Microbial 16S rRNA sequencing analysis revealed that HS caused gut microbiota dysbiosis. NaB increased the expression of HSP70 under HS, to maintain skeletal muscle homeostasis. HS stimulated the expression of Pax7, which indicates that skeletal muscle homeostasis was disrupted. Meanwhile, the expressions of MyoG and MyoD were decreased under HS. The immunofluorescence results also show that HS triggered a shift from slow muscle fibers (MYH7) to fast muscle fibers (MYH1). However, NaB recovered the expressions of these muscle-related factors. HS inhibited autophagy initiation (mTOR, Beclin1, Atg5, Atg7, and Atg12), the formation (LC3 II/LC3 I) of autophagosomes, and the binding (p62 and LAMP1) of lysosomes to autophagosomes, which were activated by NaB. C2C12 cells were treated with H2O2 to simulate skeletal muscle oxidative stress, and treated with NaB in advance. Oxidative stress disrupted the homeostasis of the C2C12 cells, characterized by an increase in Pax 7 and decreases in MyoG and MyoD, but these changes were reversed by the NaB treatment. Meanwhile, NaB was unable to maintain the stable expression of Pax7 when autophagy was inhibited. CONCLUSIONS This suggests that NaB can regulate oxidative stress induced by HS through autophagy to maintain skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, No.1 Mingxian South Road, Taigu 030801, China; (C.L.); (T.Z.); (F.L.); (Z.Y.); (Y.D.); (Z.G.); (Y.Y.); (X.L.)
| | | | | | | | | | | | | | | | | | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, No.1 Mingxian South Road, Taigu 030801, China; (C.L.); (T.Z.); (F.L.); (Z.Y.); (Y.D.); (Z.G.); (Y.Y.); (X.L.)
| |
Collapse
|
5
|
Lisi L, Olivi A, Ciotti GMP, Marino S, Ferraro C, Menna G, Martire M, Pennisi G, Navarra P, Della Pepa GM. A topographic approach to the markers of macrophage/microglia and other cell types in high grade glioma. Neurochem Int 2025; 183:105922. [PMID: 39734023 DOI: 10.1016/j.neuint.2024.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
In glioblastoma, glioma-associated microglia/macrophages (GAMs) represent the major population of tumor infiltrating cells, with up to one half of the cells of the tumor mass. Recent studies have shown that microglia are involved in the maintenance of immunological homeostasis and protection against autoimmunity. However, despite the growing body of evidence on the topic, many aspects are yet to be clarified. In our study, 3 different situations emerged concerning the markers of microglial/macrophage-related and other cell types in GBM patients: i) most of the markers (IBA1, TMEM119, CD206 and CD86) show an ascending gradient from the tumor center to the non-tumor/healthy area of the brain; ii) one marker (CD204) shows a descending gradient, going from the center of the tumor to the non-tumor/healthy brain area; iii) two markers (CD163 and P2RY12) show no gradient. These observations support the idea that the magnitude of the diverted inflammation is a 'extensive' rather than a 'local' phenomenon and that could possibly play a role in disease resistance and relapse.
Collapse
Affiliation(s)
- Lucia Lisi
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, IRCSS-Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy.
| | - Alessandro Olivi
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Gabriella Maria Pia Ciotti
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, IRCSS-Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy
| | - Salvatore Marino
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Chiara Ferraro
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, IRCSS-Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy
| | - Grazia Menna
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Maria Martire
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, IRCSS-Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy
| | - Giovanni Pennisi
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Pierluigi Navarra
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, IRCSS-Fondazione Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy.
| |
Collapse
|
6
|
Wang S, Li E, Luo Z, Li X, Liu Z, Li W, Wang X, Qin JG, Chen L. Dietary yeast culture can protect against chronic heat stress by improving the survival, antioxidant capacity, immune response, and gut health of juvenile Chinese mitten crab (Eriocheir sinensis). AQUACULTURE 2025; 596:741910. [DOI: 10.1016/j.aquaculture.2024.741910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Wu H, Qin B, Yang G, Ji P, Gao Y, Zhang L, Wang B, Liu G. The Protective Effects of Melatonin on Hainan Black Goats Under Heat Stress: Understanding Its Actions and Mechanisms. Antioxidants (Basel) 2025; 14:44. [PMID: 39857379 PMCID: PMC11760882 DOI: 10.3390/antiox14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
As the global climate changes, high temperatures will cause heat stress, which significantly affects the productive efficiency of livestock. Currently, there is a lack of efficient methods to use in targeting this issue. In this study, we report that melatonin supplementation may represent an alternative method to reduce the negative impact of heat stress on livestock, particularly in Hainan black goats. Our results show that melatonin treatment increased the average daily gain of Hainan black goats that were exposed to constantly high temperatures for two months compared to controls. Our mechanistic exploration revealed that melatonin treatment not only reduced the oxidative stress and inflammatory reaction caused by heat stress but also improved goats' metabolic capacity, promoting their growth and development. More importantly, for the first time, we observed that melatonin treatment modified the abundance of the intestinal microflora, altering the metabolism of the goats, which further improved their tolerance to constant heat stress.
Collapse
Affiliation(s)
- Hao Wu
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Baochun Qin
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Guang Yang
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Yu Gao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Bingyuan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Guoshi Liu
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| |
Collapse
|
8
|
Yang G, Wang Y, Ji P, Wang B, Liu G. Transcriptome Analysis Reveals Sertoli Cells Adapting Through Redox and Metabolic Pathways Under Heat Stress in Goats. Genes (Basel) 2024; 15:1582. [PMID: 39766849 PMCID: PMC11675638 DOI: 10.3390/genes15121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Climate change-induced temperature elevations pose significant challenges to livestock reproduction, particularly affecting testicular function in small ruminants. This study investigates the acute heat-stress response in goat Sertoli cells (SCs), aiming to elucidate the molecular mechanisms underlying heat-induced damage to male reproductive tissues. METHODS SCs were isolated from testes of 4-month-old black goats and exposed to heat stress (44 °C for 2.5 h). We employed transcriptome sequencing, CCK-8 assay, electron microscopy, ROS measurement, autophagy detection, Western blot analysis, and lactate concentration measurement. Bioinformatics analyses including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction network analyses were performed on the transcriptome data. RESULTS Heat stress significantly reduced SC viability, induced oxidative stress and autophagy, and altered gene expression profiles. We identified 1231 significantly differentially expressed genes, with significant enrichment in membrane-related processes and metabolic pathways. Metabolism-related genes, including PKLR, ACOT11, and LPCT12, were significantly downregulated. Protein-protein interaction network analysis revealed ten hub genes potentially crucial in the heat-stress response: HSP90AA1, HSPA5, BAG3, IGF1, HSPH1, IL1A, CCL2, CXCL10, ALB, and CALML4. CONCLUSIONS This study provides comprehensive insights into the molecular mechanisms underlying goat SC response to heat stress. The identified genes and pathways, particularly those related to metabolism and stress response, offer potential targets for developing strategies to mitigate heat-stress effects on livestock reproduction. These findings contribute to our understanding of climate change impacts on animal husbandry and may inform the development of heat-stress resistant livestock lines.
Collapse
Affiliation(s)
- Guang Yang
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China;
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (P.J.); (B.W.)
| | - Yiwei Wang
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (P.J.); (B.W.)
| | - Pengyun Ji
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (P.J.); (B.W.)
| | - Bingyuan Wang
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (P.J.); (B.W.)
| | - Guoshi Liu
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China;
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (P.J.); (B.W.)
| |
Collapse
|
9
|
Ban J, Jung J, Shim K, Kang D. Comparison of selenium-mediated regulation of heat shock protein and inflammation in-vitro and in-ovo for heat resistance enhancement in broiler. Poult Sci 2024; 103:104271. [PMID: 39265516 PMCID: PMC11416588 DOI: 10.1016/j.psj.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
Selenium is a heat-stress-reducing substance that improves heat resistance and is being studied for its effective application in the broiler industry. However, research on feed additives is labor-intensive and time-consuming because of the need for feeding experiments. We aimed to compare the effects of selenium under heat stress in vitro and in ovo, specifically examining the gene expression of heat shock proteins (HSP) and inflammatory markers. Two groups were included in the in-vitro study: in-vitro control (TC; selenium 0 μg/ml) and in-vitro selenium (TS; selenium 5 μg/ml). The satellite cells were cultured at 42°C for 48 h after selenium treatment. The in-ovo study comprised 4 groups: in-ovo control and in-ovo selenium 1-3 (OC, OS1, OS2, and OS3; selenium 2.5, 5, and 10 μg/egg, respectively). Selenium was injected on the 18th day after hatching, and heat treatment was performed at 32-34°C from the 14th to the 21st day after hatching, and the leg muscles of the chicks were collected on the 21st day. The gene expression of heat shock proteins (HSP), caspase3, nuclear factor kappa light-chain enhancer of activated B cells (NF-kB), and IL-8 was analyzed in in-vitro and in-ovo experiments, respectively. In-vitro results showed significant increases in HSP90, HSP60, and HSP40 in TS compared to TC, with a significant decrease in HSP70. In the in-ovo study, HSP70, caspase3, NF-kB and IL-8 were significantly increased in OS1. HSP90, HSP60, HSP40, HSP27 and NF-kB were significantly decreased in in-ovo OS2 compared to in-vitro TS, implying a trend in ratio compared to control. Selenium appeared to enhance heat resistance in-vitro and in-ovo by modulating HSPs and inflammation. However, differences in mRNA expression were observed depending on the concentration of selenium. These findings suggest that selenium modulates heat resistance through different mechanisms in-vitro and in-ovo, likely due to the complexity of whole-organism interactions in-ovo compared to the single-cell-type environment in-vitro. Therefore, to directly apply in-vitro results to in-ovo, a concentration comparison study for each additive is necessary.
Collapse
Affiliation(s)
- Junseok Ban
- Department of Animal Resources and Biotechnology, College of Agriculture Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jonghyun Jung
- Jung P&C Institute Inc., Yongin 16951, Republic of Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; Institute of Agricultural Science and Technology, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
10
|
Liu J, Feng G. The causal relationship between trace element status and upper gastrointestinal ulcers: a Mendelian randomization study. Front Nutr 2024; 11:1443090. [PMID: 39539362 PMCID: PMC11557352 DOI: 10.3389/fnut.2024.1443090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background This study aimed to investigate the bidirectional causal relationships between trace elements (such as zinc, magnesium, phosphate, and folate) and upper gastrointestinal ulcers (including gastric and duodenal ulcers). We utilized a two-sample Mendelian randomization (MR) analysis to achieve this. Methods We conducted a two-sample MR analysis using summary-level data from genome-wide association studies (GWAS) obtained from public genomics repositories. We utilized a range of MR methods, including inverse-variance weighted (IVW), MR-Egger, and weighted median methods, and conducted a meta-analysis to synthesize results across different datasets. To ensure the robustness of our findings, we performed extensive sensitivity analyses, including pleiotropy assessment, heterogeneity tests, and leave-one-out analysis. Results Our findings are significant, indicating a positive causal relationship between increased zinc levels and the risk of gastric ulcers. Moreover, magnesium and folate appear to offer potential protective effects against gastroduodenal ulcers (p < 0.05). The meta-analysis further supports the causal relationship between zinc and gastric ulcers (p < 0.05), confirming zinc's significant causal impact on this condition. Conclusion The study confirms a positive causal relationship between zinc and gastric ulcers and highlights the complexity of how trace elements regulate the progression of upper gastrointestinal ulcers. These results provide a scientific basis for dietary recommendations regarding trace element intake in clinical and public health practices. They also offer new insights into effective prevention and treatment strategies for gastric and duodenal ulcers.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Gastroenterology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Gege Feng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Serratos MJH, Ramírez MJ, Fariña IG, Pérez JLT, Trujillo EH, Sánchez VMD. Description of lesions in lambs intoxicated with sodium selenite included in intraruminal boluses: Lambs intoxicated with selenium. Vet Med Sci 2024; 10:e1584. [PMID: 39189849 PMCID: PMC11348507 DOI: 10.1002/vms3.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Selenium is an essential micronutrient for ruminants, which participates in the optimal functioning of proteins and enzymes that can combat oxidative stress in the body; however, its toxicity is documented in different species. The objective of this work was to describe macroscopic and microscopic lesions in lambs intoxicated with selenium administered through intraruminal boluses. The main lesions at necropsy were pulmonary oedema; the myocardial surface presented multifocal pale areas; the thyroid and thymus glands were decreased in size, and areas of necrosis, haemorrhage and hyperkeratosis were observed in the reticulum and rumen. At the microscopic level, congestion, haemorrhage, oedema and hyaline membranes were observed in the lung; hepatic congestion, haemorrhage, degeneration and necrosis; degeneration and necrosis of the reticulum mucosa, as well as areas of hyperplasia and hyperkeratosis; myocardial degeneration, necrosis and fibrosis; congestion, haemorrhage, degeneration and renal tubular necrosis; thyroid follicular atrophy and thymic cortical atrophy. This study evidenced the main lesions related to selenium poisoning in lambs supplemented with the mineral through intraruminal boluses.
Collapse
|
12
|
Liu Y, Sun D, Xu C, Liu X, Tang M, Ying S. In-depth transcriptome profiling of Cherry Valley duck lungs exposed to chronic heat stress. Front Vet Sci 2024; 11:1417244. [PMID: 39104549 PMCID: PMC11298465 DOI: 10.3389/fvets.2024.1417244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Amidst rising global temperatures, chronic heat stress (CHS) is increasingly problematic for the poultry industry. While mammalian CHS responses are well-studied, avian-specific research is lacking. This study uses in-depth transcriptome sequencing to evaluate the pulmonary response of Cherry Valley ducks to CHS at ambient temperatures of 20°C and a heat-stressed 29°C. We detailed the CHS-induced gene expression changes, encompassing mRNAs, lncRNAs, and miRNAs. Through protein-protein interaction network analysis, we identified central genes involved in the heat stress response-TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and PLCB2. Subsequent functional enrichment analysis of the differentially expressed genes and RNA targets revealed significant engagement in immune responses and regulatory processes. KEGG pathway analysis underscored crucial immune pathways, specifically those related to intestinal IgA production and Toll-like receptor signaling, as well as Salmonella infection and calcium signaling pathways. Importantly, we determined six miRNAs-miR-146, miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p-as potential key regulators within the ceRNA network. These findings enhance our comprehension of the physiological adaptation of ducks to CHS and may provide a foundation for developing strategies to improve duck production under thermal stress.
Collapse
Affiliation(s)
- Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongyue Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Congcong Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijia Ying
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
13
|
Li H, Dong J, Wang Z, Cui L, Liu K, Guo L, Li J, Wang H. Development potential of selenium in the prevention and treatment of bovine endometritis. Reprod Domest Anim 2024; 59:e14647. [PMID: 38924282 DOI: 10.1111/rda.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Endometritis is a common postpartum disease in cows. It delays uterine involution and impairs normal physiological function. This can result in long-term or even lifelong infertility and cause significant losses to the dairy farming industry. Traditional treatments like antibiotics possess certain shortcomings, such as antibiotic residues, the abuse of antibiotics, and increased antimicrobial resistance of pathogens. Alternative treatment strategies are needed to minimize the utilization of antibiotics in dairy production. As an essential trace element in animals, selenium (Se) plays a vital role in regulating immune function, the inflammatory response, and oxidative stress, affecting the speed and completeness of tissue repair. This paper reviewed previous studies to analyse the potential of Se in the prevention and treatment of bovine endometritis, aiming to provide a new direction to increase production capacity in the future.
Collapse
Affiliation(s)
- Hanqing Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Junsheng Dong
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Zi Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Kangjun Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Long Guo
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Li Y, Pan M, Meng S, Xu W, Wang S, Dou M, Zhang C. The Effects of Zinc Oxide Nanoparticles on Antioxidation, Inflammation, Tight Junction Integrity, and Apoptosis in Heat-Stressed Bovine Intestinal Epithelial Cells In Vitro. Biol Trace Elem Res 2024; 202:2042-2051. [PMID: 37648935 DOI: 10.1007/s12011-023-03826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Zinc oxide nanoparticles (nano-ZnO) have diverse applications in numerous biomedical processes. The present study explored the effects of these nanoparticles on antioxidation, inflammation, tight junction integrity, and apoptosis in heat-stressed bovine intestinal epithelial cells (BIECs). Primary BIECs that were isolated and cultured from calves either were subjected to heat stress alone (42°C for 6 h) or were simultaneously heat-stressed and treated with nano-ZnO (0.8 μg/mL). Cell viability, apoptosis, and expression of genes involved in antioxidation (Nrf2, HO-1, SOD1, and GCLM), inflammation-related genes (TLR4, NF-κB, TNF-α, IL-6, IL-8, and IL-10), intestinal barrier genes (Claudin, Occludin, and ZO-1), and apoptosis-related genes (Cyt-c, Caspase-3, and Caspase-9) were assessed to evaluate the effect of nano-ZnO on heat-stressed BIECs. The nanoparticles significantly increased cell viability and decreased the rate of apoptosis of BIECs induced by heat stress. In addition, nano-ZnO promoted the expression of antioxidant-related genes HO-1 and GCLM and anti-inflammatory cytokine gene IL-10, and inhibited the pro-inflammatory cytokine-related genes IL-6 and IL-8. The nanoparticles also enhanced expression of the Claudin and ZO-1 genes, and decreased expression of the apoptosis-related genes Cyt-c and Caspase-3. These results reveal that nano-ZnO improve the antioxidant and immune capacity of BIECs and mitigate apoptosis of intestinal epithelial cells induced by heat stress. Thus, nano-ZnO have potential for detrimental the adverse effects of heat stress in dairy cows.
Collapse
Affiliation(s)
- Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Pan
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wenhao Xu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
15
|
Wei C, Wang S, Wang C, Zhao Y, Zhang Y. Meta-analysis of selenium effects on the meat quality of broilers. Poult Sci 2024; 103:103523. [PMID: 38387291 PMCID: PMC10900958 DOI: 10.1016/j.psj.2024.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
The effects of sodium selenite or selenium yeast on the meat quality of broilers were searched in the literature published in the Chinese National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), PubMed, Web of Science, and Science Direct databases from January 1, 2010 to December 31, 2022. Meta-analysis was performed with Stata software (StataCorp. 2011), and the standardized mean difference (SMD) and its 95% confidence interval (CI) were calculated using a random effects model. Twenty of the identified 846 literature sources, which included 791 broilers, were screened. The meat quality indices considered were shear force, drip loss, cooking loss, water holding capacity (WHC), pH, and color. The source of heterogeneity was studied using sensitivity and subgroup analyses, and publication bias was evaluated using funnel plots. The results showed that the supplementation of selenium in the broiler diet significantly reduced the shear force (SMD = -0.67, 95% CI [-1.12, -0.22], P < 0.05) and drip loss (SMD = -0.84, 95% CI [-1.39, -0.30], P < 0.05) and increased the pH (SMD = 0.38, 95% CI [0.01, 0.75], P < 0.05) of broiler breast muscle; however, it had no significant effects on other indices. Funnel plots revealed a slight publication bias in the shear force and pH of breast muscle but none in the drip loss of breast muscle. The sensitivity analysis showed that the results were stable and reliable. In conclusion, selenium supplementation in broiler feed can improve some indices of broiler meat quality, and its inclusion in broiler diets is recommended, in conjunction with other minerals, which is of great significance to improve the quality, preservation time and economic benefits of chicken products.
Collapse
Affiliation(s)
- Chunbo Wei
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China.
| | - Shuo Wang
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Cuiping Wang
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Yuming Zhao
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Ying Zhang
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Department of Animal Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| |
Collapse
|
16
|
Khan MZ, Khan A, Chen W, Chai W, Wang C. Advancements in Genetic Biomarkers and Exogenous Antioxidant Supplementation for Safeguarding Mammalian Cells against Heat-Induced Oxidative Stress and Apoptosis. Antioxidants (Basel) 2024; 13:258. [PMID: 38539792 PMCID: PMC10967571 DOI: 10.3390/antiox13030258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 11/11/2024] Open
Abstract
Heat stress represents a pervasive global concern with far-reaching implications for the reproductive efficiency of both animal and human populations. An extensive body of published research on heat stress effects utilizes controlled experimental environments to expose cells and tissues to heat stress and its disruptive influence on the physiological aspects of reproductive phenotypic traits, encompassing parameters such as sperm quality, sperm motility, viability, and overall competence. Beyond these immediate effects, heat stress has been linked to embryo losses, compromised oocyte development, and even infertility across diverse species. One of the primary mechanisms underlying these adverse reproductive outcomes is the elevation of reactive oxygen species (ROS) levels precipitating oxidative stress and apoptosis within mammalian reproductive cells. Oxidative stress and apoptosis are recognized as pivotal biological factors through which heat stress exerts its disruptive impact on both male and female reproductive cells. In a concerted effort to mitigate the detrimental consequences of heat stress, supplementation with antioxidants, both in natural and synthetic forms, has been explored as a potential intervention strategy. Furthermore, reproductive cells possess inherent self-protective mechanisms that come into play during episodes of heat stress, aiding in their survival. This comprehensive review delves into the multifaceted effects of heat stress on reproductive phenotypic traits and elucidates the intricate molecular mechanisms underpinning oxidative stress and apoptosis in reproductive cells, which compromise their normal function. Additionally, we provide a succinct overview of potential antioxidant interventions and highlight the genetic biomarkers within reproductive cells that possess self-protective capabilities, collectively offering promising avenues for ameliorating the negative impact of heat stress by restraining apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
17
|
Segovia-Cubero J, Ruiz-Bautista L, Maiz-Carro L, Girón-Moreno RM, Prados-Sánchez MC, Martínez-Martínez MT, González-Estecha M, Mingo-Santos S, Gómez-Bueno M, Salas-Antón C, Cavero-Gibanel MA, Pastrana-Ledesma M, García-Pavía P, Laporta-Hernández R, Sánchez-Ortiz D, Alonso-Pulpón L. The cardiomyopathy of cystic fibrosis: a modern form of Keshan disease. Front Cardiovasc Med 2024; 11:1285223. [PMID: 38361580 PMCID: PMC10867141 DOI: 10.3389/fcvm.2024.1285223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction We conducted a study to determine the prevalence of structural heart disease in patients with CF, the characteristics of a cardiomyopathy not previously described in this population, and its possible relationship with nutritional deficiencies in CF. Methods We studied 3 CMP CF patients referred for heart-lung transplantation and a prospective series of 120 adult CF patients. All patients underwent a clinical examination, blood tests including levels of vitamins and trace elements, and echocardiography with evaluation of myocardial strain. Cardiac magnetic resonance imaging (CMR) was performed in patients with CMP and in a control group. Histopathological study was performed on hearts obtained in transplant or necropsy. Results We found a prevalence of 10% (CI 4.6%-15.4%) of left ventricular (LV) dysfunction in the prospective cohort. Myocardial strain parameters were already altered in CF patients with otherwise normal hearts. Histopathological examination of 4 hearts from CF CMP patients showed a unique histological pattern of multifocal myocardial fibrosis similar to Keshan disease. Four of the five CF CMP patients undergoing CMR showed late gadolinium uptake, with a characteristic patchy pattern in 3 cases (p < 0.001 vs. CF controls). Selenium deficiency (Se < 60 µg/L) was associated with more severe LV dysfunction, higher prevalence of CF CMP, higher NTproBNP levels, and more severe pulmonary and digestive involvement. Conclusion 10% of adults with CF showed significant cardiac involvement, with histological and imaging features resembling Keshan disease. Selenium deficiency was associated with the presence and severity of LV dysfunction in these patients.
Collapse
Affiliation(s)
- Javier Segovia-Cubero
- Cardiolology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Luis Maiz-Carro
- Cystic Fibrosis Unit, Pneumology Dept., Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Rosa M. Girón-Moreno
- Cystic Fibrosis Unit, Pneumology Dept., Hospital Universitario La Princesa, Madrid, Spain
| | | | | | | | | | - Manuel Gómez-Bueno
- Cardiolology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Clara Salas-Antón
- Pathology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | | | - Pablo García-Pavía
- Cardiolology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Luis Alonso-Pulpón
- Cardiolology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
18
|
Hu P, Li K, Peng X, Yao T, Zhu C, Gu H, Liu HY, Sun MA, Hu Y, Ennab W, Luo X, Cai D. Zinc intake ameliorates intestinal morphology and oxidative stress of broiler chickens under heat stress. Front Immunol 2024; 14:1308907. [PMID: 38259441 PMCID: PMC10800777 DOI: 10.3389/fimmu.2023.1308907] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Zinc (Zn), an essential trace element for poultry, plays a crucial role in promoting growth, improving feed conversion efficiency, enhancing antioxidant activity, and preventing disease. This study investigated the impact of different levels and sources of dietary Zn supplementation on the growth performance, intestinal morphology and antioxidant activity of broiler chickens under heat stress conditions. In this experiment, 1024 Xueshan chickens were divided into eight groups and subjected to heat stress conditions with different levels of Zn supplementation (30 mg/kg, 60 mg/kg, and 90 mg/kg) using organic or inorganic sources. Our findings indicated that dietary Zn supplementation significantly increased the feed-to-weight ratio of broilers during the experimental period under heat stress. Moreover, Zn supplementation positively increased the villus height and villus width in the jejunum and ileum at 74 and 88 days old, with the 60 and 90 mg/kg groups outperforming other groups, and organic Zn was more effective than inorganic Zn. Furthermore, Zn supplementation significantly increased serum antioxidant levels, with higher superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-px) activities, and organic Zn was more effective than inorganic Zn. This study concludes that Zn supplementation is beneficial in mitigating the detrimental impacts of heat stress on broilers. The findings suggest that employing Zn as a strategy can enhance productivity in the poultry industry by positively influencing intestinal morphology and bolstering antioxidant activity to counteract potential stress.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tongjia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wael Ennab
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Xin Q, Li L, Zhao B, Shi W, Hao X, Zhang L, Miao Z, Zhu Z, Huang Q, Zheng N. The network regulation mechanism of the effects of heat stress on the production performance and egg quality of Jinding duck was analyzed by miRNA‒mRNA. Poult Sci 2024; 103:103255. [PMID: 38039938 PMCID: PMC10698676 DOI: 10.1016/j.psj.2023.103255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 12/03/2023] Open
Abstract
To explore the differential regulation mechanism of heat stress on the egg production performance and egg quality of Jinding ducks, 200 Jinding ducks (360-day-old) in good health and with similar body weights and a normal appetite were selected and randomly divided into a control (normal temperature [NT]) group (20°C-25°C) and a heat stress (HS) group (32°C-36°C), with 4 replicates in each group and 25 ducks in each replicate. The pretrial period was 1 wk, and the formal trial period was 4 wk. At the end of the 4th wk, 12 duck eggs were collected from each replicate to determine egg quality. Pituitary and ovarian tissues of Jinding ducks were collected, transcriptome sequencing was performed to screen differentially expressed miRNAs and mRNAs related to high temperature and heat stress, and a competitive endogenous RNA regulatory network was constructed. The sequencing data were verified by qRT‒PCR method. The following results were obtained: (1) Compared with the NT group, the HS group had a significantly lower laying rate, total egg weight, average egg weight, total feed intake, and feed intake per duck (P < 0.01), an extremely significantly higher feed-to-egg ratio (P < 0.01), and a higher mortality rate. (2) Compared with the NT group, the HS group had an extremely significantly lower egg weight, egg yolk weight, eggshell weight, and eggshell strength (P < 0.01) and an extremely significantly lower yolk ratio and eggshell thickness (P < 0.01, P < 0.05); however, there was no significant difference in the egg shape index, Haugh unit or protein height (P > 0.05). (3) A total of 1,974 and 1,202 genes were identified in the pituitary and ovary, respectively, and there were 5 significantly differentially expressed miRNAs. The differentially expressed genes were involved in the arginine and proline metabolism pathways, ether lipid metabolism pathway, and drug metabolism-cytochrome P450 pathway, which are speculated to be related to the egg production performance of Jingding ducks under high-temperature heat stress. (4) Novel_221 may target the PRPS1 gene to participate in egg production performance; novel_168 and novel_289 may target PIGW; novel_289 may target Q3MUY2; and novel_289 and novel_208 may target PIGN or genes that may be related to high-temperature heat stress. (5) In pituitary tissue, upregulated novel_141 (center of the network) formed a regulatory network with HSPB1 and HSP30A, and downregulated novel_366 (center of the network) formed a regulatory network with the JIP1 gene. In ovarian tissue, downregulated novel_289 (center of the network) formed a regulatory network with the ZSWM7, ABI3, and K1C23 genes, novel_221 formed a regulatory network with the IGF1, BCL7B, SMC6, APOA4, and FARP2 genes, and upregulated novel_40 formed a regulatory network with the HA1FF10 gene. In summary, heat stress affects the production performance and egg quality of Jinding ducks by regulating the secretion of endocrine-related hormones and the release of neurotransmitters as well as the expression of miRNAs and mRNAs in pituitary and ovarian tissues. The miRNA‒mRNA regulatory network provides a theoretical basis for the molecular mechanism that regulates the stress response in pituitary and ovarian tissues, egg quality, and production performance under heat stress.
Collapse
Affiliation(s)
- Qingwu Xin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Li Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Bangzhe Zhao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenli Shi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaona Hao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linli Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Zhiming Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Qinlou Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Nenzhu Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| |
Collapse
|
20
|
Wang J, Jing J, Gong Z, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Che L, Zhao H. Different Dietary Sources of Selenium Alleviate Hepatic Lipid Metabolism Disorder of Heat-Stressed Broilers by Relieving Endoplasmic Reticulum Stress. Int J Mol Sci 2023; 24:15443. [PMID: 37895123 PMCID: PMC10607182 DOI: 10.3390/ijms242015443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
As global warming continues, the phenomenon of heat stress (HS) in broilers occurs frequently. The alleviating effect of different selenium (Se) sources on HS-induced hepatic lipid metabolism disorders in broilers remains unclear. This study compared the protective effects of four Se sources (sodium selenite; selenium yeast; selenomethionine; nano-Se) on HS-induced hepatic lipid metabolism disorder and the corresponding response of selenotranscriptome in the liver of broilers. The results showed that HS-induced liver injury and hepatic lipid metabolism disorder, which were reflected in the increased activity of serum alanine aminotransferase (ALT), the increased concentration of triacylglycerol (TG) and total cholesterol (TC), the increased activity of acetyl-CoA carboxylase (ACC), diacylglycerol O-acyltransferase (DGAT) and fatty acid synthase (FAS), and the decreased activity of hepatic lipase (HL) in the liver. The hepatic lipid metabolism disorder was accompanied by the increased mRNA expression of lipid synthesis related-genes, the decreased expression of lipidolysis-related genes, and the increased expression of endoplasmic reticulum (ER) stress biomarkers (PERK, IRE1, ATF6, GRP78). The dietary supplementation of four Se sources exhibited similar protective effects. Four Se sources increased liver Se concentration and promoted the expression of selenotranscriptome and several key selenoproteins, enhanced liver antioxidant capacity and alleviated HS-induced ER stress, and thus resisted the hepatic lipid metabolism disorders of broilers exposed to HS. In conclusion, dietary supplementation of four Se sources (0.3 mg/kg) exhibited similar protective effects on HS-induced hepatic lipid metabolism disorders of broilers, and the protective effect is connected to the relieving of ER stress.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Zhengyi Gong
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| |
Collapse
|
21
|
Lee J, Belal SA, Lin X, Park J, Shim K. Insect Peptide CopA3 Mitigates the Effects of Heat Stress on Porcine Muscle Satellite Cells. Animals (Basel) 2023; 13:3209. [PMID: 37893933 PMCID: PMC10603636 DOI: 10.3390/ani13203209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Heat stress inhibits cell proliferation as well as animal production. Here, we aimed to demonstrate that 9-mer disulfide dimer peptide (CopA3) supplementation stabilizes porcine muscle satellite cell (PMSC) proliferation and heat shock protein (HSP) expression at different temperatures. Therefore, we investigated the beneficial effects of CopA3 on PMSCs at three different temperatures (37, 39, and 41 °C). Based on temperature and CopA3 treatment, PMSCs were divided into six different groups including treatment and control groups for each temperature. Cell viability was highest with 10 µg/mL CopA3 and decreased as the concentration increased in a dose-dependent manner. CopA3 significantly increased the cell viability at all temperatures at 24 and 48 h. It significantly decreased apoptosis compared to that in the untreated groups. In addition, it decreased the apoptosis-related protein, Bcl-2-associated X (BAX), expression at 41 °C. Notably, temperature and CopA3 had no effects on the apoptosis-related protein, caspase 3. Expression levels of HSP40, HSP70, and HSP90 were significantly upregulated, whereas those of HSP47 and HSP60 were not affected by temperature changes. Except HSP90, CopA3 did not cause temperature-dependent changes in protein expression. Therefore, CopA3 promotes cell proliferation, inhibits apoptosis, and maintains stable HSP expression, thereby enhancing the heat-stress-tolerance capacity of PMSCs.
Collapse
Affiliation(s)
- Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Shah Ahmed Belal
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
22
|
Danciu AM, Ghitea TC, Bungau AF, Vesa CM. The Crucial Role of Diet Therapy and Selenium on the Evolution of Clinical and Paraclinical Parameters in Patients with Metabolic Syndrome. J Nutr Metab 2023; 2023:6632197. [PMID: 37790730 PMCID: PMC10545462 DOI: 10.1155/2023/6632197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Oxidative stress (OS) is associated with metabolic syndrome (MS) and represents a complex disease association that has become a major challenge in the field of public health. The aim of this study was to investigate the effectiveness of introducing selenium in the management of OS, while considering a balanced diet based on a healthy lifestyle and dietary therapy. A total of 206 individuals participated voluntarily in the study, divided into three groups: the control group with 35 individuals (17.0%) designated as control lot (LC), the group undergoing diet therapy with 119 individuals (57.8%) designated as diet therapy lot (LD), and the group undergoing diet therapy supplemented with selenium consisting of 52 individuals (25.2%) designated as diet therapy with selenium lot (LD + Se). The study assessed various clinical parameters (such as body mass index (BMI), body weight status, fat mass, visceral fat, and sarcopenic index), paraclinical parameters (including HOMA index, cholesterol, triglycerides, C-reactive protein, and glycosylated haemoglobin (HGS)), as well as OS parameters (measured using the FORD test, FORT test, and MIXED test). The LD + Se group demonstrated the most favourable results in terms of BMI reduction, decreased fat and visceral mass, reduced levels of C-reactive protein, and improved glycosylated haemoglobin levels. By implementing a balanced diet therapy and supplementing the diet with selenium, it was possible to achieve a reduction in adipose tissue and glycosylated haemoglobin levels, ultimately contributing to the reduction of OS in the body.
Collapse
Affiliation(s)
- Adrian Marius Danciu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Timea Claudia Ghitea
- Faculty of Medicine and Pharmacy, Pharmacy Department, University of Oradea, 410068 Oradea, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cosmin Mihai Vesa
- Faculty of Medicine and Pharmacy, Medicine Department, University of Oradea, 410068 Oradea, Romania
| |
Collapse
|
23
|
Li L, Qu L, Li T. The effects of Selenohomolanthionine supplementation on the rumen eukaryotic diversity of Shaanbei white cashmere wether goats. Sci Rep 2023; 13:13134. [PMID: 37573461 PMCID: PMC10423290 DOI: 10.1038/s41598-023-39953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
Selenium (Se) is an important microelement for animal health. However, the knowledge about the effects of Se supplementation on rumen eukaryotic community remains less explored. In this study, the ruminal eukaryotic diversity in three months old Shaanbei white cashmere wether goats, with body weight (26.18 ± 2.71) kg, fed a basal diet [0.016 mg/kg Se dry matter (DM), control group (CG)] were compared to those animals given basal diet supplemented with different levels of organic Se in the form of Selenohomolanthionine (SeHLan), namely low Se group (LSE, 0.3 mg/kg DM), medium Se group (MSE, 0.6 mg/kg Se DM) and high Se group (HSE, 1.2 mg/kg DM) using 18S rRNA amplicon sequencing. Illumina sequencing generated 2,623,541 reads corresponding to 3123 operational taxonomic units (OTUs). Taxonomic analysis revealed that Eukaryota (77.95%) and Fungi (14.10%) were the dominant eukaryotic kingdom in all samples. The predominant rumen eukaryotic phylum was found to be Ciliophora (92.14%), while fungal phyla were dominated by Ascomycota (40.77%), Basidiomycota (23.77%), Mucoromycota (18.32%) and unidentified_Fungi (13.89%). The dominant eukaryotic genera were found to be Entodinium (55.44%), Ophryoscolex (10.51%) and Polyplastron (10.19%), while the fungal genera were dominanted by Mucor (15.39%), Pichia (9.88%), Aspergillu (8.24%), Malassezia (7.73%) and unidentified_Neocallimastigaceae (7.72%). The relative abundance of eukaryotic genera Ophryoscolex, Enoploplastron and fungal genus Mucor were found to differ significantly among the four treatment groups (P < 0.05). Moreover, Spearman correlation analysis revealed that the ciliate protozoa and fungi were negatively correlated with each other. The results of this study provided newer information about the effects of Se on rumen eukaryotic diversity patterns using 18s rRNA high-throughput sequencing technology.
Collapse
Affiliation(s)
- Longping Li
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, 719000, China.
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, 719000, China
| | - Tuo Li
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, 719000, China
- College of Life Sciences, Yulin University, Yulin, 719000, China
| |
Collapse
|
24
|
Chen B, Yuan C, Guo T, Liu J, Yang B, Lu Z. Molecular Mechanism of m6A Methylation Modification Genes METTL3 and FTO in Regulating Heat Stress in Sheep. Int J Mol Sci 2023; 24:11926. [PMID: 37569302 PMCID: PMC10419070 DOI: 10.3390/ijms241511926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Heat stress is an important environmental factor affecting livestock production worldwide. Primary hepatocytes and preadipocytes derived from Hu sheep were used to establish a heat stress model. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that heat induction significantly increased the expression levels of heat stress protein (HSP) genes and the N6-methyladenosine (m6A) methylation modification genes: methyltransferase-like protein 3 (METTL3), methyltransferase-like protein 14 (METTL14), and fat mass and obesity associated protein (FTO). Heat stress simultaneously promoted cell apoptosis. Transcriptome sequencing identified 3980 upregulated genes and 2420 downregulated genes related to heat stress. A pathway enrichment analysis of these genes revealed significant enrichment in fatty acid biosynthesis, degradation, and the PI3K-Akt and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Overexpression of METTL3 in primary hepatocytes led to significant downregulation of HSP60, HSP70, and HSP110, and significantly increased mRNA m6A methylation; FTO interference generated the opposite results. Primary adipocytes showed similar results. Transcriptome analysis of cells under METTL3 (or FTO) inference and overexpression revealed differentially expressed genes enriched in the mitogen-activated protein kinase (MAPK) signaling pathways, as well as the PI3K-Akt and Ras signaling pathways. We speculate that METTL3 may increase the level of m6A methylation to inhibit fat deposition and/or inhibit the expression of HSP genes to enhance the body's resistance to heat stress, while the FTO gene generated the opposite molecular mechanism. This study provides a scientific basis and theoretical support for sheep feeding and management practices during heat stress.
Collapse
Affiliation(s)
- Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bohui Yang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
25
|
Wrzecińska M, Kowalczyk A, Kordan W, Cwynar P, Czerniawska-Piątkowska E. Disorder of Biological Quality and Autophagy Process in Bovine Oocytes Exposed to Heat Stress and the Effectiveness of In Vitro Fertilization. Int J Mol Sci 2023; 24:11164. [PMID: 37446340 DOI: 10.3390/ijms241311164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The main problem in dairy herds is reproductive disorders, which are influenced by many factors, including temperature. Heat stress reduces the quality of oocytes and their maturation through the influence of, e.g., mitochondrial function. Mitochondria are crucial during oocyte maturation as well as the process of fertilization and embryonic development. Disturbances related to high temperature will be increasingly observed due to global warming. In present studies, we have proven that exposure to high temperatures during the cleaving of embryos statistically significantly (at the level of p < 0.01) reduces the percentage of oocytes that cleaved and developed into blastocysts eight days after insemination. The study showed the highest percentage of embryos that underwent division in the control group (38.3 °C). The value was 88.10 ± 6.20%, while the lowest was obtained in the study group at 41.0 °C (52.32 ± 8.40%). It was also shown that high temperature has a statistically significant (p < 0.01) effect on the percentage of embryos that developed from the one-cell stage to blastocysts. The study showed that exposure to a temperature of 41.0 °C significantly reduced the percentage of embryos that split relative to the control group (38.3 °C; 88.10 ± 6.20%). Moreover, it was noted that the highest tested temperature limits the development of oocytes to the blastocyst stage by 5.00 ± 9.12% compared to controls (33.33 ± 7.10%) and cleaved embryos to blastocysts by 3.52 ± 6.80%; the control was 39.47 ± 5.40%. There was also a highly significant (p < 0.0001) effect of temperature on cytoplasmic ROS levels after 6 and 12 h IVM. The highest level of mitochondrial ROS was found in the group of oocytes after 6 h IVM at 41.0 °C and the lowest was found in the control group. In turn, at 41.0 °C after 12 h of IVM, the mitochondrial ROS level had a 2.00 fluorescent ratio, and the lowest in the group was 38.3 °C (1.08). Moreover, with increasing temperature, a decrease in the expression level of both LC3 and SIRT1 protein markers was observed. It was proved that the autophagy process was impaired as a result of high temperature. Understanding of the cellular and molecular responses of oocytes to elevated temperatures will be helpful in the development of heat resistance strategies in dairy cattle.
Collapse
Affiliation(s)
- Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Alicja Kowalczyk
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 50-576 Wroclaw, Poland
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | - Przemysław Cwynar
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 50-576 Wroclaw, Poland
| | - Ewa Czerniawska-Piątkowska
- Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| |
Collapse
|
26
|
Pruteanu LL, Bailey DS, Grădinaru AC, Jäntschi L. The Biochemistry and Effectiveness of Antioxidants in Food, Fruits, and Marine Algae. Antioxidants (Basel) 2023; 12:antiox12040860. [PMID: 37107235 PMCID: PMC10135154 DOI: 10.3390/antiox12040860] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
It is more effective to maintain good health than to regain it after losing it. This work focuses on the biochemical defense mechanisms against free radicals and their role in building and maintaining antioxidant shields, aiming to show how to balance, as much as possible, the situations in which we are exposed to free radicals. To achieve this aim, foods, fruits, and marine algae with a high antioxidant content should constitute the basis of nutritional elements, since natural products are known to have significantly greater assimilation efficiency. This review also gives the perspective in which the use of antioxidants can extend the life of food products, by protecting them from damage caused by oxidation as well as their use as food additives.
Collapse
Affiliation(s)
- Lavinia Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - David Stanley Bailey
- IOTA Pharmaceuticals Ltd., St Johns Innovation Centre, Cowley Road, Cambridge CB4 0WS, UK
| | - Andrei Cristian Grădinaru
- Department of Genetics, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences of Iaşi, 700490 Iaşi, Romania
| | - Lorentz Jäntschi
- Institute of Doctoral Studies, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| |
Collapse
|
27
|
Li LP, Qu L, Li T. Supplemental dietary Selenohomolanthionine affects growth and rumen bacterial population of Shaanbei white cashmere wether goats. Front Microbiol 2022; 13:942848. [PMID: 36338028 PMCID: PMC9632625 DOI: 10.3389/fmicb.2022.942848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
Selenium (Se) is an important trace element for all livestock growth. However, little is known about the dietary supplementation of Selenohomolanthionine (SeHLan) effect on growth and rumen microbiota of cashmere goats. In this study, thirty-two growing Shaanbei white cashmere wether goats with mean body weight (26.18 ± 2.71) kg were randomly assigned into 4 treatments, each with 8 replicates. The goats in 4 experimental groups were fed the basal diet (0.016 mg/kg Se) added with organic Se in the form of SeHLan, namely, control group (CG, added 0 mg/kg Se), low Se group (LSE, added 0.3 mg/kg Se), medium Se group (MSE, added 0.6 mg/kg Se), and high Se group (HSE, added 1.2 mg/kg Se). The feed experiment lasted for 70 days including 10-day adaptation, followed by 11 days digestibility trial including 7-day adaptation and 4-day collection period. On the last day of feeding experiment, rumen fluid was collected for microbial community analysis. The feed, orts, and fecal samples were collected for chemical analysis during digestibility trial. The results showed that average daily feed intake (ADFI) and the apparent digestibility of crude protein (CP) were both quadratic ally increased with increased SeHLan supply (Pquadratic < 0.05), while average daily gain (ADG) and feed conversion ratio (FCR) showed a linear response (Plinear < 0.05). The ADFI and ADG were all highest in the MSE group, which also had the lowest FCR (P < 0.05). Alpha diversity indices of the microbial community did not differ among four treatments. While principal coordinates analysis (PCoA) showed that rumen bacterial population differed among four groups. Taxonomic analysis revealed that Bacteroidetes, Firmicutes, and Euryarchaeota were the dominant phyla. The dominant families were Prevotellaceae, Selenomonadaceae, Methanobacteriaceae, and Bifidobacteriaceae. The significantly different rumen bacterial genera were found to be Methanobrevibacter, Quinella, Christensenellaceae_R-7_group, Veillonellaceae_UCG-001, and Succinivibrionaceae_UCG-002 (P < 0.05). In addition, Tax4fun analysis revealed that SeHLan supplemented groups enhanced the enrichment of genes related to energy metabolism, amino acid metabolism, carbohydrate metabolism, and enzymes. Twenty-eight pathways showed significant differences among four treatment groups (P < 0.05). In conclusion, dietary supplementation of medium SeHLan significantly affects rumen bacterial composition and ultimately promotes Shaanbei white cashmere wether goats nutrient digestibility and growth.
Collapse
Affiliation(s)
- Long-Ping Li
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- *Correspondence: Long-Ping Li,
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Tuo Li
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- College of Life Sciences, Yulin University, Yulin, China
| |
Collapse
|