1
|
Wan YT, Nielsen M. TCRCluster: a novel approach to T-cell receptor latent featurization and clustering using contrastive learning-guided two-stage variational autoencoders. NAR Genom Bioinform 2025; 7:lqaf065. [PMID: 40432791 PMCID: PMC12107435 DOI: 10.1093/nargab/lqaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
T cells play a vital role in adaptive immunity by targeting pathogen-infected or cancerous cells, but predicting their specificity remains challenging. Encoding T-cell receptor (TCR) sequences into informative feature spaces is therefore crucial for advancing specificity prediction and downstream applications. For this, we developed a variational autoencoder (VAE)-based model trained on paired TCR α-β chain data, incorporating all six complementarity-determining regions. A semi-supervised 'two-stage VAE' framework, integrating cosine triplet loss and a classifier, was found to further refine peptide-specific latent representations, outperforming sequence-based methods in specificity prediction. Clustering analyses leveraging our VAE latent space were evaluated using K-means, agglomerative clustering, and a novel graph-based method. Agglomerative clustering achieved the most biologically relevant results, balancing cluster purity and retention despite noise in TCR specificity annotations. We extended these insights to evaluate TCR repertoire data. Across datasets, VAE-based models outperformed sequence-based methods, particularly in retention metrics, with notable improvements in the SARS-CoV-2 repertoire dataset. Moreover, the cancer repertoire analysis highlighted the generalizability of our approach, where the model displayed high performance despite minimal similarity between the training and test data. Collectively, these results demonstrate the potential of VAE-based latent representations to offer a robust framework for prediction, clustering, and repertoire analysis.
Collapse
Affiliation(s)
- Yat-Tsai Richie Wan
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby DK 28002, Denmark
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby DK 28002, Denmark
| |
Collapse
|
2
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2025; 67:1336-1366. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Chernigovskaya M, Pavlović M, Kanduri C, Gielis S, Robert P, Scheffer L, Slabodkin A, Haff IH, Meysman P, Yaari G, Sandve GK, Greiff V. Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning. Nucleic Acids Res 2025; 53:gkaf025. [PMID: 39873270 PMCID: PMC11773363 DOI: 10.1093/nar/gkaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/25/2025] [Indexed: 01/30/2025] Open
Abstract
Machine learning (ML) has shown great potential in the adaptive immune receptor repertoire (AIRR) field. However, there is a lack of large-scale ground-truth experimental AIRR data suitable for AIRR-ML-based disease diagnostics and therapeutics discovery. Simulated ground-truth AIRR data are required to complement the development and benchmarking of robust and interpretable AIRR-ML methods where experimental data is currently inaccessible or insufficient. The challenge for simulated data to be useful is incorporating key features observed in experimental repertoires. These features, such as antigen or disease-associated immune information, cause AIRR-ML problems to be challenging. Here, we introduce LIgO, a software suite, which simulates AIRR data for the development and benchmarking of AIRR-ML methods. LIgO incorporates different types of immune information both on the receptor and the repertoire level and preserves native-like generation probability distribution. Additionally, LIgO assists users in determining the computational feasibility of their simulations. We show two examples where LIgO supports the development and validation of AIRR-ML methods: (i) how individuals carrying out-of-distribution immune information impacts receptor-level prediction performance and (ii) how immune information co-occurring in the same AIRs impacts the performance of conventional receptor-level encoding and repertoire-level classification approaches. LIgO guides the advancement and assessment of interpretable AIRR-ML methods.
Collapse
Affiliation(s)
- Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| | - Milena Pavlović
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, 0373, Norway
| | - Chakravarthi Kanduri
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, 0373, Norway
| | - Sofie Gielis
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, 2020, Belgium
| | - Philippe A Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Lonneke Scheffer
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
| | - Andrei Slabodkin
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| | | | - Pieter Meysman
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, 2020, Belgium
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Oslo, 0373, Norway
- UiO:RealArt Convergence Environment, University of Oslo, Oslo, 0373, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, 0372, Norway
| |
Collapse
|
4
|
Wang M, Fan W, Wu T, Li M. TPepRet: a deep learning model for characterizing T-cell receptors-antigen binding patterns. Bioinformatics 2024; 41:btaf022. [PMID: 39880376 PMCID: PMC11784750 DOI: 10.1093/bioinformatics/btaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025] Open
Abstract
MOTIVATION T-cell receptors (TCRs) elicit and mediate the adaptive immune response by recognizing antigenic peptides, a process pivotal for cancer immunotherapy, vaccine design, and autoimmune disease management. Understanding the intricate binding patterns between TCRs and peptides is critical for advancing these clinical applications. While several computational tools have been developed, they neglect the directional semantics inherent in sequence data, which are essential for accurately characterizing TCR-peptide interactions. RESULTS To address this gap, we develop TPepRet, an innovative model that integrates subsequence mining with semantic integration capabilities. TPepRet combines the strengths of the Bidirectional Gated Recurrent Unit (BiGRU) network for capturing bidirectional sequence dependencies with the Large Language Model framework to analyze subsequences and global sequences comprehensively, which enables TPepRet to accurately decipher the semantic binding relationship between TCRs and peptides. We have evaluated TPepRet to a range of challenging scenarios, including performance benchmarking against other tools using diverse datasets, analysis of peptide binding preferences, characterization of T cells clonal expansion, identification of true binder in complex environments, assessment of key binding sites through alanine scanning, validation against expression rates from large-scale datasets, and ability to screen SARS-CoV-2 TCRs. The comprehensive results suggest that TPepRet outperforms existing tools. We believe TPepRet will become an effective tool for understanding TCR-peptide binding in clinical treatment. AVAILABILITY AND IMPLEMENTATION The source code can be obtained from https://github.com/CSUBioGroup/TPepRet.git.
Collapse
Affiliation(s)
- Meng Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Wei Fan
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX39DU, United Kingdom
| | - Tianrui Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Vegesana K, Thomas PG. Cracking the code of adaptive immunity: The role of computational tools. Cell Syst 2024; 15:1156-1167. [PMID: 39701033 DOI: 10.1016/j.cels.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
In recent years, the advances in high-throughput and deep sequencing have generated a diverse amount of adaptive immune repertoire data. This surge in data has seen a proportional increase in computational methods aimed to characterize T cell receptor (TCR) repertoires. In this perspective, we will provide a brief commentary on the various domains of TCR repertoire analysis, their respective computational methods, and the ongoing challenges. Given the breadth of methods and applications of TCR analysis, we will focus our perspective on sequence-based computational methods.
Collapse
Affiliation(s)
- Kasi Vegesana
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
O'Donnell TJ, Kanduri C, Isacchini G, Limenitakis JP, Brachman RA, Alvarez RA, Haff IH, Sandve GK, Greiff V. Reading the repertoire: Progress in adaptive immune receptor analysis using machine learning. Cell Syst 2024; 15:1168-1189. [PMID: 39701034 DOI: 10.1016/j.cels.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
The adaptive immune system holds invaluable information on past and present immune responses in the form of B and T cell receptor sequences, but we are limited in our ability to decode this information. Machine learning approaches are under active investigation for a range of tasks relevant to understanding and manipulating the adaptive immune receptor repertoire, including matching receptors to the antigens they bind, generating antibodies or T cell receptors for use as therapeutics, and diagnosing disease based on patient repertoires. Progress on these tasks has the potential to substantially improve the development of vaccines, therapeutics, and diagnostics, as well as advance our understanding of fundamental immunological principles. We outline key challenges for the field, highlighting the need for software benchmarking, targeted large-scale data generation, and coordinated research efforts.
Collapse
Affiliation(s)
| | - Chakravarthi Kanduri
- Department of Informatics, University of Oslo, Oslo, Norway; UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
| | | | | | - Rebecca A Brachman
- Imprint Labs, LLC, New York, NY, USA; Cornell Tech, Cornell University, New York, NY, USA
| | | | - Ingrid H Haff
- Department of Mathematics, University of Oslo, 0371 Oslo, Norway
| | - Geir K Sandve
- Department of Informatics, University of Oslo, Oslo, Norway; UiO:RealArt Convergence Environment, University of Oslo, Oslo, Norway
| | - Victor Greiff
- Imprint Labs, LLC, New York, NY, USA; Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
7
|
O’Brien H, Salm M, Morton LT, Szukszto M, O’Farrell F, Boulton C, King L, Bola SK, Becker PD, Craig A, Nielsen M, Samuels Y, Swanton C, Mansour MR, Hadrup SR, Quezada SA. A modular protein language modelling approach to immunogenicity prediction. PLoS Comput Biol 2024; 20:e1012511. [PMID: 39527593 PMCID: PMC11581412 DOI: 10.1371/journal.pcbi.1012511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/21/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Neoantigen immunogenicity prediction is a highly challenging problem in the development of personalised medicines. Low reactivity rates in called neoantigens result in a difficult prediction scenario with limited training datasets. Here we describe ImmugenX, a modular protein language modelling approach to immunogenicity prediction for CD8+ reactive epitopes. ImmugenX comprises of a pMHC encoding module trained on three pMHC prediction tasks, an optional TCR encoding module and a set of context specific immunogenicity prediction head modules. Compared with state-of-the-art models for each task, ImmugenX's encoding module performs comparably or better on pMHC binding affinity, eluted ligand prediction and stability tasks. ImmugenX outperforms all compared models on pMHC immunogenicity prediction (Area under the receiver operating characteristic curve = 0.619, average precision: 0.514), with a 7% increase in average precision compared to the next best model. ImmugenX shows further improved performance on immunogenicity prediction with the integration of TCR context information. ImmugenX performance is further analysed for interpretability, which locates areas of weakness found across existing immunogenicity models and highlight possible biases in public datasets.
Collapse
Affiliation(s)
| | - Max Salm
- Achilles Therapeutics UK Ltd, United Kingdom
| | | | - Maciej Szukszto
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Charlotte Boulton
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Laurence King
- Achilles Therapeutics UK Ltd, United Kingdom
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Supreet Kaur Bola
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | | | | | | | | | | | - Marc R. Mansour
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
- Department of Developmental Biology and Cancer, Great Ormond Street Institute of Child Health, UCL
| | | | - Sergio A. Quezada
- Achilles Therapeutics UK Ltd, United Kingdom
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
8
|
Scheffer L, Reber EE, Mehta BB, Pavlović M, Chernigovskaya M, Richardson E, Akbar R, Lund-Johansen F, Greiff V, Haff IH, Sandve GK. Predictability of antigen binding based on short motifs in the antibody CDRH3. Brief Bioinform 2024; 25:bbae537. [PMID: 39438077 PMCID: PMC11495870 DOI: 10.1093/bib/bbae537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Adaptive immune receptors, such as antibodies and T-cell receptors, recognize foreign threats with exquisite specificity. A major challenge in adaptive immunology is discovering the rules governing immune receptor-antigen binding in order to predict the antigen binding status of previously unseen immune receptors. Many studies assume that the antigen binding status of an immune receptor may be determined by the presence of a short motif in the complementarity determining region 3 (CDR3), disregarding other amino acids. To test this assumption, we present a method to discover short motifs which show high precision in predicting antigen binding and generalize well to unseen simulated and experimental data. Our analysis of a mutagenesis-based antibody dataset reveals 11 336 position-specific, mostly gapped motifs of 3-5 amino acids that retain high precision on independently generated experimental data. Using a subset of only 178 motifs, a simple classifier was made that on the independently generated dataset outperformed a deep learning model proposed specifically for such datasets. In conclusion, our findings support the notion that for some antibodies, antigen binding may be largely determined by a short CDR3 motif. As more experimental data emerge, our methodology could serve as a foundation for in-depth investigations into antigen binding signals.
Collapse
Affiliation(s)
- Lonneke Scheffer
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Eric Emanuel Reber
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Milena Pavlović
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Eve Richardson
- La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA, United States
| | - Rahmad Akbar
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Ingrid Hobæk Haff
- Department of Mathematics, University of Oslo, Niels Henrik Abels hus, Moltke Moes vei 35, 0851 Oslo, Norway
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| |
Collapse
|
9
|
Kim HY, Kim S, Park WY, Kim D. TSpred: a robust prediction framework for TCR-epitope interactions using paired chain TCR sequence data. Bioinformatics 2024; 40:btae472. [PMID: 39052940 PMCID: PMC11297499 DOI: 10.1093/bioinformatics/btae472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/11/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024] Open
Abstract
MOTIVATION Prediction of T-cell receptor (TCR)-epitope interactions is important for many applications in biomedical research, such as cancer immunotherapy and vaccine design. The prediction of TCR-epitope interactions remains challenging especially for novel epitopes, due to the scarcity of available data. RESULTS We propose TSpred, a new deep learning approach for the pan-specific prediction of TCR binding specificity based on paired chain TCR data. We develop a robust model that generalizes well to unseen epitopes by combining the predictive power of CNN and the attention mechanism. In particular, we design a reciprocal attention mechanism which focuses on extracting the patterns underlying TCR-epitope interactions. Upon a comprehensive evaluation of our model, we find that TSpred achieves state-of-the-art performances in both seen and unseen epitope specificity prediction tasks. Also, compared to other predictors, TSpred is more robust to bias related to peptide imbalance in the dataset. In addition, the reciprocal attention component of our model allows for model interpretability by capturing structurally important binding regions. Results indicate that TSpred is a robust and reliable method for the task of TCR-epitope binding prediction. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/ha01994/TSpred.
Collapse
Affiliation(s)
- Ha Young Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | | | - Woong-Yang Park
- GENINUS Inc., Seoul 05836, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
10
|
Pertseva M, Follonier O, Scarcella D, Reddy ST. TCR clustering by contrastive learning on antigen specificity. Brief Bioinform 2024; 25:bbae375. [PMID: 39129361 PMCID: PMC11317525 DOI: 10.1093/bib/bbae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Effective clustering of T-cell receptor (TCR) sequences could be used to predict their antigen-specificities. TCRs with highly dissimilar sequences can bind to the same antigen, thus making their clustering into a common antigen group a central challenge. Here, we develop TouCAN, a method that relies on contrastive learning and pretrained protein language models to perform TCR sequence clustering and antigen-specificity predictions. Following training, TouCAN demonstrates the ability to cluster highly dissimilar TCRs into common antigen groups. Additionally, TouCAN demonstrates TCR clustering performance and antigen-specificity predictions comparable to other leading methods in the field.
Collapse
Affiliation(s)
- Margarita Pertseva
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Oceane Follonier
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Daniele Scarcella
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Wossnig L, Furtmann N, Buchanan A, Kumar S, Greiff V. Best practices for machine learning in antibody discovery and development. Drug Discov Today 2024; 29:104025. [PMID: 38762089 DOI: 10.1016/j.drudis.2024.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
In the past 40 years, therapeutic antibody discovery and development have advanced considerably, with machine learning (ML) offering a promising way to speed up the process by reducing costs and the number of experiments required. Recent progress in ML-guided antibody design and development (D&D) has been hindered by the diversity of data sets and evaluation methods, which makes it difficult to conduct comparisons and assess utility. Establishing standards and guidelines will be crucial for the wider adoption of ML and the advancement of the field. This perspective critically reviews current practices, highlights common pitfalls and proposes method development and evaluation guidelines for various ML-based techniques in therapeutic antibody D&D. Addressing challenges across the ML process, best practices are recommended for each stage to enhance reproducibility and progress.
Collapse
Affiliation(s)
- Leonard Wossnig
- LabGenius Ltd, The Biscuit Factory, 100 Drummond Road, London SE16 4DG, UK; Department of Computer Science, University College London, 66-72 Gower St, London WC1E 6EA, UK.
| | - Norbert Furtmann
- R&D Large Molecules Research Platform, Sanofi Deutschland GmbH, Industriepark Höchst, Frankfurt Am Main, Germany
| | - Andrew Buchanan
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Sandeep Kumar
- Computational Protein Design and Modeling Group, Computational Science, Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Tiffeau-Mayer A. Unbiased estimation of sampling variance for Simpson's diversity index. Phys Rev E 2024; 109:064411. [PMID: 39020976 DOI: 10.1103/physreve.109.064411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
Quantification of measurement uncertainty is crucial for robust scientific inference, yet accurate estimates of this uncertainty remain elusive for ecological measures of diversity. Here, we address this longstanding challenge by deriving a closed-form unbiased estimator for the sampling variance of Simpson's diversity index. In numerical tests the estimator consistently outperforms existing approaches, particularly for applications in which species richness exceeds sample size. We apply the estimator to quantify biodiversity loss in marine ecosystems and to demonstrate ligand-dependent contributions of T-cell-receptor chains to specificity, illustrating its versatility across fields. The novel estimator provides researchers with a reliable method for comparing diversity between samples, essential for quantifying biodiversity trends and making informed conservation decisions.
Collapse
|
13
|
Bulashevska A, Nacsa Z, Lang F, Braun M, Machyna M, Diken M, Childs L, König R. Artificial intelligence and neoantigens: paving the path for precision cancer immunotherapy. Front Immunol 2024; 15:1394003. [PMID: 38868767 PMCID: PMC11167095 DOI: 10.3389/fimmu.2024.1394003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Cancer immunotherapy has witnessed rapid advancement in recent years, with a particular focus on neoantigens as promising targets for personalized treatments. The convergence of immunogenomics, bioinformatics, and artificial intelligence (AI) has propelled the development of innovative neoantigen discovery tools and pipelines. These tools have revolutionized our ability to identify tumor-specific antigens, providing the foundation for precision cancer immunotherapy. AI-driven algorithms can process extensive amounts of data, identify patterns, and make predictions that were once challenging to achieve. However, the integration of AI comes with its own set of challenges, leaving space for further research. With particular focus on the computational approaches, in this article we have explored the current landscape of neoantigen prediction, the fundamental concepts behind, the challenges and their potential solutions providing a comprehensive overview of this rapidly evolving field.
Collapse
Affiliation(s)
- Alla Bulashevska
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Zsófia Nacsa
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Franziska Lang
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Markus Braun
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Martin Machyna
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Liam Childs
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Renate König
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
14
|
Mösch A, Grazioli F, Machart P, Malone B. NeoAgDT: optimization of personal neoantigen vaccine composition by digital twin simulation of a cancer cell population. Bioinformatics 2024; 40:btae205. [PMID: 38614133 PMCID: PMC11076149 DOI: 10.1093/bioinformatics/btae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024] Open
Abstract
MOTIVATION Neoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity. RESULTS Here, we present NeoAgDT, a two-step approach consisting of: (i) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (ii) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally validated neoantigens over ranking-based approaches in a study of seven patients. AVAILABILITY AND IMPLEMENTATION The NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt.
Collapse
Affiliation(s)
- Anja Mösch
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| | - Filippo Grazioli
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| | - Pierre Machart
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| | - Brandon Malone
- Biomedical AI Group, NEC Laboratories Europe GmbH, Heidelberg 69115, Germany
| |
Collapse
|
15
|
Croce G, Bobisse S, Moreno DL, Schmidt J, Guillame P, Harari A, Gfeller D. Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells. Nat Commun 2024; 15:3211. [PMID: 38615042 PMCID: PMC11016097 DOI: 10.1038/s41467-024-47461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
T cells have the ability to eliminate infected and cancer cells and play an essential role in cancer immunotherapy. T cell activation is elicited by the binding of the T cell receptor (TCR) to epitopes displayed on MHC molecules, and the TCR specificity is determined by the sequence of its α and β chains. Here, we collect and curate a dataset of 17,715 αβTCRs interacting with dozens of class I and class II epitopes. We use this curated data to develop MixTCRpred, an epitope-specific TCR-epitope interaction predictor. MixTCRpred accurately predicts TCRs recognizing several viral and cancer epitopes. MixTCRpred further provides a useful quality control tool for multiplexed single-cell TCR sequencing assays of epitope-specific T cells and pinpoints a substantial fraction of putative contaminants in public databases. Analysis of epitope-specific dual α T cells demonstrates that MixTCRpred can identify α chains mediating epitope recognition. Applying MixTCRpred to TCR repertoires from COVID-19 patients reveals enrichment of clonotypes predicted to bind an immunodominant SARS-CoV-2 epitope. Overall, MixTCRpred provides a robust tool to predict TCRs interacting with specific epitopes and interpret TCR-sequencing data from both bulk and epitope-specific T cells.
Collapse
Affiliation(s)
- Giancarlo Croce
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Sara Bobisse
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dana Léa Moreno
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Guillame
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
16
|
Jensen MF, Nielsen M. Enhancing TCR specificity predictions by combined pan- and peptide-specific training, loss-scaling, and sequence similarity integration. eLife 2024; 12:RP93934. [PMID: 38437160 PMCID: PMC10942633 DOI: 10.7554/elife.93934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Predicting the interaction between Major Histocompatibility Complex (MHC) class I-presented peptides and T-cell receptors (TCR) holds significant implications for vaccine development, cancer treatment, and autoimmune disease therapies. However, limited paired-chain TCR data, skewed towards well-studied epitopes, hampers the development of pan-specific machine-learning (ML) models. Leveraging a larger peptide-TCR dataset, we explore various alterations to the ML architectures and training strategies to address data imbalance. This leads to an overall improved performance, particularly for peptides with scant TCR data. However, challenges persist for unseen peptides, especially those distant from training examples. We demonstrate that such ML models can be used to detect potential outliers, which when removed from training, leads to augmented performance. Integrating pan-specific and peptide-specific models alongside with similarity-based predictions, further improves the overall performance, especially when a low false positive rate is desirable. In the context of the IMMREP22 benchmark, this modeling framework attained state-of-the-art performance. Moreover, combining these strategies results in acceptable predictive accuracy for peptides characterized with as little as 15 positive TCRs. This observation places great promise on rapidly expanding the peptide covering of the current models for predicting TCR specificity. The NetTCR 2.2 model incorporating these advances is available on GitHub (https://github.com/mnielLab/NetTCR-2.2) and as a web server at https://services.healthtech.dtu.dk/services/NetTCR-2.2/.
Collapse
Affiliation(s)
- Mathias Fynbo Jensen
- Department of Health Technology, Section for Bioinformatics, Technical University of DenmarkLyngbyDenmark
| | - Morten Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of DenmarkLyngbyDenmark
| |
Collapse
|
17
|
Barra C, Nilsson JB, Saksager A, Carri I, Deleuran S, Garcia Alvarez HM, Høie MH, Li Y, Clifford JN, Wan YTR, Moreta LS, Nielsen M. In Silico Tools for Predicting Novel Epitopes. Methods Mol Biol 2024; 2813:245-280. [PMID: 38888783 DOI: 10.1007/978-1-0716-3890-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Identifying antigens within a pathogen is a critical task to develop effective vaccines and diagnostic methods, as well as understanding the evolution and adaptation to host immune responses. Historically, antigenicity was studied with experiments that evaluate the immune response against selected fragments of pathogens. Using this approach, the scientific community has gathered abundant information regarding which pathogenic fragments are immunogenic. The systematic collection of this data has enabled unraveling many of the fundamental rules underlying the properties defining epitopes and immunogenicity, and has resulted in the creation of a large panel of immunologically relevant predictive (in silico) tools. The development and application of such tools have proven to accelerate the identification of novel epitopes within biomedical applications reducing experimental costs. This chapter introduces some basic concepts about MHC presentation, T cell and B cell epitopes, the experimental efforts to determine those, and focuses on state-of-the-art methods for epitope prediction, highlighting their strengths and limitations, and catering instructions for their rational use.
Collapse
Affiliation(s)
- Carolina Barra
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark.
| | | | - Astrid Saksager
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Ibel Carri
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Sebastian Deleuran
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Heli M Garcia Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Magnus Haraldson Høie
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Yuchen Li
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | | | - Yat-Tsai Richie Wan
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Lys Sanz Moreta
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Morten Nielsen
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| |
Collapse
|
18
|
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther 2023; 8:450. [PMID: 38086815 PMCID: PMC10716479 DOI: 10.1038/s41392-023-01674-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
With the development and regulatory approval of immune checkpoint inhibitors and adoptive cell therapies, cancer immunotherapy has undergone a profound transformation over the past decades. Recently, therapeutic cancer vaccines have shown promise by eliciting de novo T cell responses targeting tumor antigens, including tumor-associated antigens and tumor-specific antigens. The objective was to amplify and diversify the intrinsic repertoire of tumor-specific T cells. However, the complete realization of these capabilities remains an ongoing pursuit. Therefore, we provide an overview of the current landscape of cancer vaccines in this review. The range of antigen selection, antigen delivery systems development the strategic nuances underlying effective antigen presentation have pioneered cancer vaccine design. Furthermore, this review addresses the current status of clinical trials and discusses their strategies, focusing on tumor-specific immunogenicity and anti-tumor efficacy assessment. However, current clinical attempts toward developing cancer vaccines have not yielded breakthrough clinical outcomes due to significant challenges, including tumor immune microenvironment suppression, optimal candidate identification, immune response evaluation, and vaccine manufacturing acceleration. Therefore, the field is poised to overcome hurdles and improve patient outcomes in the future by acknowledging these clinical complexities and persistently striving to surmount inherent constraints.
Collapse
Affiliation(s)
- Ting Fan
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Mingna Zhang
- Postgraduate Training Base, Shanghai East Hospital, Jinzhou Medical University, Shanghai, 200120, China
| | - Jingxian Yang
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhounan Zhu
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanlu Cao
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Montemurro A, Povlsen HR, Jessen LE, Nielsen M. Benchmarking data-driven filtering for denoising of TCRpMHC single-cell data. Sci Rep 2023; 13:16147. [PMID: 37752190 PMCID: PMC10522655 DOI: 10.1038/s41598-023-43048-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Pairing of the T cell receptor (TCR) with its cognate peptide-MHC (pMHC) is a cornerstone in T cell-mediated immunity. Recently, single-cell sequencing coupled with DNA-barcoded MHC multimer staining has enabled high-throughput studies of T cell specificities. However, the immense variability of TCR-pMHC interactions combined with the relatively low signal-to-noise ratio in the data generated using current technologies are complicating these studies. Several approaches have been proposed for denoising single-cell TCR-pMHC specificity data. Here, we present a benchmark evaluating two such denoising methods, ICON and ITRAP. We applied and evaluated the methods on publicly available immune profiling data provided by 10x Genomics. We find that both methods identified approximately 75% of the raw data as noise. We analyzed both internal metrics developed for the purpose and performance on independent data using machine learning methods trained on the raw and denoised 10x data. We find an increased signal-to-noise ratio comparing the denoised to the raw data for both methods, and demonstrate an overall superior performance of the ITRAP method in terms of both data consistency and performance. In conclusion, this study demonstrates that Improving the data quality from high throughput studies of TCRpMHC-specificity by denoising is paramount in increasing our understanding of T cell-mediated immunity.
Collapse
Affiliation(s)
- Alessandro Montemurro
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800, Kgs. Lyngby, Denmark
| | - Helle Rus Povlsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800, Kgs. Lyngby, Denmark
| | - Leon Eyrich Jessen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800, Kgs. Lyngby, Denmark
| | - Morten Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, DTU, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
20
|
Povlsen HR, Bentzen AK, Kadivar M, Jessen LE, Hadrup SR, Nielsen M. Improved T cell receptor antigen pairing through data-driven filtering of sequencing information from single cells. eLife 2023; 12:e81810. [PMID: 37133356 PMCID: PMC10156162 DOI: 10.7554/elife.81810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/13/2023] [Indexed: 05/04/2023] Open
Abstract
Novel single-cell-based technologies hold the promise of matching T cell receptor (TCR) sequences with their cognate peptide-MHC recognition motif in a high-throughput manner. Parallel capture of TCR transcripts and peptide-MHC is enabled through the use of reagents labeled with DNA barcodes. However, analysis and annotation of such single-cell sequencing (SCseq) data are challenged by dropout, random noise, and other technical artifacts that must be carefully handled in the downstream processing steps. We here propose a rational, data-driven method termed ITRAP (improved T cell Receptor Antigen Paring) to deal with these challenges, filtering away likely artifacts, and enable the generation of large sets of TCR-pMHC sequence data with a high degree of specificity and sensitivity, thus outputting the most likely pMHC target per T cell. We have validated this approach across 10 different virus-specific T cell responses in 16 healthy donors. Across these samples, we have identified up to 1494 high-confident TCR-pMHC pairs derived from 4135 single cells.
Collapse
Affiliation(s)
- Helle Rus Povlsen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Amalie Kai Bentzen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Mohammad Kadivar
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Leon Eyrich Jessen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Sine Reker Hadrup
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Morten Nielsen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
21
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|