1
|
Kounatidis D, Vallianou NG, Karampela I, Grivakou E, Dalamaga M. The intricate role of adipokines in cancer-related signaling and the tumor microenvironment: Insights for future research. Semin Cancer Biol 2025; 113:130-150. [PMID: 40412490 DOI: 10.1016/j.semcancer.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/05/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Obesity represents a global health challenge, with adipose tissue acting as a highly active endocrine organ that synthesizes and secretes a diverse array of bioactive proteins, known as adipokines. These cell signaling molecules regulate metabolic equilibrium, inflammatory cascades, and immune surveillance, exerting substantial systemic effects. A growing body of evidence has also highlighted their key role in cancer biology, through their intricate impact on oncogenic signaling networks and the tumor microenvironment (TME). The TME, a highly dynamic and heterotypic network composed of malignant cells, infiltrating immune cells, stromal constituents, and extracellular matrix elements, facilitates tumor evolution and immune evasion. Among adipokines, adiponectin and leptin have been extensively studied. Research has shown that adiponectin exhibits tumor-suppressive properties, whereas leptin enhances proliferative, angiogenic, and inflammatory pathways that promote malignancy. However, these effects are context-dependent and, at times, contradictory across different studies. Furthermore, the functional landscape of adipokines in cancer extends beyond these paradigms, with emerging research identifying a broader spectrum of novel adipokines involved in cancer reprogramming. This review delineates the molecular interplay between adipokines and oncogenic pathways, elucidating their mechanistic contributions to TME crosstalk and immune modulation. Additionally, we examine their potential as diagnostic and prognostic biomarkers and assess their viability as therapeutic targets for precision oncology. By integrating current evidence and identifying unresolved questions, this review aims to refine our understanding of adipokine-driven tumor biology and establish a platform for future research.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens 11527, Greece.
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, Athens 15126, Greece.
| | - Irene Karampela
- Second Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, Athens 12461, Greece.
| | - Evgenia Grivakou
- Emergency Department, Limassol General Hospital, Limassol 4131, Cyprus.
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
2
|
He Y, Sun Y, Zheng Y, Jiang Y, Li N, Zhao W, Ren W. Hsa_circ_0006837 suppresses gastric cancer cell proliferation, migration, and invasion via the modulation of miR-424-5p. Hereditas 2025; 162:85. [PMID: 40405299 PMCID: PMC12100860 DOI: 10.1186/s41065-025-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/05/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND The mechanism by which circRERE (hsa_circ_0006837) modulates the malignant progression of gastric cancer was investigated to identify a novel biomarker and therapeutic target for this disease. METHODS Hsa_circ_0006837 expression in GC tissues and cells was detected by RT-qPCR. Several data analysis methods were used to evaluate the significance of dysregulated hsa_circ_0006837 in GC. The patients were followed up for five years, and survival analysis was conducted using Kaplan-Meier curves. Cox regression was subsequently performed to analyze the risk factors for prognosis. The malignant behaviors of the cells were detected by the CCK-8 and Transwell assays. The relationship between hsa_circ_0006837 and miR-424-5p was assessed by conducting Spearman correlation analysis and verified by dual-luciferase reporter assay. RESULTS Hsa_circ_0006837 expression decreased in patients with GC, indicating a poorer patient prognosis. In GC cells, hsa_circ_0006837 overexpression suppressed malignant behaviors. Mechanistically, miR-424-5p was identified as a target of hsa_circ_0006837. The overexpression of miR-424-5p partially counteracted the suppressive effects of upregulated hsa_circ_0006837 on the malignant behaviors of GC cells. FBXO21 was identified as a downstream gene of the hsa_circ_0006837/miR-424-5p axis. CONCLUSIONS To summarize, hsa_circ_0006837 is a biomarker for the prognosis of GC. Mechanistically, hsa_circ_0006837 overexpression can modulate the malignant behaviors of GC cells through miR-424-5p.
Collapse
Affiliation(s)
- Yanxin He
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Yeyu Sun
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
- Qingdao University, Qingdao, 266042, China
| | - Yinglan Zheng
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Yanfang Jiang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Na Li
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Wenjie Zhao
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, China
| | - Wanhua Ren
- Department of Gastroenterology, Shandong Provincial Hospital, No. 324, Jingwuweiqi Road, Jinan, 250021, China.
| |
Collapse
|
3
|
Sonwane S, Telrandhe U, Chambhare N, Vaidya S. Unraveling exosome-mediated cancer therapy resistance: pathways and therapeutic challenges. J Egypt Natl Canc Inst 2025; 37:30. [PMID: 40310494 DOI: 10.1186/s43046-025-00289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Extracellular vesicles (EVs) have emerged as key cell-to-cell communication mediators and play significant roles in both physiological and pathological processes. In EVs, exosomes represent a distinct subpopulation of EVs that have been found to be involved in cancer initiation and therapeutic resistance. Exosomes transfer a diverse spectrum of molecular cargos that have significant effects on the tumor microenvironment (TME), thereby enabling cancer initiation, metastasis, and therapeutic resistance. Exosomes have recently been of interest in cancer therapy due to their role as important mediators of treatment resistance. The exosomal molecular content-proteins, miRNAs, and lncRNAs-allows exosomes to perform functions including drug efflux and detoxification, cell death pathway modulation, induction of epithelial-to-mesenchymal transition (EMT), and suppression of the immune system. In addition to facilitating immune and stromal cell interactions, exosomes cause extracellular matrix remodeling and induce tumor heterogeneity, making it more difficult to respond to therapy. This review covers intricate roles of exosomes in cancer therapy resistance with regard to their biogenesis, molecular content, and functional impact in the TME. Along with this, we also discuss new therapeutic strategies to overcome exosome-mediated resistance including utilizing exosome inhibitors, designed exosome therapy, and combination with conventional therapies. While exosomes hold promise in prediction and diagnosis through their biomarker function, their heterogeneous origins and cryptic functions make it difficult to target interventions. This review emphasizes that research on exosome-mediated pathways is urgently required to develop new therapeutic strategies that can improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Sandip Sonwane
- Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi, Wardha, Wardha, India.
| | - Umesh Telrandhe
- Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi, Wardha, Wardha, India
| | - Nikhita Chambhare
- Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi, Wardha, Wardha, India
| | - Sunita Vaidya
- Datta Meghe College of Pharmacy, DMIHER (DU), Sawangi, Wardha, Wardha, India
| |
Collapse
|
4
|
Wen Z, Zhang W, Wu W. The latest applications of exosome-mediated drug delivery in anticancer therapies. Colloids Surf B Biointerfaces 2025; 249:114500. [PMID: 39799609 DOI: 10.1016/j.colsurfb.2025.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
In recent years, the significant role of anticancer drugs in cancer treatment has garnered considerable attention. However, the application of these drugs is largely limited by their short half-life in blood circulation, low cellular uptake efficiency, and off-target effects. Exosomes, which serve as crucial messengers in intercellular communication, exhibit unique advantages in molecular delivery compared to traditional synthetic carriers, thereby offering new possibilities for modern drug delivery systems. Exosomes possess organotropic functions and are naturally produced by cells, making them promising candidates for natural drug delivery systems with organotropic properties and minimal side effects. These naturally derived carriers can achieve stable, efficient, and selective delivery of anticancer drugs, thereby enhancing the efficacy and potential of anticancer agents in cancer immunotherapy. This review provides a concise overview of the unique characteristics of exosomes related to anticancer drug delivery, strategies for utilizing exosomes as carriers in cancer therapy, and the latest advancements in the field.
Collapse
Affiliation(s)
- Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
5
|
Aakel N, Mohammed R, Fathima A, Kerzabi R, Abdallah A, Ibrahim WN. Role of Exosome in Solid Cancer Progression and Its Potential Therapeutics in Cancer Treatment. Cancer Med 2025; 14:e70941. [PMID: 40344389 PMCID: PMC12063069 DOI: 10.1002/cam4.70941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Exosomes are extracellular vesicles ranging from 40 to 100 nm in diameter that mediate intercellular communication by transferring proteins, lipids, nucleic acids, and other metabolites. In the context of cancer, exosomes influence the tumor microenvironment by carrying regulatory RNAs such as miRNA, circRNA, and lncRNA. They originate from various cells, including adipocytes, fibroblasts, and hepatocellular carcinoma (HCC) cells, and can either promote or inhibit cancer progression through pathways like MAPK and PI3K-Akt. AIM This review aims to explore the role of exosomes in the progression of solid cancers, emphasizing their self-induced activation mechanisms and how they modulate tumor behavior. METHODOLOGY A comprehensive review of recent literature was conducted, focusing on studies that investigated the biological functions of exosomes in solid tumor progression, including their molecular cargo, cellular origin, and involvement in signaling pathways. RESULTS Findings from multiple studies indicate that cancer-derived exosomes contribute to tumor proliferation, metastasis, and therapy resistance by enhancing communication within the tumor microenvironment. These vesicles activate oncogenic pathways and can serve as biomarkers or therapeutic targets due to their role in disease modulation. CONCLUSION Exosomes play a pivotal role in solid cancer progression and offer significant potential in advancing our understanding of tumor biology. Their capacity to influence key signaling pathways and facilitate intercellular communication makes them promising candidates for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Nada Aakel
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Rawdhah Mohammed
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Assela Fathima
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Rabia Kerzabi
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Atiyeh Abdallah
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| |
Collapse
|
6
|
S BR, Dhar R, Devi A. Exosomes-mediated CRISPR/Cas delivery: A cutting-edge frontier in cancer gene therapy. Gene 2025; 944:149296. [PMID: 39884405 DOI: 10.1016/j.gene.2025.149296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Cancer is considered the second most common disease globally. In the past few decades, many approaches have been proposed for cancer treatment. One among those is targeted therapy using CRISPR/Cas system which plays a significant role in translational research through gene editing. However, due to its inability to cope with specific targeting, off-target effects, and limited tumor penetration, it is very challenging to use this approach in cancer studies. To increase its efficacy, CRISPR components are engineered into the extracellular vesicles (EVs), especially exosomes (a subpopulation of EVs). Exosomes have a significant role in cellular communication. Exosomes-based CRISPR/Cas system transport for gene editing enhances specificity, reduces off-target effects, and improves the therapeutic potential. This review highlights the role of exosomes and the CRISPR/Cas system in cancer research, exosomes-based CRISPR delivery for cancer treatment, and its future orientation.
Collapse
Affiliation(s)
- Bhavanisha Rithiga S
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India.
| |
Collapse
|
7
|
Ruan X, Wan X, Ma W, Liu J, Tian T, Zhang J, Zhi J, Qiu M, Zhao M, Wang Q, Li P. Genome-wide screening and validation of exosome-derived TLN1 as a regulator of epithelial-mesenchymal transition in lung cancer. Sci Rep 2025; 15:11453. [PMID: 40181045 PMCID: PMC11968874 DOI: 10.1038/s41598-025-96210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
In addition to embryonic development, wound healing, and tissue fibrosis, epithelial-mesenchymal transition (EMT) is another process that enhances tumor invasiveness and metastatic activity. Exosomes transport a variety of bioactive components between cells and are crucial for cell‒cell communication in multiple complex biological processes, including cancer. Although a few studies have shown that exosomes encapsulate microRNAs that induce a pro-EMT tumor microenvironment, a systematic survey of potential EMT-related regulators in lung cancer exosomes is still lacking. To identify exosome-related EMT signals that could be employed for precise cancer diagnosis, we used a computational approach to generate a list of candidates EMT regulators and performed experimental validation in lung cancer cell lines. Particularly, we focused on exosome-derived differentially expressed genes that were not previously reported to be associated with lung cancer. We identified 25 exosome-derived protein coding regulators associated with EMT with aberrant transcript expression in both lung squamous cell carcinoma and lung adenocarcinoma. By focusing on clinical features such as survival time, smoking status, tumor purity, and primary tumor subtypes, we found that these 25 genes are important for lung cancer development based on a combined cohort of 9781 lung cancer samples from 24 independent genomics studies. By validating two examples of upregulated and downregulated exosome-derived regulators, we confirmed that TLN1 is a potential oncogene in lung cancer progression, which suggests that it may serve as a diagnostic marker. In summary, our results provide a potential exosome-based biomarker for cancer diagnosis that could be used as a therapeutic tool to control the occurrence of EMT and affect cancer progression.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xing Wan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weike Ma
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jianli Liu
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Tongfei Tian
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Jiaojiao Zhang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jingtai Zhi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center, Tianjin, 300060, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Qi Wang
- Department of Orthopedics, Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin, 300100, China.
| | - Peng Li
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Mivehchi H, Eskandari-Yaghbastlo A, Emrahoglu S, Saeidpour Masouleh S, Faghihinia F, Ayoubi S, Nabi Afjadi M. Tiny messengers, big Impact: Exosomes driving EMT in oral cancer. Pathol Res Pract 2025; 268:155873. [PMID: 40022766 DOI: 10.1016/j.prp.2025.155873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Exosomes are indispensable extracellular vesicles that facilitate intercellular communication and are crucial for both healthy and pathological conditions, including cancer. The capacity of exosomes to echo the molecular characteristics of their cells of origin, including malignant cells, makes them indispensable tools for diagnosing and tracking disease progression in the field of oncology. Oral squamous cell carcinoma (OSCC), which has been identified as the sixth most prevalent cancer worldwide, has been linked to numerous risk factors, including tobacco use, alcohol consumption, human papillomavirus (HPV) infection, and inadequate oral hygiene. Exosomes pointedly influence the advancement of oral cancer via promoting tumor cell growth, invasion, angiogenesis, and immune evasion through the alteration of the tumor microenvironment. A critical apparatus in cancer metastasis is the epithelial-to-mesenchymal transition (EMT), during which cancer cells acquire improved migratory and invasive properties. EMT plays a role in metastasis, resistance to treatment, and evasion of the immune response. Exosomes facilitate EMT in oral cancer by delivering bioactive molecules that influence EMT signaling pathways. These exosomes inspire EMT in recipient cells, by this means enhancing tumor invasion and metastasis. This study aims to identify the specific exosomal components and signaling pathways that are tangled in EMT, in that way providing new avenues for targeted therapies designed to hinder the metastasis of oral cancer.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | - Sahand Emrahoglu
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saminalsadat Ayoubi
- School of Dental Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Manu DR, Bǎlaşa R, Pruteanu LL, Curean V, Barbu-Tudoran L, Şerban GM, Chinezu R, Bǎlaşa A. Identification of distinct profiles of glioblastoma through the immunocapture of extracellular vesicles from patient plasma. PLoS One 2025; 20:e0315890. [PMID: 40106404 PMCID: PMC11922215 DOI: 10.1371/journal.pone.0315890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/03/2024] [Indexed: 03/22/2025] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits intratumoral heterogeneity and dynamic spatial-temporal changes. GBM-derived extracellular vesicles (EVs), reflecting tumor characteristics, present potential as liquid-biopsy markers for early diagnosis and monitoring. This study aims to evaluate molecular signatures of plasma-derived EVs from GBM patients using a conventional flow cytometer. EVs have been isolated from glioma patients and healthy controls (HCs) plasma using density gradient ultracentrifugation (DGU). EVs were evaluated by bead-based multiplex analysis in a conventional flow cytometer. Principal component analysis (PCA), hierarchical clustering, and correlation analysis provided comprehensive insights into EV characteristics. EVs successfully isolated were visualized in transmission and scanning electron microscopy (STEM). Bead-based multiplex analysis in flow cytometer detected the level of 37 EV surface markers, including tumor-related, cancer stem cell, endothelial cell, and immune cell- specific antigens. PCA identified the EV surface markers that are most significant for differentiating the subjects, and hierarchical clustering revealed four distinct clusters based on EV surface marker levels. EV molecular signature demonstrated considerable heterogeneity across patient clusters. The presence of CD29 emerged not only as a defining factor for a cluster of patients, but also served as a marker to differentiate patients from HCs.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania,
| | - Rodica Bǎlaşa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| | - Lavinia-Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, Baia Mare, Romania
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Victor Curean
- Doctoral School, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Georgiana-Mihaela Şerban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania
| | - Rareş Chinezu
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| | - Adrian Bǎlaşa
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| |
Collapse
|
10
|
Alfawaz Altamimi AS, Arockia Babu M, Afzal M, Bishoyi AK, Roopashree R, Saini S, Sharma RSK, Pathak PK, Chauhan AS, Goyal K, Ali H, Khan NH, Balaraman AK. Exosomes derived from natural killer cells: transforming immunotherapy for aggressive breast cancer. Med Oncol 2025; 42:114. [PMID: 40100465 DOI: 10.1007/s12032-025-02647-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Natural killer cell-derived exosomes (NK-Exos) hold great promise as immune modulators and immunotherapeutics against cancer due to their intrinsically latent anti-tumor effects. They use these nanosized vesicles to deliver cytotoxic molecules, such as perforin, granzymes, and miRNAs, directly to cancer cells to kill them, avoiding immune suppression. NK-Exos has particular efficacy for treating aggressive breast cancer by modulating the TME to activate the immune response and suppress immunosuppressive factors. Bioengineering advances have extended the therapeutic potential of NK-Exos, which permits precise tumor cell targeting and efficient delivery of therapeutic payloads, including small RNAs and chemotherapeutic agents. In engineered NK-Exos, sensitization of cancer cells to apoptosis, reduction of tumor growth, and resistance to drugs have been demonstrated to be highly effective. When combined, NK-Exos synergizes with radiotherapy, chemotherapy, or checkpoint inhibitors, enhancing therapeutic efficacy, and minimizing systemic toxicity. This review emphasizes the critical role of NK-Exos in breast cancer treatment, their integration into combination therapies, and the need for further research to overcome existing limitations and fully realize their clinical potential.
Collapse
Affiliation(s)
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
| | - Haider Ali
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
11
|
Madhan S, Dhar R, Devi A. Clinical Impact of Exosome Chemistry in Cancer. ACS APPLIED BIO MATERIALS 2025; 8:1862-1876. [PMID: 39936581 DOI: 10.1021/acsabm.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As we progress into the 21st century, cancer stands as one of the most dreaded diseases. With approximately one in every four individuals facing a lifetime risk of developing cancer, cancer remains one of the most serious health challenges worldwide. Its multifaceted nature makes it an arduous and tricky problem to diagnose and treat. Over the years, researchers have explored plenty of approaches and avenues to improve cancer management. One notable strategy includes the study of extracellular vesicles (EVs) as potential biomarkers and therapeutics. Among these EVs, exosomes have emerged as particularly promising candidates due to their unique characteristic properties and functions. They are small membrane-bound vesicles secreted by cells carrying a cargo of biomolecules such as proteins, nucleic acids, and lipids. These vesicles play crucial roles in intercellular communication, facilitating the transfer of biological information between cell-to-cell communication. Exosomes transport cargoes such as DNA, RNA, proteins, and lipids involved in cellular reprogramming and promoting cancer. In this review, we explore the molecular composition of exosomes, significance of exosomes chemistry in cancer development, and its theranostic application as well as exosomes research complications and solutions.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| |
Collapse
|
12
|
Wang Z, Huang Y, He S, Zhou Y, Zhao L, Wang F. Dynamic and functional analyses of exosomal miRNAs regulating cellular microenvironment of ovarian cancer cells. J Ovarian Res 2025; 18:25. [PMID: 39930447 PMCID: PMC11808964 DOI: 10.1186/s13048-025-01608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Exosomes, extracellular vesicles with an average diameter of 30 ~ 150 nm, are pivotal in mediating the cellular microenvironment (CM) through their cargo-carrying capability. Despite extensive studies, the dynamic and regulatory mechanisms of exosomal cargoes, including lipids, proteins, nucleic acids, and metabolites, remain poorly understood. METHODS In this study, we collected culture medium of ovarian cancer cells at four different time points (12, 24, 36, 48 h). Exosomes were isolated using ultracentrifugation, and miRNA sequencing was performed for exosomes from each group (T12, T24, T36, and T48). RESULTS A total of 131 miRNAs were identified in all groups. Specifically, 41, 115, 63, and 24 miRNAs were detected in the T12, T24, T36, and T48 groups, respectively. Among these, 15 miRNAs were common to the all groups, while 3, 57, 10, and 3 miRNAs were unique to the T12, T24, T36, and T48 groups, respectively. Functional analyses of the target genes for both common and specific miRNAs indicated that numerous target genes were involved in signaling pathways and cancer-related processes. CONCLUSION It suggested that exosomal miRNAs might be critical in intercellular communication and in dynamically remodeling the tumor microenvironment. These insights could enhance our understanding of the role of exosomal miRNAs in cancer biology and inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhaoxia Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
- First Hospital of Shanxi Medical University, 85 South Jiefang Road, Taiyuan, Shanxi, 030001, P.R. China.
| | - Yanan Huang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Simin He
- Department of Health Statistics and Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Ying Zhou
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Le Zhao
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Fuyuan Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
13
|
Kishta MS, Khamis A, Am H, Elshaar AH, Gül D. Exploring the tumor-suppressive role of miRNA-200c in head and neck squamous cell carcinoma: Potential and mechanisms of exosome-mediated delivery for therapeutic applications. Transl Oncol 2025; 51:102216. [PMID: 39615277 DOI: 10.1016/j.tranon.2024.102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a challenging malignancy due to its high rates of recurrence, metastasis, and resistance to conventional therapies. microRNA-200c (miRNA-200c) has emerged as a critical tumor suppressor in HNSCC, with the potential to inhibit epithelial-mesenchymal transition (EMT), which is considered as a key process in cancer metastasis and progression. Interestingly, there are also controversial findings in HNSCC characterizing miRNA-200c as oncogenic factor. This review article provides a comprehensive overview of the current understanding of miRNA-200c's general role in cancer, and particularly in HNSCC, highlighting its mechanisms of action, including the regulation of EMT and other oncogenic pathways. Additionally, the review explores the innovative approach of exosome-mediated delivery of miRNA-200c as a therapeutic strategy. Exosomes, as natural nanocarriers, offer a promising vehicle for the targeted delivery of miRNA-200c to tumor cells, potentially overcoming the limitations of traditional delivery methods and enhancing therapeutic efficacy. The review also discusses the challenges and future directions in the clinical application of miRNA-200c, particularly focusing on its potential to improve outcomes for HNSCC patients. This article seeks to provide valuable insights for researchers and clinicians working towards innovative treatments for this aggressive cancer type.
Collapse
Affiliation(s)
- Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, 12622 Cairo, Egypt.
| | - Aya Khamis
- Maxillofacial and Oral Surgery, University Medical Center, 55131 Mainz, Germany; Oral Pathology Department, Faculty of Dentistry, Alexandria University, 5372066 Alexandria, Egypt
| | - Hafez Am
- Medical Biochemistry Department Faculty of medicine KafrElSheikh University, Kafr El-Sheikh, Egypt
| | | | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
14
|
Zihan R, Jingsi C, Lingwen D, Xin L, Yan Z. Exosomes in esophageal cancer: a promising frontier for liquid biopsy in diagnosis and therapeutic monitoring. Front Pharmacol 2024; 15:1459938. [PMID: 39741631 PMCID: PMC11685219 DOI: 10.3389/fphar.2024.1459938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Esophageal cancer is a common and lethal digestive system malignancy, and both treatment efficacy and patient survival rates face significant challenges. In recent years, exosomes have emerged as crucial mediators of intercellular communication, demonstrating tremendous clinical potential, particularly in the diagnosis, treatment, and prognostic evaluation of esophageal cancer. These exosomes not only serve as biomarkers for early diagnosis and prognosis but also modulate tumor growth, metastasis, and drug resistance by delivering bioactive molecules. Importantly, exosomes can act as carriers for esophageal cancer-related therapeutic agents, optimizing gene therapy strategies to enhance efficacy while reducing toxicity and side effects. Despite facing challenges in clinical applications such as purification, enrichment, and standardization of analytical methods, exosomes maintain broad prospects for application in esophageal cancer treatment, with the potential to significantly improve patient outcomes and quality of life. This review focuses on the innovative role of exosomes in the early diagnosis of esophageal cancer, exploring their application value and safety in disease monitoring and assessment of treatment response. Furthermore, this study outlines the challenges and limitations of transitioning exosome research from basic studies to clinical applications, as well as potential solutions and future research directions to address these obstacles.
Collapse
Affiliation(s)
- Ren Zihan
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Cao Jingsi
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ding Lingwen
- Department of Vaccination Clinic, Xiangyang Center for Disease Control and Prevention, Xiangyang, Hubei, China
| | - Liu Xin
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhang Yan
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Wu Y, Wang X, Zeng Y, Liu X. Exosomes are the mediators between the tumor microenvironment and prostate cancer (Review). Exp Ther Med 2024; 28:439. [PMID: 39355518 PMCID: PMC11443591 DOI: 10.3892/etm.2024.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2024] [Indexed: 10/03/2024] Open
Abstract
Prostate cancer poses a serious threat to the well-being of men worldwide, with the leading cause of mortality being primarily through metastasis. Prostate cancer metastasis is dependent on cell communication, which is an essential component of this process; yet its exact mechanism remains obscure. Nonetheless, cell-to-cell communication plays a critical part in prostate cancer metastasis. Exosomes play an indispensable role in the development of metastatic growth by promoting intercellular communication. They are pivotal regulatory agents for both prostate cancer cells as well as their microenvironment. The present study investigated the makeup and function of exosomes in the tumor microenvironment, highlighting their significance to prostate cancer metastasis.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
16
|
Sengupta R, Topiwala IS, Shakthi A M, Dhar R, Devi A. Immune Cell-Derived Exosomes: A Cell-Free Cutting-Edge Tumor Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:7076-7087. [PMID: 39495624 DOI: 10.1021/acsabm.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Extracellular vesicles (EVs) are cellular communication molecules and are classified into three major subpopulations, such as microvesicles, apoptotic bodies, and exosomes. Among these, exosomes-based cancer research is a cutting-edge investigation approach to cancer understanding. During cancer progression , tumor-derived exosomes can reprogram the cellular system and promote cancer. Circulating exosomes in the body fluids such as blood, plasma, serum, saliva, CSF, sweat, and tears play a key role in identifying diagnostic and prognostic cancer biomarkers. Diverse therapeutic sources of exosomes including stem cells, plants, and immune cells, etc. exhibit significant cancer-healing properties. Although cancer-targeting immunotherapy is an effective strategy, it has limitations such as toxicity, and high costs. In comparison, immune cell-derived exosomes-based immunotherapy is a cell-free approach for cancer treatment and has advantages like less toxicity, biocompatibility, reduced immunogenicity, and efficient, target-specific cancer therapeutic development. This review highlights the therapeutic signature of immune cell-derived exosomes for cancer treatment.
Collapse
Affiliation(s)
- Ranjini Sengupta
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Ibrahim S Topiwala
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Meghana Shakthi A
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| |
Collapse
|
17
|
Lui K, Cheung KK, Ng WWM, Wang Y, Au DWH, Cho WC. The Impact of Genetic Mutations on the Efficacy of Immunotherapies in Lung Cancer. Int J Mol Sci 2024; 25:11954. [PMID: 39596025 PMCID: PMC11594099 DOI: 10.3390/ijms252211954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, primarily driven by genetic mutations. The most common genetic alterations implicated in lung cancer include mutations in TP53, KRAS, KEAP1, NF1, EGFR, NRF2, ATM, ALK, Rb1, BRAF, MET, and ERBB2. Targeted therapies have been developed to inhibit cancer growth by focusing on these specific genetic mutations. However, either the mutations are undruggable or the efficacy of these therapies is often compromised over time due to the emergence of drug resistance, which can occur through additional mutations in the targeted protein or alternative growth signaling pathways. In recent years, immunotherapy has emerged as a promising approach to enhance the effectiveness of cancer treatment by leveraging the body's immune system. Notable advancements include immune checkpoint inhibitors, monoclonal antibodies targeting cell surface receptors, antibody-drug conjugates, and bispecific antibodies. This review provides an overview of the mechanisms of FDA-approved immunotherapeutic drugs, offering an updated perspective on the current state and future developments in lung cancer therapy. More importantly, the factors that positively and negatively impact the immunotherapy's efficacy will also be discussed.
Collapse
Affiliation(s)
- Ki Lui
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Winnie Wing-Man Ng
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Yanping Wang
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - Doreen W. H. Au
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
18
|
Mohamadi S, Mehrasa P, Mehramuz B, Kobravi S, Taghizadieh M, Salmaninejad A, Bayat M, Sadri Nahand J. The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189189. [PMID: 39343066 DOI: 10.1016/j.bbcan.2024.189189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The tumor microenvironment (TME) harbors a hidden universe of interactions that profoundly shape the behavior of head and neck cancers (HNCs). HNCs are not merely localized afflictions; they constitute a pressing global health crisis that impacts millions, frequently resulting in severe prognoses due to late-stage diagnosis and intrinsic resistance to conventional therapies. In this intricate interplay, cancer cells function as strategic players, adeptly manipulating their microenvironment to foster proliferation, evade immune detection, and withstand therapeutic interventions. Central to this dynamic play are exosomes, the enigmatic pawns of cellular communication, carrying vital messages across the board. This review elucidates the multifaceted roles of exosomes within the TME, highlighting their capacity to transmit critical signals that not only promote tumor progression but also modulate immune responses, ultimately playing a crucial role in the evolving narrative of HNC. Our insights aim to catalyze further research and exploration into exosome-targeted therapies, potentially transforming the landscape of HNC treatment and improving clinical outcomes in this formidable battle against cancer.
Collapse
Affiliation(s)
- Solmaz Mohamadi
- Faculty of Dentistry, Tabriz University of Medical Sciences, 15731 Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| |
Collapse
|
19
|
Su L, Yue Y, Yan Y, Sun J, Meng L, Lu J, Zhang L, Liu J, Chi H, Liu S, Yang Z, Tang X. Extracellular vesicles in hepatocellular carcinoma: unraveling immunological mechanisms for enhanced diagnosis and overcoming drug resistance. Front Immunol 2024; 15:1485628. [PMID: 39530097 PMCID: PMC11550962 DOI: 10.3389/fimmu.2024.1485628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Current research is focused on utilizing EVs as a biopsy tool to improve the diagnostic accuracy of HCC, reduce surgical risk, and explore their potential in modulating drug resistance and advancing immunotherapeutic strategies. Extracellular vesicles (EVs) have been increasingly recognized as important non-invasive biomarkers in hepatocellular carcinoma (HCC) due to the presence of a variety of biomolecules within them, such as proteins and RNAs, etc. EVs play a key role in the early detection, diagnosis, treatment, and prognostic monitoring of HCC. These vesicles influence the development of HCC and therapeutic response in a variety of ways, including influencing the tumor microenvironment, modulating drug resistance, and participating in immune regulatory mechanisms. In addition, specific molecules such as miRNAs and specific proteins in EVs are regarded as potential markers for monitoring treatment response and recurrence of HCC, which have certain research space and development prospects. In this paper, we summarize the aspects of EVs as HCC diagnostic and drug resistance markers, and also discuss the questions that may be faced in the development of EVs as markers.
Collapse
Affiliation(s)
- Lanqian Su
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuxin Yue
- Department of Pediatrics, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianming Sun
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Lanxin Meng
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaan Lu
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lanyue Zhang
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Hao Chi
- School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sinian Liu
- Department of Pathology, Xichong People’s Hospital, Nanchong, China
| | - Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Hirpara J, Thuya WL, Cheow SH, Fernando K, Eu JQ, Wang L, Wong ALA, Fong ELS, Ali AB, Ding LW, Zhuoran W, Lim YC, Pervaiz S, Goh BC. Tumor-derived extracellular vesicles convey solute transporters to induce bioenergetic dependence shift contributing to treatment resistance. Theranostics 2024; 14:6350-6369. [PMID: 39431017 PMCID: PMC11488098 DOI: 10.7150/thno.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: Growing evidence points to the tumor microenvironment's role in developing drug resistance. A key element of this microenvironment is inter-cellular communication, which includes the release of membrane-encapsulated vesicles containing various cargo, known as extracellular vesicles (EVs). Understanding how EVs contribute to acquired resistance holds significant clinical implications. Methods: Differential centrifugation-based methods were used to isolate EVs from established cell lines and human plasma. TMT labeling proteomics analysis of EVs revealed an abundance of metabolic transporter proteins. Increased expression of SLC1A5 in EVs of patient-derived plasma and cell lines rendered resistant to tyrosine kinase inhibitors and its relationship with progression-free survival was assessed using Kaplan-Meier survival plot. Gene knockdown and overexpression of SLC1A5 were used to validate its effect on Tyrosine kinase inhibitor (TKI) resistance. Co-culture assays using inserts was used to evaluate the effect of resistant EVs on normal fibroblasts and epithelial cells. Next, mouse-derived tumor slices (MDTS) were cultured in vitro to assess the effect of resistant EVs. Results: We report here that TKI-sensitive cells are rendered resistant upon incubation with EVs derived from TKI-resistant cell lines. Metabolic transporters, in particular SLC1A5 and SLC25A5, are upregulated in EVs derived from TKI-resistant cells and plasma from patients harbouring TKI-resistant tumors and in TKI-resistant cell lines. Furthermore, we also provide evidence for the increased abundance of pSTAT3 and the stemness marker ALDH1A1 upon EV-induced resistance. Notably, resistant EVs trigger phenotypic and functional switching of lung-derived fibroblasts into tumor-associated fibroblasts, significantly increasing their migratory and invasive capacities. Conclusions: Our findings support the role of metabolic transporters within tumor-derived EVs in reshaping the tumor microenvironment to promote therapy resistance, which could have potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Jayshree Hirpara
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sok-Hwee Cheow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kanishka Fernando
- Departmental of Biomedical Engineering, National University of Singapore, Singapore
| | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore
| | - Eliza Li Shan Fong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Departmental of Biomedical Engineering, National University of Singapore, Singapore
- The N. 1 Institute of Health, National University of Singapore
| | - Azhar Bin Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wu Zhuoran
- Departmental of Biomedical Engineering, National University of Singapore, Singapore
| | - Yaw-Chyn Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shazib Pervaiz
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore
| |
Collapse
|
21
|
Rodolfo C, Campello S. Extracellular Vesicles & Co.: scaring immune cells in the TME since ever. Front Immunol 2024; 15:1451003. [PMID: 39267748 PMCID: PMC11390669 DOI: 10.3389/fimmu.2024.1451003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The health tissue surrounding a solid tumor, namely the tumor microenvironment (TME), is an extremely complex universe of cells, extracellular matrix, and signals of various nature, that support and protect the growth of cancer cells. The interactions taking place between cancer cells and the TME are crucial not only for tumor growth, invasion, and metastasis but they also play a key role in modulating immune system responses to cancer, and vice-versa. Indeed, tumor-infiltrating immune cells (e.g., T lymphocytes and natural killers) activity is greatly affected by signals (mostly ligands/receptors and paracrine) they receive in the TME, which frequently generate an immunosuppressive milieu. In the last years, it has become evident that soluble and receptor signaling is not the only way of communication between cells in the TME, with extracellular vesicles, such as exosomes, playing a central role. Among the different new kind of vesicles recently discovered, migrasomes look like to be of extreme interest as they are not only different from the others, but also have been reported as able to deliver a very heterogeneous kind of messages, able to profoundly affect recipient cells' behavior. Indeed, the role played by the different classes of extracellular vesicles, especially in the TME, relies on their not-directional diffusion from the originating cells, while migrasomes released from migrating cells do have a directional effect. Migrasomes biology and their involvement in cancer progression, dissemination, and resistance to therapy is still a largely obscure field, but with promising development foreseen in the next future.
Collapse
Affiliation(s)
- Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
22
|
Hasnat MA, Ohmi Y, Yesmin F, Kambe M, Kawamoto Y, Bhuiyan RH, Mizutani M, Hashimoto N, Tsuchida A, Ohkawa Y, Kaneko K, Tajima O, Furukawa K, Furukawa K. Crucial roles of exosomes secreted from ganglioside GD3/GD2-positive glioma cells in enhancement of the malignant phenotypes and signals of GD3/GD2-negative glioma cells. NAGOYA JOURNAL OF MEDICAL SCIENCE 2024; 86:435-451. [PMID: 39355364 PMCID: PMC11439612 DOI: 10.18999/nagjms.86.3.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 10/03/2024]
Abstract
Neuroectoderm-derived tumors characteristically express gangliosides such as GD3 and GD2. Many studies have reported that gangliosides GD3/GD2 enhance malignant phenotypes of cancers. Recently, we reported that human gliomas expressing GD3/GD2 exhibited enhanced malignant phenotypes. Here, we investigated the function of GD3/GD2 in glioma cells and GD3/GD2-expressing glioma-derived exosomes. As reported previously, transfectant cells of human glioma U251 MG expressing GD3/GD2 showed enhanced cancer phenotypes compared with GD3/GD2-negative controls. When GD3/GD2-negative cells were treated with exosomes secreted from GD3/GD2-positive cells, clearly increased malignant properties were observed. Furthermore, increased phosphorylation of signaling molecules was detected after 5-15 min of exosome treatment, ie, higher tyrosine phosphorylation of platelet-derived growth factor receptor, focal adhesion kinase, and paxillin was found in treated cells than in controls. Phosphorylation of extracellular signal-regulated kinase-1/2 was also enhanced. Consequently, it is suggested that exosomes secreted from GD3/GD2-positive gliomas play important roles in enhancement of the malignant properties of glioma cells, leading to total aggravation of heterogenous cancer tissues, and also in the regulation of tumor microenvironments.
Collapse
Affiliation(s)
- Mohammad Abul Hasnat
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh
| | - Yuhsuke Ohmi
- Department of Clinical Engineering, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Farhana Yesmin
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Mariko Kambe
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yoshiyuki Kawamoto
- Department of Immunology, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Momoka Mizutani
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Noboru Hashimoto
- Department of Tissue Regeneration, Tokushima University School of Dentistry, Tokushima, Japan
| | - Akiko Tsuchida
- Laboratory of Glyco-bioengineering, The Noguchi Institute, Tokyo, Japan
| | - Yuki Ohkawa
- Osaka International Cancer Institute, Osaka, Japan
| | - Kei Kaneko
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Orie Tajima
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
23
|
Panda SS, Sahoo RK, Patra SK, Biswal S, Biswal BK. Molecular insights to therapeutic in cancer: role of exosomes in tumor microenvironment, metastatic progression and drug resistance. Drug Discov Today 2024; 29:104061. [PMID: 38901672 DOI: 10.1016/j.drudis.2024.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Exosomes play a pivotal part in cancer progression and metastasis by transferring various biomolecules. Recent research highlights their involvement in tumor microenvironment remodeling, mediating metastasis, tumor heterogeneity and drug resistance. The unique cargo carried by exosomes garners the interest of researchers owing to its potential as a stage-specific biomarker for early cancer detection and its role in monitoring personalized treatment. However, unanswered questions hinder a comprehensive understanding of exosomes and their cargo in this context. This review discusses recent advancements and proposes novel ideas for exploring exosomes in cancer progression, aiming to deepen our understanding and improve treatment approaches.
Collapse
Affiliation(s)
- Shikshya S Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Rajeev K Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sambit K Patra
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
24
|
Hadad S, Khalaji A, Sarmadian AJ, Sarmadian PJ, Janagard EM, Baradaran B. Tumor-associated macrophages derived exosomes; from pathogenesis to therapeutic opportunities. Int Immunopharmacol 2024; 136:112406. [PMID: 38850795 DOI: 10.1016/j.intimp.2024.112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tumor-associated macrophages (TAMs) exert profound influences on cancer progression, orchestrating a dynamic interplay within the tumor microenvironment. Recent attention has focused on the role of TAM-derived exosomes, small extracellular vesicles containing bioactive molecules, in mediating this intricate communication. This review comprehensively synthesizes current knowledge, emphasizing the diverse functions of TAM-derived exosomes across various cancer types. The review delves into the impact of TAM-derived exosomes on fundamental cancer hallmarks, elucidating their involvement in promoting cancer cell proliferation, migration, invasion, and apoptosis evasion. By dissecting the molecular cargo encapsulated within these exosomes, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and proteins, the review uncovers key regulatory mechanisms governing these effects. Noteworthy miRNAs, such as miR-155, miR-196a-5p, and miR-221-3p, are highlighted for their pivotal roles in mediating TAM-derived exosomal communication and influencing downstream targets. Moreover, the review explores the impact of TAM-derived exosomes on the immune microenvironment, particularly their ability to modulate immune cell function and foster immune evasion. The discussion encompasses the regulation of programmed cell death ligand 1 (PD-L1) expression and subsequent impairment of CD8 + T cell activity, unraveling the immunosuppressive effects of TAM-derived exosomes. With an eye toward clinical implications, the review underscores the potential of TAM-derived exosomes as diagnostic markers and therapeutic targets. Their involvement in cancer progression, metastasis, and therapy resistance positions TAM-derived exosomes as key players in reshaping treatment strategies. Finally, the review outlines future directions, proposing avenues for targeted therapies aimed at disrupting TAM-derived exosomal functions and redefining the tumor microenvironment.
Collapse
Affiliation(s)
- Sara Hadad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Li W, Zhao B, Wang Q, Lu J, Wu X, Chen X. M2 macrophage exosomes promote resistance to sorafenib in hepatocellular carcinoma cells via miR-200c-3p. Int Immunopharmacol 2024; 139:112807. [PMID: 39068757 DOI: 10.1016/j.intimp.2024.112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Sorafenib is a chemotherapeutic agent used to treat hepatocellular carcinoma (HCC). However, its clinical response rates are often low. Tumour-associated macrophages (TAMs) have been implicated in tumour resistance. The relationship between TAMs-derived exosomes and primary resistance to sorafenib in hepatocellular carcinoma is unclear. METHODS The study analysed RNA-SEQ data from TCGA-LIHC to explore the relationship between TAMs and sorafenib IC50. THP-1-induced M2 macrophages were used as a model to investigate the relationship between M2 macrophage exosomes and primary resistance to sorafenib in hepatocellular carcinoma cells using apoptosis, colony generation, cell viability and dual luciferase. RESULTS M2 macrophage score and sorafenib IC50 were positively correlated in hepatocellular carcinoma patients, M2 macrophage exosomes promoted sorafenib resistance in hepatocellular carcinoma cells, and M2-exo-miR-200c-3p facilitated the development of sorafenib resistance in hepatocellular carcinoma cells by mediating the activation of PI3K/AKT. CONCLUSION We propose and demonstrate for the first time that M2 macrophage exosomes promote sorafenib resistance in hepatocellular carcinoma, providing a new perspective for the clinical treatment of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Wenhua Li
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Bin Zhao
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Qianwen Wang
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Junxia Lu
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Xiangwei Wu
- Shihezi University School of Medicine, Shihezi 832000, China; The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| | - Xueling Chen
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| |
Collapse
|
26
|
Kulkarni P, Basu R, Bonn T, Low B, Mazurek N, Kopchick JJ. Growth Hormone Upregulates Melanoma Drug Resistance and Migration via Melanoma-Derived Exosomes. Cancers (Basel) 2024; 16:2636. [PMID: 39123364 PMCID: PMC11311539 DOI: 10.3390/cancers16152636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Drug resistance in melanoma is a major hindrance in cancer therapy. Growth hormone (GH) plays a pivotal role in contributing to the resistance to chemotherapy. Knocking down or blocking the GH receptor has been shown to sensitize the tumor cells to chemotherapy. Extensive studies have demonstrated that exosomes, a subset of extracellular vesicles, play an important role in drug resistance by transferring key factors to sensitize cancer cells to chemotherapy. In this study, we explore how GH modulates exosomal cargoes from melanoma cells and their role in drug resistance. We treated the melanoma cells with GH, doxorubicin, and the GHR antagonist, pegvisomant, and analyzed the exosomes released. Additionally, we administered these exosomes to the recipient cells. The GH-treated melanoma cells released exosomes with elevated levels of ABC transporters (ABCC1 and ABCB1), N-cadherin, and MMP2, enhancing drug resistance and migration in the recipient cells. GHR antagonism reduced these exosomal levels, restoring drug sensitivity and attenuating migration. Overall, our findings highlight a novel role of GH in modulating exosomal cargoes that drive chemoresistance and metastasis in melanoma. This understanding provides insights into the mechanisms of GH in melanoma chemoresistance and suggests GHR antagonism as a potential therapy to overcome chemoresistance in melanoma treatment.
Collapse
Affiliation(s)
- Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
| | - Taylor Bonn
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Nutrition, Ohio University, Athens, OH 45701, USA
| | - Beckham Low
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Nathaniel Mazurek
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
27
|
Cai H, Zhang Y, Meng F, Li Y. Effects of spinal cord injury associated exosomes delivered tRF-41 on the progression of spinal cord injury progression. Genomics 2024; 116:110885. [PMID: 38866256 DOI: 10.1016/j.ygeno.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating neurological and pathological condition. Exosomal tsRNAs have reported to be promising biomarkers for cancer diagnosis and therapy. This study aimed to investigate the roles of SCI-associated exosomes, and related tsRNA mechanisms in SCI. METHODS The serum of healthy controls and SCI patients at the acute stage were collected for exosomes isolation, and the two different exosomes were used to treat human astrocytes (HA). The cell viability, apoptosis, and cycle were determined, and the expression of the related proteins were detected by western blot. Then, the two different exosomes were sent for tsRNA sequencing, and four significant known differentially expressed tsRNAs (DE-tsRNAs) were selected for RT-qPCR validation. Finally, tRT-41 was chosen to further explore its roles and related mechanisms in SCI. RESULTS After sequencing, 21 DE-tsRNAs were identified, which were significantly enriched in pathways of Apelin, AMPK, Hippo, MAPK, Ras, calcium, PI3K-Akt, and Rap1. RT-qPCR showed that tRF-41 had higher levels in the SCI-associated exosomes. Compared with the control HA, healthy exosomes did not significantly affect the growth of HA cells, but SCI-associated exosomes inhibited viability of HA cells, while promoted their apoptosis and increased the HA cells in G2/M phase; but tRF-41 inhibitor reversed the actions of SCI-associated exosomes. Additionally, SCI-associated exosomes, similar with tRF-41 mimics, down-regulated IGF-1, NGF, Wnt3a, and β-catenin, while up-regulated IL-1β and IL-6; but tRF-41 inhibitor had the opposite actions, and reversed the effects induced by SCI-associated exosomes. CONCLUSIONS SCI-associated exosomes delivered tRF-41 may inhibit the growth of HA through regulating Wnt/ β-catenin pathway and inflammation response, thereby facilitating the progression of SCI.
Collapse
Affiliation(s)
- Hongfei Cai
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yan Zhang
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Fanyu Meng
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Li
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
28
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
29
|
Liu Q, Li S. Exosomal circRNAs: Novel biomarkers and therapeutic targets for urinary tumors. Cancer Lett 2024; 588:216759. [PMID: 38417667 DOI: 10.1016/j.canlet.2024.216759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Exosomal circRNAs have emerged as promising biomarkers and therapeutic targets for urinary tumors. In this review, we explored the intricate role of exosomal circRNAs in urological cancers, focusing on their biological functions, dysregulation in tumors, and potential clinical applications. The review delves into the mechanisms by which exosomal circRNAs contribute to tumor progression and highlights their diagnostic and therapeutic implications. By synthesizing current research findings, we present a compelling case for the significance of exosomal circRNAs in the context of urinary tumors. Furthermore, the review discusses the challenges and opportunities associated with utilizing exosomal circRNAs as diagnostic tools and targeted therapeutic agents. There is a need for further research to elucidate the specific mechanisms of exosomal circRNA secretion and delivery, as well as to enhance the detection methods for clinical translational applications. Overall, this comprehensive review underscores the pivotal role of exosomal circRNAs in urinary tumors and underscores their potential as valuable biomarkers and therapeutic tools in the management of urological cancers.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning Province, 110042, China.
| |
Collapse
|
30
|
Agnihotram R, Dhar R, Dhar D, Purushothaman K, Narasimhan AK, Devi A. Fusion of Exosomes and Nanotechnology: Cutting-Edge Cancer Theranostics. ACS APPLIED NANO MATERIALS 2024; 7:8489-8506. [DOI: 10.1021/acsanm.4c01033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Rohan Agnihotram
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Debolina Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Kaavya Purushothaman
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Ashwin Kumar Narasimhan
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| |
Collapse
|
31
|
Augello G, Cusimano A, Cervello M, Cusimano A. Extracellular Vesicle-Related Non-Coding RNAs in Hepatocellular Carcinoma: An Overview. Cancers (Basel) 2024; 16:1415. [PMID: 38611093 PMCID: PMC11011022 DOI: 10.3390/cancers16071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is a major public health problem worldwide, and it is often diagnosed at advanced stages, when no effective treatment options are available. Extracellular vesicles (EVs) are nanosized double-layer lipid vesicles containing various biomolecule cargoes, such as lipids, proteins, and nucleic acids. EVs are released from nearly all types of cells and have been shown to play an important role in cell-to-cell communication. In recent years, many studies have investigated the role of EVs in cancer, including HCC. Emerging studies have shown that EVs play primary roles in the development and progression of cancer, modulating tumor growth and metastasis formation. Moreover, it has been observed that non-coding RNAs (ncRNAs) carried by tumor cell-derived EVs promote tumorigenesis, regulating the tumor microenvironment (TME) and playing critical roles in the progression, angiogenesis, metastasis, immune escape, and drug resistance of HCC. EV-related ncRNAs can provide information regarding disease status, thus encompassing a role as biomarkers. In this review, we discuss the main roles of ncRNAs present in HCC-derived EVs, including micro(mi) RNAs, long non-coding (lnc) RNAs, and circular (circ) RNAs, and their potential clinical value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| |
Collapse
|
32
|
Mesquita FCP, King M, da Costa Lopez PL, Thevasagayampillai S, Gunaratne PH, Hochman-Mendez C. Laminin Alpha 2 Enhances the Protective Effect of Exosomes on Human iPSC-Derived Cardiomyocytes in an In Vitro Ischemia-Reoxygenation Model. Int J Mol Sci 2024; 25:3773. [PMID: 38612582 PMCID: PMC11011704 DOI: 10.3390/ijms25073773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Ischemic heart disease, a leading cause of death worldwide, manifests clinically as myocardial infarction. Contemporary therapies using mesenchymal stromal cells (MSCs) and their derivative (exosomes, EXOs) were developed to decrease the progression of cell damage during ischemic injury. Laminin alpha 2 (LAMA2) is an important extracellular matrix protein of the heart. Here, we generated MSC-derived exosomes cultivated under LAMA2 coating to enhance human-induced pluripotent stem cell (hiPSC)-cardiomyocyte recognition of LAMA2-EXOs, thus, increasing cell protection during ischemia reoxygenation. We mapped the mRNA content of LAMA2 and gelatin-EXOs and identified 798 genes that were differentially expressed, including genes associated with cardiac muscle development and extracellular matrix organization. Cells were treated with LAMA2-EXOs 2 h before a 4 h ischemia period (1% O2, 5% CO2, glucose-free media). LAMA2-EXOs had a two-fold protective effect compared to non-treatment on plasma membrane integrity and the apoptosis activation pathway; after a 1.5 h recovery period (20% O2, 5% CO2, cardiomyocyte-enriched media), cardiomyocytes treated with LAMA2-EXOs showed faster recovery than did the control group. Although EXOs had a protective effect on endothelial cells, there was no LAMA2-enhanced protection on these cells. This is the first report of LAMA2-EXOs used to treat cardiomyocytes that underwent ischemia-reoxygenation injury. Overall, we showed that membrane-specific EXOs may help improve cardiomyocyte survival in treating ischemic cardiovascular disease.
Collapse
Affiliation(s)
- Fernanda C. P. Mesquita
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, TX 77030, USA; (F.C.P.M.); (M.K.); (P.L.d.C.L.)
| | - Madelyn King
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, TX 77030, USA; (F.C.P.M.); (M.K.); (P.L.d.C.L.)
| | - Patricia Luciana da Costa Lopez
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, TX 77030, USA; (F.C.P.M.); (M.K.); (P.L.d.C.L.)
| | | | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, TX 77030, USA; (F.C.P.M.); (M.K.); (P.L.d.C.L.)
| |
Collapse
|
33
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
34
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
35
|
Verma C, Pawar VA, Srivastava S, Tyagi A, Kaushik G, Shukla SK, Kumar V. Cancer Vaccines in the Immunotherapy Era: Promise and Potential. Vaccines (Basel) 2023; 11:1783. [PMID: 38140187 PMCID: PMC10747700 DOI: 10.3390/vaccines11121783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Therapeutic vaccines are a promising alternative for active immunotherapy for different types of cancers. Therapeutic cancer vaccines aim to prevent immune system responses that are not targeted at the tumors only, but also boost the anti-tumor immunity and promote regression or eradication of the malignancy without, or with minimal, adverse events. Clinical trial data have pushed the development of cancer vaccines forward, and the US Food and Drug Administration authorized the first therapeutic cancer vaccine. In the present review, we discuss the various types of cancer vaccines and different approaches for the development of therapeutic cancer vaccines, along with the current state of knowledge and future prospects. We also discuss how tumor-induced immune suppression limits the effectiveness of therapeutic vaccinations, and strategies to overcome this barrier to design efficacious, long-lasting anti-tumor immune responses in the generation of vaccines.
Collapse
Affiliation(s)
- Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA;
| | | | - Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi 110054, India;
| | - Gaurav Kaushik
- School of Allied Health Sciences, Sharda University, Greater Noida 201310, India;
| | - Surendra Kumar Shukla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
36
|
Li J, Su X, Xu X, Zhao C, Liu A, Yang L, Song B, Song H, Li Z, Hao X. Preoperative prediction and risk assessment of microvascular invasion in hepatocellular carcinoma. Crit Rev Oncol Hematol 2023; 190:104107. [PMID: 37633349 DOI: 10.1016/j.critrevonc.2023.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and highly lethal tumors worldwide. Microvascular invasion (MVI) is a significant risk factor for recurrence and poor prognosis after surgical resection for HCC patients. Accurately predicting the status of MVI preoperatively is critical for clinicians to select treatment modalities and improve overall survival. However, MVI can only be diagnosed by pathological analysis of postoperative specimens. Currently, numerous indicators in serology (including liquid biopsies) and imaging have been identified to effective in predicting the occurrence of MVI, and the multi-indicator model based on deep learning greatly improves accuracy of prediction. Moreover, several genes and proteins have been identified as risk factors that are strictly associated with the occurrence of MVI. Therefore, this review evaluates various predictors and risk factors, and provides guidance for subsequent efforts to explore more accurate predictive methods and to facilitate the conversion of risk factors into reliable predictors.
Collapse
Affiliation(s)
- Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liwen Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Baoling Song
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Hao Song
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Zihan Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
37
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
38
|
Wang J, Li Y, Wang N, Wu J, Ye X, Jiang Y, Tang L. Functions of exosomal non-coding RNAs to the infection with Mycobacterium tuberculosis. Front Immunol 2023; 14:1127214. [PMID: 37033928 PMCID: PMC10073540 DOI: 10.3389/fimmu.2023.1127214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Tuberculosis (TB) is a major infectious disease induced by Mycobacterium tuberculosis (M. tb) which causes the world's dominant fatal bacterial contagious disease. Increasing studies have indicated that exosomes may be a novel option for the diagnosis and treatment of TB. Exosomes are nanovesicles (30-150 nm) containing lipids, proteins and non-coding RNAs (ncRNAs) released from various cells, and can transfer their cargos and communicate between cells. Furthermore, exosomal ncRNAs exhibit diagnosis potential in bacterial infections, including TB. Additionally, differential exosomal ncRNAs regulate the physiological and pathological functions of M. tb-infected cells and act as diagnostic markers for TB. This current review explored the potential biological roles and the diagnostic application prospects of exosomal ncRNAs, and included recent information on their pathogenic and therapeutic functions in TB.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
- *Correspondence: Lijun Tang, ; Jianjun Wang,
| | - Yujie Li
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Nan Wang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Jianhong Wu
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Xiaojian Ye
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Yibiao Jiang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Lijun Tang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Lijun Tang, ; Jianjun Wang,
| |
Collapse
|